# Комплексы Np(VI) с анионами циклобутанкарбоновой кислоты и однозарядными катионами во внешней сфере: [NH<sub>4</sub>][NpO<sub>2</sub>(cbc)<sub>3</sub>], [C(NH<sub>2</sub>)<sub>3</sub>][NpO<sub>2</sub>(cbc)<sub>3</sub>], [N(CH<sub>3</sub>)<sub>4</sub>][NpO<sub>2</sub>(cbc)<sub>3</sub>]

# © И. А. Чарушникова\*<sup>*a*</sup>, М. С. Григорьев<sup>*a*</sup>, А. М. Федосеев<sup>*a*</sup>

<sup>а</sup> Институт физической химии и электрохимии им. А. Н. Фрумкина РАН, 119071, Москва, Ленинский пр., д. 31, корп. 4; \* e-mail: charushnikovai@ipc.rssi.ru

Получена 09.07.2018, после доработки 30.08.2018, принята к публикации 30.08.2018 УДК 539.26+546.798.21

Синтезированы и исследованы методом рентгеноструктурного анализа три новых комплекса Np(VI) с анионами циклобутанкарбоновой кислоты и однозарядными внешнесферными катионами: аммонием – [NH4][NpO<sub>2</sub>(cbc)<sub>3</sub>] (I), гуанидинием – [C(NH<sub>2</sub>)<sub>3</sub>][NpO<sub>2</sub>(cbc)<sub>3</sub>] (II) и тетраметиламмонием – [N(CH<sub>3</sub>)<sub>4</sub>]. [NpO<sub>2</sub>(cbc)<sub>3</sub>] (III). Координационное окружение атомов Np в соединениях I–III – гексагональные бипирамиды с тремя бидентатно-циклическими анионами C<sub>4</sub>H<sub>7</sub>COO<sup>-</sup> в экваториальном поясе. В соединениях I и II внешнесферные катионы NH<sub>4</sub><sup>+</sup> и C(NH<sub>2</sub>)<sub>3</sub><sup>+</sup> связываются с анионными комплексами [NpO<sub>2</sub>(cbc)<sub>3</sub>]<sup>-</sup> в трехмерный каркас через водородное взаимодействие типа N–H···O. В комплексе III крупные внешнесферные катионы N(CH<sub>3</sub>)<sub>4</sub><sup>+</sup> являются причиной различия в строении анионных комплексов [NpO<sub>2</sub>(cbc)<sub>3</sub>]<sup>-</sup>. Ключевые слова: нептуний(VI), циклобутанкарбоновая кислота, синтез, кристаллическая структура.

### DOI: 10.1134/S003383111904004X

Карбоксилатные комплексы шестивалентных актинидов с алканкарбоновыми кислотами, такие как ацетаты, пропионаты, бутираты, хорошо известны и продолжают активно изучаться [1–3]. Высокая устойчивость карбоновых кислот к окислению позволяет получить анионные комплексы не только для U(VI), но также для Np(VI), Pu(VI) и даже Am(VI) [4]. Комплексы An(VI) с алканкарбоновыми кислотами также характеризуются довольно высокой устойчивостью, быстрой кристаллизацией из водных растворов, что делает их подходящими для структурных исследований, позволяющих проводить корреляции состав-структура-свойства не только по ряду актинидов, но и по ряду карбоновых кислот. Однако с увеличением гидрокарбильного радикала вышеуказанные характеристики заметно меняются и сложно даже оценить возможность синтеза соответствующих соединений в виде монокристаллов, пригодных для рентгеноструктурного анализа (РСА). Недавно в число объектов исследований были включены комплексы актинидов с анионами циклопропанкарбоновой [5-7] и циклобутанкарбоновой [8-10] кислот, в частности, благодаря их стойкости к окислению. В случае циклобутанкарбоновой кислоты (Hcbc) изучены дигидраты [AnO<sub>2</sub>(cbc)<sub>2</sub>·  $(H_2O)_2$ ] [An(VI) = U, Np] и моногидраты [AnO<sub>2</sub>(cbc)<sub>2</sub>·  $(H_2O)$ ] (An(VI) = Np, Pu) [8], комплексы шестивалентных U, Np и Pu состава [UO<sub>2</sub>(bipy)(cbc)<sub>2</sub>] и  $[AnO_2(bipy)(cbc)_2] \cdot 0.5(bipy) [An(VI) = Np, Pu, bipy =$ 2,2'-бипиридин] [9] и анионные комплексы [AnO<sub>2</sub>·  $(cbc)_3$ ]<sup>-</sup> [An(VI) = Np, Pu], содержащие катионы щелочных металлов Na<sup>+</sup>, K<sup>+</sup> и Cs<sup>+</sup> [10]. В настоящей работе выделены и исследованы анионные комплексы Np(VI) с однозарядными внешнесферными катионами аммония NH<sub>4</sub><sup>+</sup>, гуанидиния C(NH<sub>2</sub>)<sub>3</sub><sup>+</sup> и тетраметиламмония N(CH<sub>3</sub>)<sub>4</sub><sup>+</sup>: [NH<sub>4</sub>][NpO<sub>2</sub>(cbc)<sub>3</sub>] (I), [C(NH<sub>2</sub>)<sub>3</sub>][NpO<sub>2</sub>(cbc)<sub>3</sub>] (II), [N(CH<sub>3</sub>)<sub>4</sub>][NpO<sub>2</sub>(cbc)<sub>3</sub>] (III), cbc<sup>-</sup> = C<sub>4</sub>H<sub>7</sub>(COO)<sup>-</sup>. На примере этих соединений можно также проследить роль водородного связывания в формировании структуры.

