Синтез и строение комплексов бензоата, *о*-фторбензоата и *n*-фторбензоата Np(V) с 1,10-фенантролином

© И. А. Чарушникова*^{*a*}, Н. Н. Крот^{*a*}, М. С. Григорьев^{*a*}

^{*а} Институт физической химии и электрохимии им. А. Н. Фрумкина РАН,* 119071, Москва, Ленинский пр., д. 31, корп. 4; * e-mail: charushnikovai@ipc.rssi.ru</sup>

Получено 14.05.2018, после доработки 14.05.2018, принята к публикации 19.06.2018 УДК 539.26+546.798.21

Исследовано строение трех новых комплексов Np(V) состава $[(NpO_2)_2(phen)_2(C_7H_5O_2)_2]$ (I), $[(NpO_2)_2(phen)_2(o-C_7H_4FO_2)_2]$ (II) и $[(NpO_2)_2(phen)_2(p-C_7H_4FO_2)_2]$ (III), где phen = 1,10-фенантролин. В комплексах два катиона NpO₂⁺ связываются между собой катион-катионными связями, в которых оба иона нептуноила выступают по отношению друг к другу одновременно как лиганды и как координирующие центры, образуя димерные катионы $An_2O_4^{2+}$. В комплексах I–III каждый атом Np имеет координационный полиэдр (КП) в виде пентагональной бипирамиды с «ильными» атомами O в апикальных позициях, нептуноильные группы заметно нелинейны. Экваториальную плоскость бипирамид формируют два атома N фенантролина, атом O другого катиона NpO₂⁺ и два атома O анионов C₆H₅COO⁻ (I), *o*-C₆H₄FCOO⁻ (II) и *p*-C₆H₄FCOO⁻ (III). Межатомные расстояния Np···Np в димерных катионах Np₂O₄²⁺ (Å) равны 3.40519(17) (I), 3.43891(17) (II) и 3.4271(3) (III). Основные различия в строении соединений I–III проявляются в конформационных характеристиках, они обусловлены влиянием водородного связывания типа C–H···F.

Ключевые слова: нептуний(V), бензойная кислота, 1,10-фенантролин, синтез, кристаллическая структура, катион-катионное взаимодействие.

DOI: 10.1134/S0033831119030031

В работе [1] описаны синтез и свойства комплексов 1,10-фенантролина (phen) с бензоатами An(V) (An = Np, Pu) практически одинакового состава AnO₂(phen)(C₇H₅O₂), но различающихся порошковыми рентгенограммами. На основе анализа электронных спектров поглощения соединений в твердом виде был сделан вывод о наличии в их структуре взаимной координации ионов AnO⁺₂, т.е. катион-катионных (КК) связей. По аналогии с комплексами 2,2'-бипиридина (bipy) с бензоатами Np(V) и Pu(V) состава [(AnO₂)(bipy)₂(C₇H₅O₂)₂] [2] и *о*-фторбензоатом Np(V) состава $[(NpO_2)_2(bipy)_2]$. $(o-C_7H_4FO_2)_2$ [3], исследованными методом рентгеноструктурного анализа (РСА), было высказано предположение, что главным элементом структуры комплекса с фенантролином является димерный катион $An_2O_4^{2+}$, образованный за счет КК связей. В димерном катионе ионы AnO₂⁺ попарно связаны друг с другом, выступая одновременно как лиганды и как координирующие центры. Такой тип КК взаимодействия впервые наблюдался в структуре меллитата Np(V) состава Na₄[(NpO₂)₂C₆(COO)₆]. 8H₂O [4]. Позже в работе [5] была описана структура К[(NpO₂)(OH)₂]·2H₂O, в которой бесконечные анионные цепочки $[(NpO_2)(OH)_2]_n^{n-}$ объединяются в слои посредством взаимной координации ионов NpO_2^+ из соседних цепочек. При этом в отличие от структур с органическими анионами дополнитель-

ное связывание диоксокатионов в димере через мостиковые анионы отсутствует.

