Модифицированные сорбенты на основе активированного угля БАУ-А и крупнопористого силикагеля для извлечения радионуклидов и цветных металлов из водных растворов

© С. А. Кулюхин*, М. П. Горбачева, Е. П. Красавина, И. А. Румер

Институт физической химии и электрохимии им. А. Н. Фрумкина РАН, 119071, Москва, Ленинский пр., д. 31, корп. 4; * e-mail: kulyukhin@ipc.rssi.ru

Получена 22.12.2017, после доработки 23.01.2018, принята к публикации 24.01.2018 УДК 546.15+661.18.7

Исследована сорбция радионуклидов ⁹⁰Sr, ⁹⁰Y, ¹³⁷Cs, ¹⁵²Eu и цветных металлов (Cu, Ni, Zn, Pb) из водных растворов на гранулированных сорбентах на основе крупнопористого силикагеля марок КСКГ и МСКГ и активированного угля марки БАУ-А. Установлено, что модифицированные гранулированные сорбенты на основе крупнопористого силикагеля марок КСКГ и МСКГ, содержащие ферроцианиды Cu, Zn и Ni, эффективно поглощают ⁹⁰Sr и ⁹⁰Y из дистиллированной воды. В водопроводной воде эффективность всех сорбентов на основе КСКГ и МСКГ не превышает 70%. Модифицирование поверхности БАУ-А проводили путем его выдержки в нитрующей атмосфере [NO_x-воздух или HNO₃ (пары)–воздух] при 90–110°C в течение 4 ч, а также путем его импрегнирования 10 мас% триэтаноламина (TЭДА) или карбамида (CH₄N₂O). Найдено, что сорбенты на основе активированного угля БАУ-А эффективно поглощают ⁹⁰Y (аналог трехвалентных актинидов и лантанидов) и ионы цветных металлов из различных водных растворов. Модифицирование БАУ-А приводит к снижению его сорбенты в отношении Cu²⁺, Ni²⁺, Zn²⁺ и увеличению – в отношении Pb²⁺.

Ключевые слова: радионуклиды, цветные металлы, сорбция из водных растворов.

DOI: 10.1134/S0033831119010040

В настоящее время большое внимание уделяется защите окружающей среды. Современная концепция обращения с жидкими радиоактивными отходами (ЖРО) включает разработку технологических схем, обеспечивающих эффективную и дешевую очистку ЖРО, а также возможность компактирования отходов в сочетании с их надежной и долговременной изоляцией от биосферы. Однако, несмотря на предпринимаемые усилия по безопасному обращению с ЖРО, существующие в настоящее время методы переработки нередко приводят к тому, что техногенные радионуклиды поступают в окружающую среду, изменяя естественную радиоактивность почв, природных вод и донных отложений.

Одновременно разработка месторождений полезных ископаемых приводит к формированию геохимических ореолов и потоков рассеяния элементов, вследствие которых значительные количества загрязняющих веществ поступают в поверхностные воды прилегающих территорий. При разработке месторождений в окружающую среду поступает повышенное количество Al, Cu, Ni, Fe, Mn, Zn, Pb, щелочных и щелочноземельных металлов и т.п., оказывающих токсичное влияние на живую природу. В связи с этим актуальной задачей является проблема контроля содержания техногенных элементов, включая радионуклиды, в водных экосистемах с целью проведения рациональных природоохранных мероприятий.

Поскольку в водных растворах техногенные эле-

менты, включая радионуклиды, могут существовать в различных химических формах, для их извлечения применяются комбинированные установки, включающие узлы фильтрации, сорбции, ионного обмена, осмоса и т.д. [1-4]. На каждой стадии происходит извлечение определенной химической формы техногенных элементов. На стадии сорбционного извлечения используются неорганические и органические сорбенты, причем широкое применение находят различные виды активированных углей, цеолитов и силикагелей. Однако большинство из них имеет низкую сорбционную эффективность в отношении того или иного радионуклида. В связи с этим особую важность приобретает задача создания высокоэффективных сорбентов путем модифицирования промышленно выпускаемых марок активированного угля и гранулированных силикагелей.

В связи с этим нами исследована сорбция радионуклидов ^{85,90}Sr, ⁹⁰Y, ¹³⁷Cs, ¹⁵²Eu и цветных металлов (Cu, Ni, Zn, Pb) модифицированными гранулированными сорбентами на основе активированного угля БАУ-А и крупнопористого силикагеля марок КСКГ и МСКГ из водных растворов.

Экспериментальная часть

В работе использованы радионуклиды 85,90 Sr, 90 Y, 137 Cs и 152 Eu без носителей, поставляемые ОАО «Изотоп» в виде водных азотнокислых растворов. Радиоактивность 137 Cs, 85 Sr и 152 Eu измеряли методом γ -спектрометрии с помощью полупроводнико-

Образец	Условия выдержки	–С=О или –СООН, мг-экв/г	Фенольные группы, мг-экв/г	ПОЕ, мг-экв/г
Ι	_	1.1	0.1	1.2
Π	NO _x –воздух, 90°С, 4 ч	1.8	0.2	2.0
III	HNO ₃ (пары)–воздух, 90°С, 4 ч	1.0	0.4	1.4
IV	HNO ₃ (пары)–воздух, 110°С, 4 ч	1.6	0.4	2.0

Таблица 1. Некоторые характеристики исходного и выдержанного в нитрующей атмосфере активированного угля БАУ-А

вого Ge–Li-детектора на многоканальном анализаторе. Для измерения радиоактивности ⁹⁰Sr + ⁹⁰Y применяли сцинтилляционный β-спектрометр с использованием программного обеспечения LSRM 2000. В работе использовали радиоактивные растворы с удельной активностью от 2·10³ до 3·10⁴ Бк/мл, в которых концентрации Cs⁺, Sr²⁺ и Eu³⁺ составляли 1·10⁻⁵ моль/л. Погрешность измерений ±5%. Радионуклиды ^{85,90}Sr, ⁹⁰Y, ¹³⁷Cs и ¹⁵²Eu использовали в работе как радиоактивные метки для весовых количеств ионов металлов. В связи с этим обозначения ^{85,90}Sr²⁺, ⁹⁰Y³⁺, ¹³⁷Cs⁺ и ¹⁵²Eu³⁺ относятся к меченым соединениям, а не к соединениям чистых радионуклидов.

Все соли, щелочи и кислоты, использовавшиеся в работе, были марки х.ч. Концентрация ионов цветных металлов M^{2+} (M = Cu, Ni, Zn, Pb) в исходных азотнокислых растворах составляла 10^{-1} моль/л.