#### Экспериментальная часть

В работе использовали Нсbc фирмы Aldrich (98%) без дополнительной очистки. Перхлорат Np(VI), полученный упариванием запасных азотнокислых растворов с концентрированной HClO<sub>4</sub>, растворяли в воде и осаждали водным раствором аммиака с последующим промыванием полученного осадка водой. Осадок растворяли в водном растворе 0.5 моль/л Нсbc и добавляли водный раствор ~0.5 моль/л соли, полученной нейтрализацией циклобутанкарбоновой кислоты аммиаком, карбонатом гуанидиния или гидроксидом тетраметиламмония. При медленном испарении при комнатной температуре (~18–20°C) в реакционных смесях с NH<sub>4</sub><sup>+</sup>, C(NH<sub>2</sub>)<sub>3</sub><sup>+</sup> и N(CH<sub>3</sub>)<sub>4</sub><sup>+</sup> образовались кристаллы, пригодные для PCA.

Рентгенодифракционные эксперименты выполнены на автоматическом четырехкружном дифрактометре с двумерным детектором Bruker Kappa Apex II (излучение Мо $K_{\alpha}$ , графитовый монохроматор) при 100 К. Параметры элементарных ячеек уточнены по всему массиву данных. В экспериментальные интенсивности введены поправки на поглощение с помощью программы SADABS [11]. Все структуры расшифрованы прямым методом (SHELXS97 [12]),

| Παραγιστη                                                                   | $[NH_4][NpO_2(cbc)_3]$                             | $[C(NH_2)_3][NpO_2(cbc)_3]$                                      | $[N(CH_3)_4][NpO_2(cbc)_3]$                        |  |
|-----------------------------------------------------------------------------|----------------------------------------------------|------------------------------------------------------------------|----------------------------------------------------|--|
| Параметр                                                                    | (I)                                                | (I) (II)                                                         |                                                    |  |
| Формула                                                                     | C <sub>15</sub> H <sub>25</sub> NO <sub>8</sub> Np | C <sub>16</sub> H <sub>27</sub> N <sub>3</sub> O <sub>8</sub> Np | C <sub>19</sub> H <sub>33</sub> NO <sub>8</sub> Np |  |
| M                                                                           | 584.36                                             | 626.40                                                           | 640.46                                             |  |
| Сингония                                                                    | Ромбическая                                        | Тетрагональная                                                   | Триклинная                                         |  |
| Пространственная группа                                                     | $P2_{1}2_{1}2_{1}$                                 | $I4_1/a$                                                         | PĪ                                                 |  |
| a, Å                                                                        | 11.6090(3)                                         | 16.8287(8)                                                       | 13.4977(11)                                        |  |
| b, Å                                                                        | 12.2676(3)                                         | 16.8287(8)                                                       | 16.5702(13)                                        |  |
| <i>c</i> , Å                                                                | 13.0989(4)                                         | 30.4145(15)                                                      | 30.739(2)                                          |  |
| α, град                                                                     | 90                                                 | 90                                                               | 89.678(2)                                          |  |
| β, град                                                                     | 90                                                 | 90                                                               | 88.663(2)                                          |  |
| ү, град                                                                     | 90                                                 | 90                                                               | 84.505(2)                                          |  |
| $V, Å^3; Z$                                                                 | 1865.47(9); 4                                      | 8613.5(9); 16                                                    | 6841.6(9); 12                                      |  |
| $ρ_{\text{выч.}}$ , $Γ/cm^3$                                                | 2.081                                              | 1.932                                                            | 1.865                                              |  |
| $\mu(MoK_{\alpha}), \text{ mm}^{-1}$                                        | 3.634                                              | 3.154                                                            | 2.976                                              |  |
| Число измеренных/независимых отражений                                      | 16215/5694                                         | 31513/3714                                                       | 78435/36068                                        |  |
| Число независимых отражений с $I > 2\sigma(I)$                              | 5278                                               | 2019                                                             | 21906                                              |  |
| Число уточняемых параметров                                                 | 238                                                | 247                                                              | 1568                                               |  |
| $R(F); wR(F^2) [I > 2\sigma(I)]$                                            | 0.0241; 0.0406                                     | 0.0756; 0.1264                                                   | 0.0506; 0.0775                                     |  |
| $R(F); wR(F^2)$ [весь массив]                                               | 0.0290; 0.0420                                     | 0.1538; 0.1570                                                   | 0.1044; 0.0942                                     |  |
| GOOF                                                                        | 0.971                                              | 1.186                                                            | 0.944                                              |  |
| $\Delta \rho_{\text{max}}$ и $\Delta \rho_{\text{min}}$ , е Å <sup>-3</sup> | 0.842; -0.943                                      | 3.710; -3.802                                                    | 1.484; -1.623                                      |  |