В настоящем исследовании для подтверждения высказанного в работе [1] предположения о характере КК связей в комплексе фенантролина с бензоатом Np(V) это соединение получено в виде монокристаллов и его структура определена методом PCA. Дополнительно синтезированы и структурно изучены комплексы фенантролина с *о-* и *n-*фторбензоатом Np(V). Согласно данным PCA, состав соединений описывается формулами [(NpO₂)₂· (phen)₂(C₇H₅O₂)₂] (I), [(NpO₂)₂(phen)₂(*o*-C₇H₄FO₂)₂] (II) и [(NpO₂)₂(phen)₂(*p*-C₇H₄FO₂)₂] (III).

Экспериментальная часть

В работе использовали растворы 0.14-0.16 моль/л NpO₂Cl, которые готовили путем осаждения гидроксида нептуноила и растворения осадка в HCl без избытка (pH ~5). Нептуний перед использованием очищали ионообменным методом с последующим осаждением оксалата Np(IV) и растворением осадка в концентрированной HNO₃ при нагревании. Растворы 0.25 моль/л бензоата лития и его *о-* и *n*-фторпроизводных получали растворением в стехиометрических количествах LiOH соответствующих кислот марки ч., дополнительно очищенных перекристаллизацией. Рабочий раствор

Параметр	Ι	II	III
Формула	C ₃₈ H ₂₆ N ₄ Np ₂ O ₈	$C_{38}H_{24}F_2N_4Np_2O_8$	$C_{38}H_{24}F_2N_4Np_2O_8$
M	1140.63	1176.61	1176.61
Сингония	Моноклинная	Моноклинная	Моноклинная
Пространственная группа	$P2_1/n$	$P2_1/n$	C2/c
a, Å	9.0574(2)	9.5625(2)	19.2188(6)
b, Å	10.7137(3)	17.4493(4)	11.9289(3)
<i>c</i> , Å	17.3473(4)	10.7205(2)	31.6411(11)
β, град	95.121(1)	105.414(1)	102.993(2)
$V, \hat{A}^3; Z$	1676.63(7); 2	1724.47(6); 2	7068.3(4), 8
$ρ_{\rm выч}$, $Γ/cm^3$	2.259	2.266	2.211
$\mu(MoK_{\alpha}), \mathrm{Mm}^{-1}$	4.028	3.927	3.831
Число измеренных/независимых отражений	23074/4869	32365/9171	44689/10277
Число независимых отражений с $I > 2\sigma(I)$	4202	7236	6664
Число уточняемых параметров	235	244	487
$R(F); wR(F^2) [I > 2\sigma(I)]$	0.0176; 0.0327	0.0285; 0.0576	0.0459; 0.0732
$R(F); wR(F^2)$ [весь массив]	0.0244; 0.0344	0.0429; 0.0625	0.0901; 0.0837
GOOF	1.022	1.027	0.952
$\Delta \rho_{\text{max}}$ и $\Delta \rho_{\text{min}}$, e·Å ⁻³	0.970; -0.737	2.234; -2.913	2.007; -1.590

Таблица 1. Кристаллографические данные и характеристики рентгеноструктурного эксперимента

0.25 моль/л фенантролина готовили растворением навески реагента в отмеренном объеме этанола.

С учетом результатов работы [1] и предварительных опытов для синтеза монокристаллов исследуемых соединений была выбрана следующая методика. В стеклянные ампулы с внутренним диаметром 5-7 мм отбирали по 0.1 мл 0.14-0.16 моль/ л NpO₂Cl, добавляли эквимолярные количества соответствующего бензоата лития, по 0.1 мл воды и по 0.08 мл 0.25 моль/л фенантролина. После перемешивания ампулы запаивали и выдерживали в терморегулируемой печке в течение 4-8 сут. Температура при синтезе была выбрана равной 130 и 190°С в расчете на получение разных фаз соединения, существование которых было обнаружено в работе [1]. В обоих случаях после выдержки в течение 4 сут были получены прозрачные зеленые кристаллы в форме удлиненных призм. Рентгеноструктурное исследование показало, что независимо от температуры получения кристаллы принадлежат к одной и той же фазе и ее состав описывается формулой [(NpO₂)₂(phen)₂(C₇H₅O₂)₂] (I).