В работе использовали сорбенты на основе крупнопористого силикагеля марок КСКГ и МСКГ с размерами гранул 2.0–3.0 и 0.5–1.0 мм соответственно.

Сорбенты на основе крупнопористого силикагеля КСКГ содержали в качестве модифицирующих добавок аммиакаты или нитраты d-элементов (Cu, Ni, Zn) в комбинации с эфиром 18-краун-6 (18К6) или без него, либо двойной ферроцианид калия и уранила (ФЦ К-U). Сорбенты получали путем последовательной двух- или трехкратной пропитки КСКГ растворами соответствующих соединений. Для соединений *d*-элементов первая стадия приготовления сорбента всегда заключалась в пропитке КСКГ водным раствором нитратов *d*-элементов (Cu, Ni, Zn) с последующим высушиванием при 110°С. На второй стадии проводили пропитку прекурсора, полученного на первой стадии, либо раствором аммиака (12 моль/л), либо водным раствором 18К6. В случае трехкратной пропитки прекурсор, полученный после пропитки КСКГ растворами нитратов *d*-элементов и аммиака, пропитывали раствором 18К6 с последующим высушиванием до воздушно-сухого состояния. Во всех случаях готовые сорбенты высушивали до воздушносухого состояния при комнатной температуре. Содержание модификаторов составляло 10 мас%.

Сорбенты на основе КСКГ, содержащие ФЦ К-U, получали последовательной двойной пропиткой КСКГ водными растворами UO₂(NO₃)₂ и K₄[Fe(CN)₆]

с высушиванием при комнатной температуре до воздушно-сухого состояния. Сорбенты на основе МСКГ, содержащие 10 мас% ферроцианидов *d*-элементов (Cu, Ni, Zn), синтезировали путем двукратной пропитки матрицы по методике, описанной выше для ФЦ К-U.

Помимо силикагеля в работе использовали как немодифицированный (образец I), так и модифицированный древесный активированный уголь марки БАУ-А (ГОСТ 6217–74) с размерами гранул 0.5– 1.0 мм. Модифицирование поверхности БАУ-А проводили путем его выдержки в нитрующей атмосфере [NO_x-воздух или HNO₃ (пары)–воздух] при 90– 110°С в течение 4 ч. В табл. 1 приведены функциональные группы, присутствующие на поверхности активированного угля, после его выдержки в нитрующей атмосфере.

Как видно из табл. 1, выдержка БАУ-А в нитрующей атмосфере приводит к увеличению количества функциональных групп на его поверхности приблизительно в 2-4 раза. При этом выдержка в атмосфере NO_x-воздух приводит к более заметному увеличению количества функциональных групп по сравнению с выдержкой в атмосфере HNO₃ (пары)-воздух одинаковых экспериментальных условиях при (образцы II и III). Увеличение температуры при выдержке в атмосфере HNO₃ (пары)-воздух приводит к увеличению количества функциональных групп (образцы III и IV), что связано, по-видимому, с образованием NO_x в результате термической диссоциации HNO₃. В результате выдержки БАУ-А в атмосфере NO_x-воздух при 90°С и HNO₃ (пары)-воздух при 110°С его полная обменная емкость (ПОЕ) возрастает приблизительно в 2 раза.

Следует отметить, что помимо образования функциональных групп на поверхности гранул БАУ-А одновременно происходит сорбция NO_x или паров HNO₃. При контакте с водными растворами возможна десорбция NO_x или HNO₃, что может привести к повышению кислотности растворов.

Кроме этого, использовали сорбенты на основе БАУ-А, импрегнированные 10 мас% триэтаноламина (ТЭА) (образец V), 1,4-диазабицикло[2.2.2]нонана (триэтилендиамина, ТЭДА) (образец VI) и карбамида (СН₄N₂O) (образец VII). Сорбенты были получены путем пропитки БАУ-А растворами соответствующих соединений с последующей сушкой при комнатной температуре до воздушно-сухого состояния.

Для изучения сорбции радионуклидов 85,90 Sr²⁺, 90 Y³⁺, 137 Cs⁺, 152 Eu³⁺ и цветных металлов (Cu, Ni, Zn, Pb) из водных растворов использовали методики, представленные в работах [5–9]. Концентрацию цветных металлов в исходных и маточных растворах определяли по методикам, приведенным в работе [10].

Результаты и обсуждение

Предварительные эксперименты показали, что равновесие в системах с различными сорбентами на основе силикагеля КСКГ, содержащего аммиакаты (SiO₂–M-Aмк) или нитраты (SiO₂–M-A3) *d*-элементов (M = Cu, Ni, Zn) в комбинации с 18К6 или без него, наступает через 60 мин контакта твердой и жидкой фаз. Поэтому все эксперименты по сорбции 90 Sr²⁺, 90 Y³⁺ и 137 Cs⁺ на данных сорбентах в H₂O проводили в течение 60 мин.

В табл. 2 приведены данные по сорбции 90 Sr²⁺, 90 Y³⁺ и 137 Cs⁺ из дистиллированной воды на сорбентах SiO₂–M-Амк (M = Cu, Ni, Zn) в комбинации с 18К6 (SiO₂–Cu-Амк-18К6) или без него, на SiO₂–Cu-Аз-18К6 и на немодифицированном SiO₂.

Как видно из табл. 2, немодифицированный SiO₂ имеет относительно высокую степень поглощения $^{137}Cs^+$, $^{90}Sr^{2+}$ и $^{90}Y^{3+}$ из дистиллированной воды, равную ~62, ~64 и ~95%. В данном случае сорбция ионов протекает за счет замещения протонов поверхностных =SiOH-групп [11].

В то же время, как видно из табл. 2, практически все сорбенты на основе силикагеля КСКГ, содержащего аммиакаты *d*-элементов, имеют относительно высокую сорбционную эффективность в отношении ${}^{90}Y^{3+}$. Степень поглощения ${}^{90}Y^{3+}$ составляет ~66–76%. В то же время степень поглощения ${}^{90}Sr^{2+}$ и ${}^{137}Cs^{+}$ не превышает ~21%.

Наблюдаемое различие связано с множеством факторов, начиная с размеров и состава химических форм ${}^{90}\text{Sr}^{2+}$, ${}^{90}\text{Y}^{3+}$ и ${}^{137}\text{Cs}^+$, принимающих участие в процессах сорбции, и заканчивая прочностью связей ${}^{90}\text{Sr}^{2+}$, ${}^{90}\text{Y}^{3+}$ и ${}^{137}\text{Cs}^+$ с функциональными группами на поверхности сорбента. Кроме того, резкое снижение степени поглощения ${}^{90}\text{Sr}^{2+}$ и ${}^{137}\text{Cs}^+$ связано с тем, что большинство протонов поверхностных \equiv SiOH-групп было замещено ионами *d*-элементов, которые при дальнейшем модифицировании прекурсоров образовали малореакционноспособные центры сорбента.