Таблица 1. Кристаллографические данные и характеристики рентгеноструктурного эксперимента

структуры уточнены полноматричным методом наименьших квадратов (SHELXL-2014 [13]) по  $F^2$  по всем данным в анизотропном приближении для всех неводородных атомов. Мелкие кристаллы соединения **II** оказались низкого качества, и найденную модель удалось уточнить только до  $R1 \sim 8\%$ . Атомы H анионов C<sub>4</sub>H<sub>7</sub>COO<sup>-</sup> и катионов гуанидиния C(NH<sub>2</sub>)<sup>+</sup><sub>3</sub> (**II**) и тетраметиламмония N(CH<sub>3</sub>)<sup>+</sup><sub>4</sub> (**III**) введены на геометрически рассчитанные позиции и уточнены с  $U_{\rm H} = 1.2U_{3\rm KB}$ (N,C), а атомы H катиона NH<sup>+</sup><sub>4</sub> (**I**) найдены на разностном синтезе Фурье и уточнены с ограничением расстояний N–H и  $U_{\rm H} = 1.2U_{3\rm KB}$ (N).

Детали рентгеноструктурного эксперимента и основные кристаллографические данные приведены в табл. 1. Координаты атомов депонированы в Кембриджский центр кристаллографических данных, депоненты CCDC 1832939–1832941.

# Результаты и обсуждение

Основу структур **I–III** составляют анионные комплексы  $[NpO_2(cbc)_3]^-$ , окруженные однозарядными катионами  $NH_4^+$ ,  $C(NH_2)_3^+$  или  $N(CH_3)_4^+$ . Анионный комплекс имеет обычное для подобных комплексов строение с тремя бидентатно-циклическими анионами  $C_4H_7COO^-$  в экваториальном поясе. Координационные полиэдры (КП) атомов Np – гексагональные бипирамиды с атомами О катионов  $NpO_2^{2+}$  в апикальных позициях. На рис. 1 и 2 представлены фрагменты структур **I** и **II**, в табл. 2 – длины связей и валентные углы в координационном окружении атомов Np

в этих структурах. Отметим, что слишком большой разброс в некоторых длинах связей в комплексе II (например, Np=O, табл. 2) является следствием низкого качества кристалла. В соединении III присутствует шесть кристаллографически независимых формульных единиц, на рис. 3 представлен фрагмент структуры и на примере одной из шести независимых структурных единиц [центральный атом Np(1) анионного комплекса и атом N(1) внешнесферного катиона N(CH<sub>3</sub>)<sup>4</sup>, n = 1] показана нумерация атомов



**Рис. 1.** Фрагмент структуры [NH<sub>4</sub>][NpO<sub>2</sub>(cbc)<sub>3</sub>] (I). Температурные эллипсоиды показаны с 30%-ной вероятностью, *пунктирными линиями* показаны водородные связи; то же на рис. 2.



Рис. 2. Фрагмент структуры [C(NH<sub>2</sub>)<sub>3</sub>][NpO<sub>2</sub>(cbc)<sub>3</sub>] (II).



**Рис. 3.** Фрагмент структуры [N(CH<sub>3</sub>)<sub>4</sub>][NpO<sub>2</sub>(cbc)<sub>3</sub>] (**III**), координационное окружение атома Np(1). Температурные эллипсоиды показаны с 30%-ной вероятностью.