В случае синтеза *о*- и *n*-фторпроизводных температура была равна 150°С. После выдержки в течение 8 сут смеси соответствующих реагентов в ампулах образовались хорошо ограненные пластинчатые (II) и призматические (III) кристаллы зеленого цвета. Маточные растворы были бесцветными, что свидетельствовало о достаточно полном осаждении соединений.

Рентгенодифракционные эксперименты выполнены на автоматическом четырехкружном дифрактометре с двумерным детектором Bruker Kappa Apex II (излучение Мо K_{α} , графитовый монохроматор) при 100 К. Параметры элементарных ячеек уточнены по всему массиву данных. В экспериментальные интенсивности введены поправки на поглощение с помощью программы SADABS [6]. Все структуры расшифрованы прямым методом (SHELXS97 [7]), структуры уточнены полноматричным методом наименьших квадратов (SHELXL-2014 [8]) по F^2 по всем данным в анизотропном приближении для всех неводородных атомов. Атомы Н у анионов и молекул фенантролина введены на геометрически рассчитанные позиции с $U_{\rm H} = 1.2U_{\rm экв}$ (C).

Детали рентгеноструктурного эксперимента и основные кристаллографические данные приведены в табл. 1. Координаты атомов депонированы в Кембриджский центр кристаллографических данных, депоненты ССDС 1816713, 1816714, 1816716.

Результаты и обсуждение

Основу структур составляют электронейтральные комплексы $[(NpO_2)_2(phen)_2(C_7H_5O_2)_2]$ (I), $[(NpO_2)_2(phen)_2(o-C_7H_4FO_2)_2]$ (II) и $[(NpO_2)_2(phen)_2(p-C_7H_4FO_2)_2]$ (III). На рис. 1–3 представлено строение комплексов и нумерация атомов в структурах.

В комплексах два катиона NpO_2^+ связываются между собой КК связями, в которых оба иона нептуноила выступают по отношению друг к другу одновременно как лиганды и как координирующие центры. В результате образуются димерные катионы $Np_2O_4^{2+}$, в которых каждый атом Np имеет координационный полиэдр (КП) в виде пентагональной бипирамиды с «ильными» атомами O в апикальных позициях. Экваториальную плоскость бипирамид

Рис. 1. Комплекс $[(NpO_2)_2(phen)_2(C_7H_5O_2)_2]$ (I). Штриховыми линиями показаны КК связи в катионе $Np_2O_4^{2+}$. Эллипсоиды температурных смещений даны с 50%-ной вероятностью. Операция симметрии: a - (1 - x, 1 - y, 1 - z). Точечными линиями показаны внутримолекулярные H-связи типа C-H···O_{benz}.

Рис. 2. Комплекс $[(NpO_2)_2(phen)_2(o-C_7H_4FO_2)_2]$ (II). Штриховыми линиями показаны КК связи в катионе $Np_2O_4^{2+}$. Эллипсоиды температурных смещений даны с 50%-ной вероятностью. Операция симметрии: a - (1 - x, 1 - y, 1 - z).

Рис. 3. Комплекс [(NpO₂)₂(phen)₂(*p*-C₇H₄FO₂)₂] (III). Штриховыми линиями показаны КК связи в катионе Np₂O₄²⁺. Эллипсоиды температурных смещений даны с 50%-ной вероятностью.