Установлено, что при контакте сорбентов на основе аммиакатов *d*-элементов с дистиллированной водой, содержащей 90 Sr²⁺, 90 Y³⁺ и 137 Cs⁺, pH маточного раствора после 60 мин контакта составляет 7.5. Поэтому в условиях экспериментов возможно образование аква- и гидроксокомплексов 90 Y³⁺.

Таблица 2. Данные по сорбции ${}^{90}\text{Sr}^{2+}$, ${}^{90}\text{Y}^{3+}$ и ${}^{137}\text{Cs}^+$ из дистиллированной воды на сорбентах SiO₂–M-Aмк (M = Cu, Ni, Zn) в комбинации с 18К6 или без него и SiO₂–Cu-A3-18К6 ([Sr²⁺] = [Cs⁺] = 10⁻⁵ моль/л, время контакта твердой и жидкой фаз 60 мин, *V/m* = 100 мл/г, pH 5–6, *T* = 298 K, *d*^a = 2–3 мм)

Conform	Степень поглощения, %					
Сороент	$^{137}Cs^{+}$	90Sr ²⁺	⁹⁰ Y ³⁺			
SiO ₂	~62	~64	~95			
SiO ₂ –Ni-Амк	~16	~12	~76			
SiO ₂ –Cu-Амк	~15	-	~72			
SiO ₂ –Zn-Амк	~21	-	~67			
SiO ₂ –Ni-Амк-18К6	~24	-	~82			
SiO ₂ –Cu-Амк-18К6	~23	~19	~83			
SiO ₂ –Zn-Амк-18К6	~32	~18	~82			
SiO ₂ –Cu-A3-18K6	~15	~9	~16			

^а Здесь и далее *d* – размер гранул сорбента.

Анализ диаграмм состояния 90 Y³⁺ в зависимости от pH раствора позволил установить количественный состав различных химических форм 90 Y³⁺, присутствующих в исходном и маточном растворах [12]. Иттрий в виде 90 Y³⁺ в дистиллированной воде при pH 5–6 присутствует только в виде аква-ионов 90 Y³⁺. Образование 90 Y(OH)₂⁺ и 90 Y(OH)²⁺ в растворах с концентрацией Y³⁺, равной (5–9)·10⁻³ моль/л, происходит при pH > 7.3. При этом их содержание не превышает ~13%. Образование более сложных гидроксокомплексов, например 90 Y(OH)₃, 90 Y(OH)₄⁻ и 90 Y(OH)₅²⁻, происходит при pH выше 10. В то же время в условиях эксперимента 90 Sr²⁺ и 137 Cs⁺ присутствуют в растворе только в виде аква-ионов.

Анализ степени сорбции 90 Sr²⁺, 90 Y³⁺ и 137 Cs⁺ на сорбентах SiO₂–М-Амк (M = Cu, Ni, Zn) позволяет предположить, что сорбция радионуклидов, протекающая путем ионного обмена между 90 Sr²⁺, 90 Y³⁺ и 137 Cs⁺ и ионами *d*-элементов, по-видимому, малоэффективна. Основной вклад в сорбционный процесс, вероятно, вносит образование полиядерных комплексов между аммиакатами *d*-элементов и гидрококомплексами 90 Y³⁺.

Следует отметить, что введение 18К6 в состав сорбентов незначительно, но увеличивает степень поглощения всех исследуемых радионуклидов. Так, степень поглощения 90 Y³⁺ возрастает с ~66–76 до ~82%. Наблюдаемый эффект связан с образованием комплексных соединений 90 Sr²⁺, 90 Y³⁺ и 137 Cs⁺ с 18К6. К сожалению, введение 18К6 в состав сорбентов не дает заметного эффекта в случае 90 Sr²⁺ и 137 Cs⁺, как это можно было бы ожидать исходя из констант комплексообразования [13].

Для сорбента SiO₂–Cu-A3-18К6 степень поглощения 90 Sr²⁺, 90 Y³⁺ и 137 Cs⁺ из дистиллированной воды не превышает ~16% (табл. 2). Это подтвержда-

Chozo	Степень поглощения, %				
Среда	$^{137}Cs^{+}$	$^{90}{ m Sr}^{2+}$	$^{90}Y^{3+}$		
Дистиллированная вода, pH 5-6	~47	~48	~46		
Раствор HNO ₃ в дистиллированной воде с pH 2–3	~36	~4	~13		
Раствор NH ₄ OH в дистиллированной воде с pH 9–10	~58	~55	~36		
Водопроводная вода ^а	~16	~13	~37		
Раствор HNO ₃ в водопроводной воде с pH 2–3	~33	~5	~6		
Раствор NH ₄ OH в водопроводной воде с рН 9–10	~54	~53	~70		

Таблица 3. Данные по сорбции 90 Sr²⁺, 90 Y³⁺ и 137 Cs⁺ из водных растворов на сорбенте SiO₂-ФЦ K-U ([Sr²⁺] = [Cs⁺] = 10^{-5} моль/л, время контакта твердой и жидкой фаз 240 мин, V/m = 100 мл/г, T = 298 K, d = 2-3 мм)

^а Состав водопроводной воды, мг-экв/л: Na⁺ 0.28, K⁺ 0.1, Mg²⁺ 0.82, Ca²⁺ 2.1, Cl⁻ 0.13, SO₄²⁻ 0.6, HCO₃⁻ 2.57; общее солесодержание 0.23 г/л, pH 7.8–8.2; то же в табл. 5, 6.

ет предположение о том, что степень поглощения радионуклидов путем ионного обмена и комплексообразования с 18К6 незначительна.

Из литературы известно, что смешанные ферроцианиды калия и уранила обладают высокой сорбционной эффективностью по отношению к различным радионуклидам [6, 14]. Поэтому представляло интерес исследовать возможность применения сорбентов на основе крупнопористого силикагеля КСКГ, содержащего двойной ферроцианид калия и уранила (SiO₂-ФЦ K-U), для извлечения ⁹⁰Sr²⁺, ⁹⁰Y³⁺ и ¹³⁷Cs⁺ из водных растворов.

Предварительные эксперименты показали, что равновесие в системах с сорбентом $SiO_2-\Phi \Pi$ K-U наступает через 4 ч контакта твердой и жидкой фаз. Поэтому все эксперименты по сорбции ${}^{90}Sr^{2+}$, ${}^{90}Y^{3+}$ и ${}^{137}Cs^+$ на данном сорбенте из различных водных растворов проводили в течение 240 мин.