Связь	<i>d</i> , .	Å	Угол	ω, град	
	Ι	II		Ι	Π
Np(1)=O(11)	1.8673(15)	1.8651(16)	O(11)Np(1)O(12)	175.12(6)	176.11(7)
Np(1)=O(12)	1.8069(15)	1.8013(18)	O(11)Np(1)O(11a)	77.24(6)	76.84(7)
Np(1)-O(11a)	2.4648(14)	2.4956(16)	O(12)Np(1)O(11 <i>a</i>)	97.97(6)	99.27(7)
Np(1)–O(1)	2.4405(14)	2.4367(17)	O(2a)Np(1)O(11a)	74.79(5)	72.77(6)
Np(1)-O(2a)	2.4255(15)	2.4554(18)	O(1)Np(1)O(11a)	72.74(5)	73.37(6)
Np(1) - N(1)	2.6351(18)	2.648(2)	O(1)Np(1)N(1)	73.16(5)	74.90(6)
Np(1)-N(2)	2.6422(18)	2.638(2)	O(2a)Np(1)N(2)	75.90(5)	76.22(6)
			N(1)Np(1)N(2)	62.17(5)	62.24(6)
N(1)-C(1)	1.328(3)	1.324(3)	C(1)N(1)C(5)	117.40(19)	117.4(2)
N(1)–C(5)	1.363(3)	1.360(3)	C(12)N(2)C(9)	117.25(19)	117.9(2)
N(2)–C(9)	1.367(3)	1.364(3)	N(1)C(1)C(2)	124.0(2)	124.2(3)
N(2)-C(12)	1.334(3)	1.326(3)	N(1)C(5)C(4)	122.6(2)	122.2(2)
Среднее (С–С) _{phen}	1.402(3)	1.402(4)	N(1)C(5)C(9)	118.19(19)	118.6(2)
			N(2)C(9)C(8)	122.3(2)	122.1(2)
			N(2)C(9)C(5)	117.98(19)	118.2(2)
			N(2)C(12)C(11)	124.0(2)	123.5(2)
F(1)–C(15)		1.344(3)	F(1)C(15)C(14)		120.2(2)
O(1) - C(13)	1.268(3)	1.266(3)	F(1)C(15)C(16)		116.3(2)
O(2)–C(13)	1.267(3)	1.258(3)	O(1)C(13)O(2)	124.97(19)	125.2(2)
C(13) - C(14)	1.504(3)	1.507(3)	O(1)C(13)C(14)	117.4(2)	115.8(2)
Среднее (С-С) _{benz}	1.392(3)	1.388(4)	O(2)C(13)C(14)	117.63(19)	119.0(2)

Таблица 2. Длины связей (*d*) и валентные углы (ω) в структурах I и II^a

^а Операция симметрии: a - (1 - x, 1 - y, 1 - z).

15 51			
Связь	<i>d</i> , Å	Угол	ω, град
Np(1)=O(11)	1.865(4)	O(11)Np(1)O(12)	176.50(18)
Np(1)=O(12)	1.805(4)	O(11)Np(1)O(21)	77.43(16)
Np(1)-O(21)	2.498(4)	O(12)Np(1)O(21)	99.07(16)
Np(1)–O(1)	2.434(4)	O(1)Np(1)O(21)	73.41(14)
Np(1)–O(4)	2.398(4)	O(4)Np(1)O(21)	73.11(14)
Np(1)-N(1)	2.621(5)	O(1)Np(1)N(1)	75.54(16)
Np(1)-N(2)	2.659(5)	O(4)Np(1)N(2)	75.93(16)
		N(1)Np(1)N(2)	62.79(17)
Np(2)=O(21)	1.866(4)	O(21)Np(2)O(22)	177.02(19)
Np(2)=O(22)	1.800(4)	O(11)Np(2)O(21)	77.41(16)
Np(2)–O(11)	2.498(4)	O(11)Np(2)O(22)	99.65(17)
Np(2)–O(2)	2.426(4)	O(2)Np(2)O(11)	71.20(14)
Np(2)–O(3)	2.452(4)	O(3)Np(2)O(11)	75.34(14)
Np(2)-N(3)	2.618(5)	O(3)Np(2)N(3)	74.18(15)
Np(2)-N(4)	2.627(5)	O(2)Np(2)N(4)	76.07(16)
		N(3)Np(2)N(4)	63.18(18)
N(1)-C(1)	1.330(8)	C(1)N(1)C(5)	117.2(5)
N(1)-C(5)	1.397(8)	C(12)N(2)C(9)	118.1(6)
N(2)–C(9)	1.367(8)	N(1)C(1)C(2)	125.1(6)
N(2)-C(12)	1.333(8)	N(1)C(5)C(4)	120.5(6)
Среднее (С-С) _{phen}	1.400(11)	N(1)C(5)C(9)	118.0(6)
		N(2)C(9)C(8)	121.9(6)
		N(2)C(9)C(5)	119.1(6)
		N(2)C(12)C(11)	122.7(6)
N(3)–C(13)	1.304(9)	C(13)N(3)C(17)	117.2(6)
N(3)-C(17)	1.365(8)	C(21)N(4)C(24)	117.7(6)
N(4)–C(21)	1.354(8)	N(3)C(13)C(14)	125.0(7)
N(4)-C(24)	1.319(9)	N(3)C(17)C(16)	122.3(7)
Среднее (С-С) _{phen}	1.401(11)	N(3)C(17)C(21)	117.9(6)
		N(4)C(21)C(17)	118.7(6)
		N(4)C(21)C(20)	122.3(7)
		N(4)C(24)C(23)	123.7(7)
F(1)-C(29)	1.352(8)	F(1)C(29)C(28)	118.3(6)
O(1) - C(25)	1.254(7)	F(1)C(29)C(30)	118.7(7)
O(2)–C(25)	1.282(8)	O(1)C(25)O(2)	126.5(6)
C(25)–C(26)	1.498(9)	O(1)C(25)C(26)	118.5(6)
Среднее (С-С) _{benz}	1.388(10)	O(2)C(25)C(26)	115.0(6)
F(2)–C(36)	1.367(8)	F(2)C(36)C(37)	118.7(6)
O(3)–C(32)	1.271(7)	F(2)C(36)C(35)	116.8(7)
O(4)–C(32)	1.254(8)	O(3)C(32)O(4)	125.5(7)
C(32)–C(33)	1.493(9)	O(3)C(32)C(33)	116.7(6)
Среднее (С–С) _{benz}	1.387(10)	O(4)C(32)C(33)	117.8(6)

Таблица 3. Длины связей (d) и валентные углы (ω) в структуре III

формируют два атома N фенантролина, атом O другого катиона NpO₂⁺ и два атома O анионов C₆H₅COO⁻ (**I**), *o*-C₆H₄FCOO⁻ (**II**) и *p*-C₆H₄FCOO⁻ (**III**). Комплексы **I** и **II** имеют центросимметричное строение, межатомные расстояния Np^{...}Np в димерных катионах Np₂O₄²⁺ равны 3.40519(17) (**I**) и 3.43891(17) Å (**II**). Электронейтральный комплекс в структуре **III** нецентросимметричный, межатомное расстояние Np^{...}Np в димерное катионе Np₂O₄²⁺ равно 3.4271(3) Å.

Нептуноильные группы в катионах Np₂O₄²⁺ заметно нелинейны, наиболее сильно (~5°) валентный угол отклоняется от 180° в соединении I (табл. 2, 3). Группы характеризуются существенным различием длин связей Np-Ovl, которое обусловлено участием одного из «ильных» атомов О в КК связи. При этом наблюдается ослабление КК связи Np-O_{vl} для фторзамещенных соединений II и III по сравнению с соединением I. Отметим, что длины связей внутри КП атомов Np комплексов с фенантролином такие же, как и в комплексах бензоата и o-фторбензоата Np(V) с бипиридином [2, 3]. В бензоатах также проявляется тенденция к ослаблению КК связи в экваториальной плоскости пентагональной бипирамиды атома Np во фторбензоатном комплексе с bipy. Межатомные расстояния Np···Np в димерных катионах $Np_2O_4^{2+}$ бензоата и фторбензоата равны 3.4281(5) и 3.4381(3) Å соответственно.

Основные различия в строении соединений I– III проявляются в конформационных характеристиках. В табл. 4 приведены некоторые геометрические и конформационные характеристики соединений: отклонение атомов О и N от среднеквадратичной плоскости экваториального пояса бипирамид ($\Delta_{3\kappa ватор}$) и отклонение центрального атома от этой плоскости (Δ_{Np}); отклонение атомов фенантролина (Δ_{lig}) и аниона (бензола или его производных) (Δ_{benz}) от их среднеквадратичной плоскости; двугранные углы, образованные экваториальной плоскостью бипирамиды и плоскостью фенантролина (ϕ_{lig}) или аниона (ϕ_{benz}), и двугранный угол (ϕ), образованный плоскостями фенантролина и аниона.