В табл. 3 приведены данные по сорбции ${}^{90}\text{Sr}^{2+}$, ${}^{90}\text{Y}^{3+}$ и ${}^{137}\text{Cs}^+$ из различных водных растворов на сорбенте SiO₂–ФЦ К-U. Степень поглощения ${}^{90}\text{Sr}^{2+}$ и ${}^{137}\text{Cs}^+$ этим сорбентом из дистиллированной воды в 1.5–2 раза выше, чем сорбентами SiO₂–М-Амк-18К6 (M = Cu, Ni, Zn) (табл. 2). Однако для ${}^{90}\text{Y}^{3+}$ она практически в 2 раза меньше. Наблюдаемое различие связано, по-видимому, с различным механизмом сорбции исследуемых радионуклидов на ФЦ К-U и SiO₂–М-Амк-18К6 (M = Cu, Ni, Zn).

Подкисление раствора добавлением HNO₃ приводит к существенному изменению степени поглощения ${}^{90}\text{Sr}^{2+}$ и ${}^{90}\text{Y}^{3+}$. При уменьшении pH до 2–3 степень поглощения ${}^{90}\text{Sr}^{2+}$ и ${}^{90}\text{Y}^{3+}$ уменьшается и не превышает ~13%. При увеличении pH до 9–10 путем добавления NH₄OH степень поглощения данных радионуклидов составляет ~36–54%. При этом степень поглощения ${}^{137}\text{Cs}^+$ не зависит от pH раствора и находится на уровне ~36–58%.

В отличие от дистиллированной воды в реальных растворах присутствует большое количество посторонних ионов, которые существенно влияют на сорбцию. Действительно, как видно из табл. 3, степень поглощения 90 Sr²⁺ и 137 Cs⁺ из водопроводной воды заметно уменьшается и не превышает ~16%. Для 90 Y³⁺ степень поглощения снижается незначительно. В то же время изменение pH раствора путем добавления HNO₃ или NH₄OH практически не сказывается на степени поглощения исследуемых радионуклидов. Как следует из табл. 3, степень поглощения 90 Sr²⁺ и 137 Cs⁺ на сорбенте SiO₂–ФЦ К-U из водопроводной и дистиллированной воды в присутствии HNO₃ или NH₄OH практически одинакова. Для 90 Y³⁺ степень поглощения отличается почти в 2 раза как в кислой, так и в щелочной среде. Это подтверждает наше предположение о различии в механизмах сорбции 90 Sr²⁺, 137 Cs⁺ и 90 Y³⁺.

Анализ степени сорбции ⁹⁰Sr²⁺, ⁹⁰Y³⁺ и ¹³⁷Cs⁺ на сорбенте SiO₂-ФЦ К-U позволяет предположить, что основной вклад в сорбционный процесс, по-видимому, вносит образование малорастворимых смешанных ферроцианидов уранила и ионов металлов.

Помимо сорбента SiO₂–ФЦ К-U представляло интерес исследовать сорбенты на основе простых ферроцианидов *d*-элементов, которые обладают высокой сорбционной способностью в отношении ¹³⁷Cs⁺ [15]. Предварительные эксперименты показали, что равновесие в системах с сорбентом на основе крупнопористого силикагеля МСКГ, содержащего ферроцианиды *d*-элементов (SiO₂–ФЦ М, М = Cu, Ni, Zn), наступает через 100 мин контакта твердой и жидкой фаз. Поэтому все эксперименты по сорбции ¹³⁷Cs⁺, ⁸⁵Sr²⁺ и ¹⁵²Eu³⁺ на данных сорбентах из различных водных растворов проводили в течение 100 мин.

В табл. 4 приведены данные по сорбции $^{137}Cs^+$, $^{85}Sr^{2+}$ и $^{152}Eu^{3+}$ из различных водных растворов на сорбентах $SiO_2-\Phi \amalg$ М (М = Cu, Ni, Zn). Степень поглощения $^{137}Cs^+$ во всех случаях достаточно низкая и не превышает ~25.0%. Это позволяет сделать следующие выводы. Во-первых, сорбция $^{137}Cs^+$, протекающая путем ионного обмена с ионами *d*-элементов, малоэффективна. Во-вторых, затруднено образование смешанных ферроцианидов $^{137}Cs^+$ и *d*-элементов, малорастворимых в воде. В-третьих, в процессе синтеза произошло образование силикатов

Таблица 4. Данные по сорбции ¹³⁷Cs⁺, ⁸⁵Sr²⁺ и ¹⁵²Eu³⁺ из водных растворов на сорбентах, содержащих ферроцианиды *d*-элементов, при 25°C ([Cs⁺] = [Sr²⁺] = [Eu³⁺] = 10^{-5} моль/л, рН 5–6, *V/m* = 1000 мл/г, время контакта твердой и жидкой фаз 100 мин, *d* = 0.5–1.0 мм)

	ГМ1 ^а	ΓΝοΝΟ Ι	Степень				
Сорбент	[1V1],	$[\operatorname{INanO_3}],$	пог	поглощения, %			
	мас%	17,11	$^{137}Cs^{+}$	${}^{85}\mathrm{Sr}^{2+}$	$^{152}\text{Eu}^{3+}$		
SO ALLOCH ME	10	0	~12	~72	~20		
SIO ₂ -ФЦ 8Си-2М	10	10	~21	~4	~39		
Sig. All (Cy 17)	10	0	~18	~81	~14		
SIO ₂ -ФЦ 6Си-4ZII		10	~22	~9	~40		
Sign all Cu Assu	5.9	0	~15	~96	~38		
510 ₂ –ФЦ Си-Амк		10	~22	~2	~24		
SO AUNI AN	3.2	0	~10	~80	~32		
SIO₂−ФЦ №-АМК		10	~20	~1	~19		

^а [M] – общее исходное содержание металла в сорбенте.

Таблица 5. Данные по сорбции ¹³⁷Cs⁺, ⁹⁰Sr²⁺ и ⁹⁰Y³⁺ из водопроводной воды на образцах БАУ-А с модифицированной в нитрующей атмосфере поверхностью ([Cs⁺] = [Sr²⁺] = 10^{-5} моль/л, время контакта твердой и жидкой фаз 240 мин, V/m = 100 мл/г, T = 298 K)

Do лиссии исли и	Степень поглощения, %							
гадионуклид	Ι	II	III	IV				
$^{137}Cs^{+}$	~20	~15	~23	~17				
$^{90}{ m Sr}^{2+}$	~32	~82	~80	~82				
$^{90}Y^{3+}$	~94	~90	~91	~93				

d-элементов, имеющих низкую сорбционную способность по отношению к исследуемым радионуклидам.