Таблица 4. Геометрические и конформационные характеристики электронейтральных комплексов с phen (I-III) и bipy (IV, V)

Соединение	$\Delta_{ m экватор},$ Å	Δ_{Np} , Å	$\Delta_{ m lig}$, Å	Δ_{benz} , Å	$\phi_{lig},$ град	ф _{benz} , град	ф, град
Ι	±0.130(1) [N(2)]	±0.229(1)	±0.113(2) [C(2)]	±0.066(1) [O(1)]	26.05(4)	53.53(4)	78.80(4)
II	±0.103(1) [N(1)]	$\pm 0.155(1)$	±0.062(2) [N(1)]	±0.078(2) [F(1)]	6.79(7)	53.07(4)	57.96(5)
ш	±0.232(3) [N(2)]	±0.138(2)	±0.064(6) [C(2)]	±0.151(4) [O(1)]	10.6(1)	61.2(1)	65.7(1)
111	±0.178(3) [N(3)]	$\pm 0.168(2)$	±0.062(6) [C(14)]	±0.130(4) [O(4)]	9.6(1)	57.6(1)	64.2(1)
IV [2]	±0.083(3) [O(1)]	±0.212(2)	±0.182(6) [C(4)]	±0.029(3) [O(1)]	21.6(1)	57.2(1)	78.3(1)
V [3]	$\pm 0.078(1) [O_{yl}]$	±0.208(1)	±0.144(6) [C(4)]	±0.042(3) [O(2)]	21.15(7)	57.15(5)	78.00(6)

D–H···A	D–H, Å	H…A, Å	D…A, Å	D–Н···А, град	Операция симметрии для А	
$[(NpO_2)_2(phen)_2(C_7H_5O_2)_2]$ (I)						
C(1)-H(1)····O(1)	0.95	2.42	2.955(3)	115.5		
C(12)–H(8)····O(2)	0.95	2.42	3.048(3)	123.0	1-x, 1-y, 1-z	
C(16)–H(10)····O(11)	0.95	2.64	3.267(3)	124.2	-x + 1/2, y - 1/2, -z + 1/2	
C(19)–H(13)····O(12)	0.95	2.43	3.129(3)	130.3	-x, 1-y, 1-z	
		[(NpO ₂	$2(phen)_2(o-C)$	$C_7H_4FO_2)_2]$ (II)		
C(1)-H(1)····O(1)	0.95	2.28	2.987(3)	130.1		
C(12)–H(8)····O(2)	0.95	2.35	3.038(3)	129.3	1-x, 1-y, 1-z	
$C(2)-H(2)\cdots F(1)$	0.95	2.33	3.042(3)	131.1	x - 1/2, -y + 1/2, z + 1/2	
$C(12)-H(8)\cdots F(1)$	0.95	2.26	3.176(3)	160.5	1-x, 1-y, 1-z	
C(16)–H(9)····O(11)	0.95	2.71	3.374(3)	127.3	x - 1/2, -y + 1/2, z - 1/2	
C(2)-H(2)····O(12)	0.95	2.72	3.253(4)	116.0	-x, 1-y, 1-z	
		[(NpO ₂)	$_2(\text{phen})_2(p-C)$	$_{7}H_{4}FO_{2})_{2}]$ (III)		
C(1)-H(1)····O(1)	0.95	2.38	3.038(7)	126.3		
C(12)–H(8)····O(4)	0.95	2.38	3.044(8)	126.8		
C(13)–H(9)····O(3)	0.95	2.32	2.981(8)	126.0		
C(24)–H(16)····O(2)	0.95	2.32	3.017(8)	129.6		
$C(22)-H(14)\cdots F(1)$	0.95	2.35	3.050(9)	130.3	-x + 1/2, -y + 1/2, -z	
$C(2)-H(2)\cdots F(2)$	0.95	2.37	3.096(8)	132.5	x, -y + 2, z - 1/2	
C(35)–H(22)····O(11)	0.95	2.46	3.324(9)	151.3	-x, y, -z + 1/2	
C(30)–H(19)····O(12)	0.95	2.42	3.304(9)	154.1	-x + 1/2, -y + 3/2, -z	
C(18)–H(12)····O(21)	0.95	2.59	3.332(9)	135.5	-x + 1/2, y - 1/2, -z + 1/2	
C(10)–H(6)····O(22)	0.95	2.61	3.371(8)	137.0	x, y + 1, z	

Таблица 5. Водородные связи в структурах I-III

Анализ показывает, что наибольшее отклонение от плоского строения имеет экваториальный пояс в бипирамидах Np(1) и Np(2) соединения III. Это обусловлено небольшим разворотом карбоксилатной группы аниона $p-C_6H_4FCOO^-$ относительно своего циклического фрагмента. Так, в плоских анионах $C_6H_5COO^-$ (I), $o-C_6H_4FCOO^-$ (II) торсионные углы [CCCO] не превышают 2.4(3)°, тогда как в $p-C_6H_4FCOO^-$ он равен 10.9(3)°.