Степень поглощения $^{152}Eu^{3+}$ также невелика и не превышает ~40%. Поскольку $^{152}Eu^{3+}$ в растворах при рН 5–6 может находиться как в ионной форме, так и в виде гидроксокомплексов, можно сделать вывод о том, что образование полиядерных комплексов между аммиакатами *d*-элементов и гидроксокомплексами $^{152}Eu^{3+}$ либо не имеет места, либо не вносит существенного вклада в сорбцию $^{152}Eu^{3+}$ на исследованных сорбентах.

На степень поглощения как $^{137}Cs^+$, так и $^{152}Eu^{3+}$ заметно влияет солевой фон раствора. Как видно из табл. 4, степень поглощения обоих радионуклидов в дистиллированной воде и водном растворе 10 г/л NaNO₃ отличается в 2 и более раз.

Что касается 85 Sr²⁺, то для него степень поглощения сильно зависит от содержания солей в растворе. Так, в дистиллированной воде степень поглощения 85 Sr²⁺ находится в интервале от ~72 до ~96%. В то же время в водном растворе 10 г/л NaNO₃ степень поглощения во всех случаях не превышает ~9.0%, т.е. уменьшается более чем в 8–10 раз. Поскольку ферроцианиды переходных металлов не сорбируют ЩЗЭ, то наблюдаемое явление связано, повидимому, с неспецифической сорбцией Sr на силикагеле в дистиллированной воде. В присутствии посторонних ионов сорбция Sr резко снижается, что позволяет сделать вывод о том, что сорбция Sr протекает путем ионного обмена.

Помимо крупнопористого силикагеля в качестве матриц для сорбентов исследован гранулированный активированный уголь марки БАУ-А. Известно, что на активированном угле сорбция протекает преимущественно по молекулярному механизму, т.е. одновременно с адсорбцией растворенного вещества происходит адсорбция растворителя. Зависимость адсорбции от строения молекул адсорбата очень сложна, и вывести какие-либо закономерности довольно трудно [16]. При этом следует учитывать, что в реальных растворах присутствует большое количество посторонних ионов, которые существенно влияют на адсорбцию. В связи с этим рабочие растворы 137 Cs⁺, 90 Sr²⁺ и 90 Y³⁺ готовили на основе водопроводной воды, состав которой приведен выше.

Предварительные эксперименты показали, что равновесие в системах с различными сорбентами на основе БАУ-А наступает через 100–240 мин контакта твердой и жидкой фаз, поэтому все эксперименты по сорбции ¹³⁷Cs, ⁹⁰Sr и ⁹⁰Y на различных образцах БАУ-А из водопроводной воды проводили в течение 240 мин.

В табл. 5 приведены данные по сорбции $^{137}\mathrm{Cs}^+, ^{90}\mathrm{Sr}^{2+}$ и $^{90}\mathrm{Y}^{3+}$ из водопроводной воды на образцах БАУ-А с модифицированной в нитрующей атмосфере поверхностью. Как видно из табл. 5, сорбционное поведение ионов $^{137}\mathrm{Cs}^+, ^{90}\mathrm{Sr}^{2+}$ и $^{90}\mathrm{Y}^{3+}$ заметно различается.

Для образца I степень извлечения $^{137}Cs^+$, $^{90}Sr^{2+}$ и $^{90}Y^{3+}$ из водопроводной воды составляет ~20, ~32 и ~94% соответственно. Такое различие в поведении $^{137}Cs^+$, $^{90}Sr^{2+}$ и $^{90}Y^{3+}$ невозможно объяснить образованием гидроксокомплексов $^{90}Y^{3+}$, поскольку, как отмечалось выше, в дистиллированной воде при рН 5–6 $^{90}Y^{3+}$ присутствует только в виде аква-ионов $^{90}Y^{3+}$. На основании этого можно предположить, что сорбция радионуклидов, протекающая путем ионного обмена $^{90}Sr^{2+}$, $^{90}Y^{3+}$ и $^{137}Cs^+$ с ионами H⁺, присутствующими на поверхности угля, по-видимому, сильно зависит от эффективного заряда сорбируемого катиона и практически не зависит от размера аква-иона.

Модифицирование поверхности угля практически не сказывается на степени извлечения $^{137}Cs^+$ и $^{90}Y^{3+}$ из водопроводной воды. Как видно из табл. 5, степень извлечения $^{137}Cs^+$ и $^{90}Y^{3+}$ из водопроводной воды на образцах **II–IV** составляет ~15–23 и ~90– 93% соответственно. Полученные значения близки к аналогичным величинам для образца **I**.

Для ⁹⁰Sr²⁺ модифицирование поверхности образ-

Таблица 6. Данные по сорбции ¹³⁷Cs⁺, ⁹⁰Sr²⁺ и ⁹⁰Y³⁺ из водопроводной воды на образцах БАУ-А, модифицированных N-содержащими соединениями ([Cs⁺] = [Sr²⁺] = 10^{-5} моль/л, время контакта твердой и жидкой фаз 240 мин, *V/m* = 100 мл/г, *T* = 298 K)

Domonwarta	Степень поглощения, %							
Радионуклид	Ι	V	VI	VII				
$^{137}Cs^{+}$	~20	~32	~26	~34				
90Sr ²⁺	~32	~22	~37	~24				
90Y ³⁺	~94	~24	~26	~28				

цов в нитрующей атмосфере заметно влияет на степень его извлечения из водопроводной воды. Степень извлечения ${}^{90}\text{Sr}^{2+}$ из водопроводной воды на образцах **II–IV** примерно в 2.5 раза выше, чем на образце **I**, и составляет ~80–82% (табл. 5). Полученные данные позволяют предположить, что основной вклад в сорбцию ${}^{90}\text{Sr}^{2+}$ на модифицированных образцах угля вносит ионный обмен на OH-группах.

В табл. 6 приведены данные по сорбции 137 Cs⁺, 90 Sr²⁺ и 90 Y³⁺ из водопроводной воды на образцах БАУ-А, модифицированных N-содержащими соединениями. Как видно из табл. 6, в отличие от образцов **II–IV** степень сорбции 90 Y³⁺ на образцах **V–VII** из водопроводной воды резко снизилась по сравнению с чистым БАУ-А (образец **I**). Во всех случаях она не превышает ~28%.

Наблюдаемые зависимости позволяют сделать предположение, что в данных системах сорбция ионов металлов определяется не их взаимодействием с N-содержащими соединениями, входящими в состав сорбентов, а плотностью заряда сорбируемого катиона. В водопроводной воде при рН 7.8–8.2 возможно образование 90 Y(OH)² и 90 Y(OH)²⁺ в растворах с концентрацией Y³⁺, равной (5–9)·10⁻³ моль/л [11]. Большой размер и маленький эффективный заряд гидроксокомплесов Y³⁺ препятствуют эффективной сорбции в микропорах угля путем как ионного обмена, так и физической сорбции.

проводной воды практически не изменилась. Это позволяет однозначно заключить, что сорбция $^{137}\mathrm{Cs^{+}}$ и $^{90}\mathrm{Sr^{2+}}$ на модифицированных образцах угля протекает в основном за счет ионного обмена.

Помимо радионуклидов на сорбентах на основе активированного угля БАУ-А исследовали сорбцию ионов цветных металлов M^{2+} (M = Cu, Ni, Zn, Pb). Предварительные эксперименты показали, что равновесие в системах с различными сорбентами на основе БАУ-А наступает через 10–100 мин контакта твердой и жидкой фаз, поэтому все эксперименты по сорбции M^{2+} (M = Cu, Ni, Zn, Pb) на различных образцах БАУ-А из дистиллированной воды и водного раствора 0.5 моль/л NaNO₃ проводили в течение 120 мин.

В табл. 7 приведены данные по сорбции M^{2+} (M = Cu, Ni, Zn, Pb) из дистиллированной воды и водного раствора 0.5 моль/л NaNO₃ на образцах БАУ-А с модифицированной в нитрующей атмосфере поверхностью. Как видно из табл. 7, поведение ионов *d*-элементов (Cu²⁺, Ni²⁺, Zn²⁺) и *p*-элемента (Pb²⁺) заметно различается. Степень извлечения M^{2+} (M = Cu, Ni, Zn) на образце I из дистиллированной воды практически в 7 раз превышает аналогичное значение для Pb²⁺, при этом количество сорбированного металла на образце I для M^{2+} (M = Cu, Ni, Zn) и Pb²⁺ отличается всего в ~2 раза (~345 и ~165 мг на 1 г сорбента соответственно).

После модифицирования поверхности БАУ-А в нитрующей атмосфере, несмотря на увеличение количества функциональных групп, степень адсорбции M^{2+} (M = Cu, Ni, Zn) из водных растворов снижается, при этом максимальное снижение наблюдается для Cu²⁺. Так, например, емкость образцов I и IV по Cu²⁺ различается приблизительно в 9 раз (~350 и ~40 мг на 1 г сорбента соответственно). Сорбционная емкость уменьшается как среди элементов (Ni > Zn > Cu), так и среди образцов сорбентов (II > III > IV).

Для ¹³⁷Cs⁺ и ⁹⁰Sr²⁺ степень извлечения из водо- В аналогичных условиях для Pb²⁺ наблюдается

Таблица 7. Данные по сорбции M^{2+} (M = Cu, Ni, Zn, Pb) из растворов на различных образцах БАУ-А ([M^{2+}] = 10^{-1} моль/л, время контакта твердой и жидкой фаз 120 мин, V/m = 100 мл/г, T = 298 K)

		Количество М ²⁺ , сорбированного на образце								
M^{2+}	Раствор	Ι		II	II		III			
		ммоль/г	мг/г	ммоль/г	$M\Gamma/\Gamma$	ммоль/г	$M\Gamma/\Gamma$	ммоль/г	$M\Gamma/\Gamma$	
Cu		~5.5	~350	~1.8	~115	~1.0	~65	~0.6	~40	
Ni	– Дистиллированная H ₂ O	~5.8	~340	~5.4	~315	~4.2	~245	~3.1	~180	
Zn		~5.3	~350	~2.9	~190	~2.6	~170	~1.8	~120	
Pb		~0.8	~165	~4.5	~935	~4.1	~850	~3.8	~790	
Cu		~2.7	~170	~2.0	~130	~1.0	~65	~3.5	~220	
Ni	Водный раствор	~3.2	~190	~3.2	~190	~0.5	~30	~4.0	~235	
Zn	0.5 моль/л NaNO ₃	~2.2	~145	~2.2	~145	~0.2	~15	~2.9	~190	
Pb		~2.6	~540	~2.9	~600	~6.2	~1285	~3.5	~725	

Таблица. 8 Долевое распределение химических форм M^{2+} (M – Cu, Ni, Zn, Pb) в водном растворе в зависимости от pH [17]

	Доля формы								
Форма	Cu ²⁺		Ni ²⁺		Zn ²⁺		Pb ²⁺		
	pH 6	pH 4	pH 6	oH 6 pH 4]		pH 4	pH 6	pH 4	
M^{2+}	0	0.02	0.07	0.91	0	0.82	0	0.11	
$M(OH)^+$	0	0.16	0.66	0.09	0	0.02	0.56	0.88	
$M(OH)_2$	0.83	0.82	0.25	0	0.99	0.16	0.42	0.01	
M(OH) ₃	0.17	0	0.01	0	0.01	0	0.01	0	

резкое увеличение степени адсорбции на образцах II–IV (более чем в 5 раз). При этом степень извлечения Pb^{2+} , как и для M^{2+} (M = Cu, Ni, Zn), уменьшается в ряду II > III > IV. Однако даже для образца IV, характеризующегося наименьшей степенью извлечения Pb^{2+} , емкость превышает в ~5 раз емкость образца I (~790 и ~165 мг на 1 г сорбента соответственно).

Наблюдаемое различие связано с множеством факторов, начиная с размеров и состава химических форм M^{2+} (M = Cu, Ni, Zn) и Pb²⁺, принимающих участие в процессах сорбции, и заканчивая прочностью связей M^{2+} с функциональными группами на поверхности БАУ-А.

В условиях экспериментов возможно образование аква- и гидроксокомплексов M^{2+} (M = Cu, Ni, Zn. Pb). Установлено, что во всех случаях pH исходных растворов равен 6. При контакте образцов I, III и IV с водными азотнокислыми растворами исследованных элементов рН маточного раствора после 120 мин контакта остается равным 6. Для образца ІІ рН маточного раствора уменьшается до 4. Анализ диаграмм состояния исследованных ионов в зависимости от рН раствора позволил установить количественный состав различных химических форм элементов, присутствующих в исходном и маточном растворах (табл. 8 [17]). Исследованные элементы в растворе могут присутствовать в виде M^{2+} , $M(OH)^+$, $M(OH)_2$ и $M(OH)_3^-$. Образование более сложных гидроксокомплексов, например $M(OH)_4^{2-}$, не происходит.