Во всех трех соединениях анионы развернуты относительно экватора бипирамид на угол в пределах ~53–61°. Двугранные углы между экватором и фенантролином (ϕ_{lig}) заметно различаются, так же как и углы, образованные плоскостями фенантролина и аниона (ϕ). Эти конформационные отличия обусловлены влиянием водородного связывания.

В структурах I–III донорами протонов в водородном связывании являются группы С–Н циклических фрагментов фенантролина и аниона. Несмотря на то что водородное связывание с участием группировки С–Н относится к типу слабых взаимодействий [9, 10], оно является стабилизирующим фактором в формировании кристаллической упаковки соединений. Акцепторами протонов могут выступать атомы О и F. В табл. 5 приведены параметры коротких контактов в структурах I–III, которые можно отнести к H-связям.

Эти связи можно разделить на три группы. К первой группе относятся внутримолекулярное

взаимодействие типа С–H···O_{benz}, в котором акцепторами протонов выступают атомы O(1) и O(2) карбоксилатных групп анионов, как это показано на примере соединения I (рис. 1). Донорами протонов являются молекулы фенантролина. Этот тип водородного взаимодействия наблюдается во всех трех соединениях (табл. 5).

Второй тип взаимодействия – С–Н…F, он наблюдается в соединениях II и III. В соединении II водородные связи с участием атома углерода C(12) являются внутримолекулярными (рис. 4). Водородные связи с участием атома углерода C(2) объединяют электронейтральные комплексы [(NpO₂)₂. (phen)₂(*o*-C₇H₄FO₂)₂] в слои, параллельные диагональной плоскости (101) в кристалле II.

В кристалле III связи типа С–H···F объединяют комплексы $[(NpO_2)_2(phen)_2(p-C_7H_4FO_2)_2]$ в слои, параллельные плоскости (011) (рис. 4). При этом водородные связи с участием атома F(1) связывают два комплекса $[(NpO_2)_2(phen)_2(p-C_7H_4FO_2)_2]$ между собой, а связи с участием атома F(2) объединяют сдвоенные комплексы вдоль направления [001] в кристалле.

Третий тип взаимодействия – это связи С– Н…O_{yl} с участием атомов О катионов NpO₂⁺. Этот тип взаимодействия гораздо слабее двух предыдущих; тем не менее, его можно отнести к водородному связыванию. В кристаллах **II** и **III** эти связи объединяют комплексы [(NpO₂)₂(phen)₂(*o*-C₇H₄FO₂)₂]

Рис. 4. Водородные связи типа С-Н…F в структурах II и III.

и $[(NpO_2)_2(phen)_2(p-C_7H_4FO_2)_2]$ между слоями. В кристалле I связи C–H···O_{yl} объединяют комплексы $[(NpO_2)_2(phen)_2(C_7H_4O_2)_2]$ по трем направлениям. Донорами протонов в структуре I выступают анионы C₆H₅COO⁻, в структурах II и III – и анионы *o*-C₆H₄FCOO⁻, *p*-C₆H₄FCOO⁻, и фенантролин. В результате, в кристаллах I–III образуется трехмерная сеть слабых водородных связей.