Как видно из табл. 8, при pH 6 все элементы находятся в виде гидроксокомплексов состава $M(OH)_n^{2-n}$ (n = 1-3). При этом Cu^{2+} и Zn^{2+} присутствуют, главным образом, в виде нейтрального комплекса $M(OH)_2$. Для Ni^{2+} и Pb^{2+} характерно наличие как однозарядного, так и нейтрального комплекса. При этом для Pb^{2+} их содержание в растворе практически одинаково.

При рН 4 для Ni²⁺ и Zn²⁺ резко возрастает количество ионных форм M²⁺, в то время как для Cu²⁺ и Pb²⁺ по-прежнему преобладают гидроксокомпексы состава $M(OH)_n^{2-n}$ (n = 1, 2). При рН 4 гидроксокомплексы состава $M(OH)_3^{-0}$ отсутствуют.

Анализ приведенных данных позволяет предположить, что помимо состава химических форм исследованных элементов в растворе на адсорбцию влияет размерный фактор. Ионы M^{2+} (M = Cu, Ni, Zn) и Pb²⁺ заметно различаются как по ионным и ковалентным радиусам, так и по координационным числам в воде. Так, для M^{2+} (M = Cu, Ni, Zn) ионные радиусы равны соответственно 0.072, 0.078 и 0.083 нм, в то время как для Pb²⁺ ионный радиус равен 0.132 нм, т.е. приблизительно в 1.6–1.8 раза больше [18]. Также для M^{2+} (M = Cu, Ni, Zn) координационное число в воде равно 6, а для Pb²⁺ – 4. Различие в строении и размерах аква- и гидроксо-комплексов может сказываться на кинетике диффузионных и адсорбционных процессов.

Наблюдаемые зависимости позволяют сделать вывод о том, что адсорбция M^{2+} (M = Cu, Ni, Zn) и Pb²⁺ протекает по двум механизмам, а именно физической сорбции и хемосорбции. При этом вклад каждого механизма в суммарную степень адсорбции для M^{2+} (M = Cu, Ni, Zn) и Pb²⁺ различен. К сожалению, нам не удалось определить вклад каждого отдельного механизма в общую степень сорбции исследованных элементов.

В отличие от дистиллированной воды в реальных растворах присутствует большое количество посторонних ионов, существенно влияющих на адсорбцию. В табл. 7 приведены данные по сорбции M^{2+} (M = Cu, Ni, Zn, Pb) из водного раствора 0.5 моль/л NaNO₃ на различных образцах БАУ-А. Как видно из табл. 7, разница в адсорбции M^{2+} (M = Cu, Ni, Zn) и Pb²⁺ на образце I из водного раствора 0.5 моль/л NaNO₃ практически нивелируется. Степень адсорбции металлов изменяется от ~22 до ~32%, т.е. никакого различия между M^{2+} (M = Cu, Ni, Zn) и Pb²⁺ не наблюдается, как это имело место в дистиллированной воде.

В то же время для M^{2+} (M = Cu, Ni, Zn) и Pb²⁺ наблюдается разнонаправленное изменение степени адсорбции при переходе от дистиллированной воды к водному раствору 0.5 моль/л NaNO₃. Если для M^{2+} (M = Cu, Ni, Zn) степень поглощения на образце I из водного раствора 0.5 моль/л NaNO₃ уменьшилась практически в 2-3 раза по сравнению с сорбцией из дистиллированной воды, то для Pb²⁺ данная величина увеличилась более чем в 3 раза. Наблюдаемые зависимости позволяют заключить, что при переходе от дистиллированной воды к водному раствору 0.5 моль/л NaNO₃ заметно изменяется состав и размер гидроксокомплексов M^{2+} (M = Cu, Ni, Zn, Pb) за счет различного участия NO₃-ионов в построении координационных сфер элементов. При этом в отличие от дистиллированной воды в водном растворе 0.5 моль/л NaNO₃ физико-химические характеристики гидроксокомплексов M^{2+} (M = Cu, Ni, Zn) и

Таблица 9. Данные по сорбции M^{2+} (M = Cu, Ni, Zn, Pb) из растворов на различных образцах БАУ-А, модифицированных N-содержащими соединениями ($[M^{2+}] = 10^{-1}$ моль/л, время контакта твердой и жидкой фаз 120 мин, V/m = 100 мл/г, T = 298 K)

		Количество М ²⁺ , сорбированного на образце								
M^{2+}	Раствор	Ι		V		VI		VII		
		ммоль/г	$M\Gamma/\Gamma$	ммоль/г	$M\Gamma/\Gamma$	ммоль/г	$M\Gamma/\Gamma$	ммоль/г	$M\Gamma/\Gamma$	
Cu		~5.5	~350	~2.3	~145	~1.4	~90	~1.8	~115	
Ni		~5.8	~340	~1.5	~90	~0.5	~30	0	0	
Zn	Дистиллированная H ₂ O	~5.3	~350	~1.5	~100	~1.0	~65	~0.5	~35	
Pb		~0.8	~165	~2.8	~580	~2.1	~435	~2.0	~415	
Cu		~2.7	~170	~2.5	~160	~1.3	~85	~4.4	~280	
Ni	Водный раствор	~3.2	~190	~1.3	~75	~0.7	~40	0	0	
Zn	0.5 моль/л NaNO ₃	~2.2	~145	~1.3	~85	~0.8	~55	~0.3	~20	
Pb		~2.6	~540	~4.0	~830	~4.8	~995	~4.9	~995	

 Pb^{2+} близки, что и определяет близость степени поглощения элементов на образце **I**.

В отличие от дистиллированной воды степень адсорбции M^{2+} (M = Cu, Ni, Zn) и Pb^{2+} на образцах II и IV из водного раствора 0.5 моль/л NaNO₃ близка и изменяется одинаковым образом. Однако в отличие от дистиллированной воды минимум адсорбции всех элементов наблюдается на образце III. Для всех исследованных элементов степень адсорбции уменьшается в ряду IV > II > III. Наблюдаемый ряд связан, по-видимому, с изменением количества функциональных групп на поверхности БАУ-А после его взаимодействия с водным раствором 0.5 моль/л NaNO₃. Выяснение данного вопроса может составить предмет самостоятельного исследования.

Помимо образцов БАУ-А, модифицированных в нитрующей атмосфере, в опытах по извлечению M²⁺ (M = Cu, Ni, Zn) и Pb²⁺ из водных растворов использовали сорбенты на основе БАУ-А, содержащие 10 мас% ТЭА (образец V), ТЭДА (образец VI) и СН₄N₂O (образец VII). В табл. 9 приведены данные по сорбции M^{2+} (M = Cu, Ni, Zn) и Pb²⁺ на образцах БАУ-А, модифицированных N-содержащими соединениями. Как видно из табл. 9, в отличие от чистого БАУ-А и образцов **II–IV** степень сорбции Pb^{2+} на образцах V-VII из дистиллированной воды и водного раствора 0.5 моль/л NaNO₃ выше, чем для M²⁺ (M = Cu, Ni, Zn). Степень сорбции во всех случаях изменяется в ряду Pb > Cu > Zn ≥ Ni, при этом для Pb²⁺ адсорбция из водного раствора 0.5 моль/л NaNO₃ протекает эффективнее, чем из дистиллированной воды. Емкость образцов V-VII по Pb²⁺ из водного раствора 0.5 моль/л NaNO₃ превышает ~830 мг на 1 г сорбента. Следует отметить, что во всех случаях степень сорбции Си выше, чем у Ni и Zn, хотя емкость образцов не превышает ~280 мг Cu^{2+} на 1 г сорбента.

Наблюдаемые зависимости позволяют сделать предположение, что в данных системах сорбция ионов металлов определяется не только взаимодейст-

вием различных гидроксокомплексов с функциональными группами на поверхности сорбента, но и прочностью комплексов M²⁺ (M = Cu, Ni, Zn, Pb) с N-содержащими соединениями, входящими в состав сорбентов.

Как было отмечено выше, во всех случаях рН исходных растворов равен 6. При контакте образцов V и VII с водными азотнокислыми растворами исследованных элементов рН маточного раствора после 120 мин контакта остается равным 6. Согласно данным, приведенным в табл. 8, в условиях эксперимента исследованные элементы в растворе могут присутствовать в основном в виде M(OH)⁺ и M(OH)₂. Доля остальных форм незначительна. Для образца VI при контакте с водными азотнокислыми растворами рН маточного раствора увеличивается до 8-9. В этих условиях, согласно данным работы [17], исследованные элементы в основном находятся в виде M(OH)₂, M(OH)₃⁻ и M(OH)₄²⁻. При этом заметно возрастает доля не только M(OH)₃, но и М(OH)₄²⁻. Таким образом, для образцов V и VII сорбция исследованных элементов определяется, главным образом, взаимодействием с активными центрами сорбента положительных и нейтральных гидроксокомплексов, в то время как для образца VI – отрицательно заряженных гидроксокомплексов. Образование на поверхности сорбентов ионами M^{2+} (M = Cu, Ni, Zn, Pb) смешанных комплексов, включающих в свой состав одновременно N-содержащие соединения и гидроксил-ионы, и определяет эффективность сорбции исследованных ионов металлов. При этом вероятность образования смешанных комплексов определяется лабильностью гидроксокомплексов металлов. Из-за инертности гидроксокомплексов M^{2+} (M = Cu, Ni, Zn) наблюдается уменьшение степени их адсорбции на образцах V-VII по сравнению с образцом I. Для Pb²⁺ наблюдается противоположная зависимость, т.е. высокая лабильность гидроксокомплексов Pb²⁺ приводит к увеличению степени его сорбции на образцах V-VII по сравнению с образцом I.

Таким образом, модифицированные гранулированные сорбенты на основе активированного угля БАУ-А могут быть использованы для очистки водных растворов от токсичных ионов некоторых *d*- и *p*-металлов, в том числе и радиоактивных, в различных системах водоочистки и водоподготовки.

Работа выполнена при частичном финансировании Министерством науки и высшего образования РФ (тема AAAA-A16-116 021 990 023-6).

Список литературы

- Рябчиков Б. Е. Очистка жидких радиоактивных отходов. М.: ДеЛи, 2008.
- [2] *Treatment* of liquid effluent from uranium mines and mills: IAEA TECDOC-1419. Vienna: IAEA, 2004.
- [3] Климов Е. С., Бузаева М. В. Природные сорбенты и комплексоны в очистке сточных вод. Ульяновск: УлГТУ, 2011. 201 с.
- [4] Долина Л. Ф. Сточные воды предприятий горной промышленности и методы их очистки: Справ. пособие. Днепропетровск: Молодежная экологическая лига Приднепровья, 2000. 61 с.
- [5] Кулюхин С. А., Красавина Е. П., Мизина Л. В. и др. // Радиохимия. 2005. Т. 47, N 6. С. 528–533.
- [6] Кулюхин С. А., Красавина Е. П., Горбачева М. П. и др. // Радиохимия. 2007. Т. 49, N 1. С. 68–73.

- [7] Гимаева А. Р., Валинурова Э. Р., Игдавлетова Д. К. и др. // Сорбционные и хроматографические процессы. 2012. Т. 12, N 2. С. 267–273.
- [8] Wang C., Liu J., Zhang Z. et al. // Ind. Eng. Chem. Res. 2012. Vol. 51, N 11. P. 4397–4406.
- [9] Unuabonah E. I., Olu-Owolabi B. I., Taubert A. et al. // Ind. Eng. Chem. Res. 2013. Vol. 52, N 2. P. 578–585.
- [10] Шарло Г. Методы аналитической химии. Количественный анализ неорганических соединений. М.: Химия, 1957. Т. 2.
- [11] Сорбенты на основе силикагеля в радиохимии / Под ред. Б. Н. Ласкорина. М.: Атомиздат, 1977.
- [12] Давыдов Ю. П., Давыдов Д. Ю. Формы нахождения металл-ионов (радионуклидов) в растворе. Минск: Беларуская навука, 2011. С. 178–179.
- [13] Хираока М. Краун-соединения. Свойства и применение. М.: Мир, 1986.
- [14] Милютин В. В., Гелис В. М., Клиндухов В. Г., Обручиков А. В. // Радиохимия. 2004. Т. 46, N 5. С. 444–445.
- [15] Тананаев И. В., Сейфер Г. Б., Харитонов Ю. Я. и др. Химия ферроцианидов. М.: Наука, 1971. 320 с.
- [16] Михайлов О. В., Татаринцев Т. Б. // ЖФХ. 2004. Т. 78, N 1. C. 75–78.
- [17] Грег С., Синг К. Адсорбция, удельная поверхность, пористость. М.: Мир, 1984. 310 с.
- [18] Расчет равновесий в аналитической химии // Информационный портал www.chemequ.ru. Дата посещения 12.12.2017.
- [19] Лидин Р. А., Андреева Л. Л., Молочко В. А. Константы неорганических веществ: Справочник. М.: Дрофа, 2006.