Ранее изученные комплексы бензоата и о-фторбензоата Np(V) с bipy состава $[(NpO_2)_2(bipy)_2]$. (C₇H₅O₂)₂] [2] (**IV**) и [(NpO₂)₂(bipy)₂(*o*-C₇H₄FO₂)₂] [3] (V) имеют сходное с соединениями I и II строение. Отличие между фенантролиновыми и бипиридиновыми комплексами наблюдается в конформационных характеристиках (табл. 4). В обоих комплексах с bipy двугранные углы, образованные экваториальной плоскостью бипирамиды и плоскостью bipy (ϕ_{lig}) или аниона (ϕ_{henz}), и плоскостями bipy и аниона (φ) равны ~21 (φ_{lig}), ~57 (φ_{benz}) и ~78° (ф). Сходные конформационные характеристики у бипиридиновых комплексов возникают под влиянием водородного связывания, оно определяет разворот плоскостей друг относительно друга. Связи типа С-Н···O_{benz} в обоих комплексах IV и V и связи типа С-Н…F в комплексе V являются внутримолекулярными, тогда как в II атом F(1) участвует в внутри- и межмолекулярном водородном связывании. Более слабые связи типа С-Н...О_{vl} с участием атомов О катионов NpO₂⁺ связывают комплексы с bipy по трем направлениям.

Следует отметить, что в литературе обсуждалась возможность присутствия непосредственных связей Np–Np в соединениях с катионными димерами Np₂O₄²⁺ [5, 11]. Однако, несмотря на наличие расстояний Np···Np короче предела Хилла (3.5 Å [12]), расчеты, проведенные методом функционала плотности (DFT), показывают, что непосредственное взаимодействие Np–Np отсутствует [5].

Таким образом, исследовано строение трех новых комплексов Np(V) состава [(NpO₂)₂(phen)₂· $(C_7H_5O_2)_2$] (I), $[(NpO_2)_2(phen)_2(o-C_7H_4FO_2)_2]$ (II) и $[(NpO_2)_2(phen)_2(p-C_7H_4FO_2)_2]$ (III), в структуре которых КК взаимодействие приводит к образованию димерных катионов $An_2O_4^{2+}$. Комплексы I–III и ранее изученные комплексы бензоата и *o*-фторбензоата Np(V) с bipy состава $[(NpO_2)_2(bipy)_2(C_7H_5O_2)_2]$ [2] и $[(NpO_2)_2(bipy)_2(o-C_7H_4FO_2)_2]$ [3] имеют сходное строение. Комплексы с bipy и phen (за исключением соединения III) кристаллизуются в пространственной группе $P2_1/n$ с близкими параметрами. Различие наблюдается в конформационных характеристиках, которые возникают под влиянием водородного связывания.

Рентгенодифракционные эксперименты выполнены в ЦКП ФМИ ИФХЭ РАН. Работа выполнена при частичном финансировании Министерством науки и высшего образования Российской Федерации (тема N AAAA-A18-118040590105-4).

Список литературы

- [1] Бессонов А. А., Крот Н. Н., Григорьев М. С., Макаренков В. И. // Радиохимия. 2009. Т. 51, N 3. С. 202–206.
- [2] Charushnikova I. A., Krot N. N., Starikova Z. A. //Radiochim. Acta. 2007. Vol. 95, N 3. P. 495–499.
- [3] Grigoriev M. S., Krot N. N., Bessonov A. A., Suponitsky K. Yu. // Acta Crystallogr., Sect. E. 2007. Vol. 63, N 2. P. m561–m562.
- [4] Cousson A., Dabos S., Abazli H. et al. // J. Less-Common Met. 1984. Vol. 99, N 2. P. 233–240.
- [5] Vlaisavljevich B., Miró P., Ma D., Sigmon G. E. et al. // Chem. Eur. J. 2013. Vol. 19, N 9. P. 2937–2941.
- [6] *Sheldrick G. M.* SADABS. Madison, Wisconsin (USA): Bruker AXS, 2008.
- [7] Sheldrick G. M. // Acta Crystallogr., Sect. A. 2008. Vol. 64, N 1. P. 112–122.
- [8] Sheldrick G. M. // Acta Crystallogr., Sect. C. 2015. Vol. 71, N 1. P. 3–8.
- [9] Steiner T. // Chem. Commun. 1997. N 8. P. 727-734.
- [10] Van den Berg J. A., Kenneth R., Seddon K. R. // Cryst. Growth Des. 2003. Vol. 3, N 5. P. 643–661.
- [11] Серёжкин В. Н., Серёжкина Л. Б. // Радиохимия. 2018. Т. 60, N 1. С. 3–13.
- [12] Moor K. T., Van der Laan G. // Rev. Mod. Phys. 2009. Vol. 81, N 1. P. 235–298.