# в структуре и табл. 3.

Различие в строении анионных комплексов [NpO<sub>2</sub> (cbc)<sub>3</sub>]<sup>-</sup> в структурах **I–III** проявляется прежде всего в конформационных особенностях анионов C<sub>4</sub>H<sub>7</sub>COO<sup>-</sup>. Углы перегиба по средней линии циклических фрагментов анионов изменяются в пределах 19–29 (**I**), 24–35 (**II**) и 18–32° (**III**). Торсионные углы, показывающие поворот циклического фрагмента относительно карбоксилатной группы анионов cbc1, cbc2, cbc3, рассчитанные через атомы [O(4)C(1)C(2)·C(3)], [O(6)C(6)C(7)C(8)] и [O(8)C(11)C(12)C(13)], приведены в табл. 4.

**Таблица 2.** Длины связей (*d*) и валентные углы (ω) в КП Np в структурах I и II

| Параметр                      | Ι          | II        |  |
|-------------------------------|------------|-----------|--|
| Связь                         | d, Å       |           |  |
| Np(1)=O(1)                    | 1.757(3)   | 1.849(14) |  |
| Np(1)=O(2)                    | 1.748(4)   | 1.709(15) |  |
| Np(1)–O(3)                    | 2.478(3)   | 2.359(12) |  |
| Np(1)–O(4)                    | 2.475(4)   | 2.397(13) |  |
| Np(1)–O(5)                    | 2.460(3)   | 2.472(12) |  |
| Np(1)–O(6)                    | 2.461(3)   | 2.577(14) |  |
| Np(1)–O(7)                    | 2.448(4)   | 2.523(12) |  |
| Np(1)–O(8)                    | 2.500(3)   | 2.462(14) |  |
| C(1)–O(3)                     | 1.276(6)   | 1.33(2)   |  |
| C(1)–O(4)                     | 1.267(5)   | 1.29(2)   |  |
| C(1)–C(2)                     | 1.489(6)   | 1.50(3)   |  |
| Среднее (С-С) <sub>цикл</sub> | 1.533(8)   | 1.51(3)   |  |
| C(6)–O(5)                     | 1.266(6)   | 1.28(2)   |  |
| C(6)–O(6)                     | 1.272(6)   | 1.31(2)   |  |
| C(6)–C(7)                     | 1.495(6)   | 1.52(3)   |  |
| Среднее (С-С) <sub>цикл</sub> | 1.540(8)   | 1.54(3)   |  |
| C(11)–O(7)                    | 1.285(5)   | 1.33(2)   |  |
| C(11)–O(8)                    | 1.261(6)   | 1.21(3)   |  |
| C(11)–C(12)                   | 1.500(7)   | 1.54(3)   |  |
| Среднее (С–С) <sub>цикл</sub> | 1.540(7)   | 1.48(4)   |  |
| Угол                          | ω, град    |           |  |
| O(1)=Np(1)=O(2)               | 179.39(17) | 175.1(7)  |  |
| O(3)-Np(1)-O(4)               | 52.22(11)  | 55.9(5)   |  |
| O(5)–Np(1)–O(6)               | 52.91(12)  | 52.1(5)   |  |
| O(7)-Np(1)-O(8)               | 52.57(10)  | 52.5(5)   |  |
| O(3)-Np(1)-O(8)               | 67.18(11)  | 68.7(5)   |  |
| O(4)-Np(1)-O(5)               | 67.61(11)  | 65.4(4)   |  |
| O(6)-Np(1)-O(7)               | 67.72(11)  | 65.1(5)   |  |

Соединение I можно рассматривать как изоструктурное соединению Cs[NpO<sub>2</sub>(cbc)<sub>3</sub>] [10] с близкими параметрами ячейки. В структуре I также можно выделить 3-связанную сетку, построенную на основе катионов NH<sub>4</sub><sup>+</sup> и NpO<sub>2</sub><sup>2+</sup>, в которой каждый атом Np связан с тремя атомами N и каждый атом N связан с тремя атомами Np. Образуется трехмерная сетка (10,3) ([14], с. 139), построенная из десятиугольников, симметрия которой близка к кубической.

В структурах **I** и **II** водородное взаимодействие типа N–H···O с атомами O анионов C<sub>4</sub>H<sub>7</sub>COO<sup>-</sup> является важным структурообразующим фактором. Каждый катион NH<sup>+</sup><sub>4</sub> (**I**) и C(NH<sub>2</sub>)<sup>+</sup><sub>3</sub>(**II**) связывает по три анионных комплекса [NpO<sub>2</sub>(cbc)<sub>3</sub>]<sup>-</sup> (рис. 4, табл. 5) в трехмерный электронейтральный каркас.

В отличие от соединений I и II, где положение составных частей структуры друг относительно друга фиксирует также и водородное взаимодействие типа N–H···O, в структуре III катионы тетраметиламмония как доноры протонов образуют весьма слабые водородные связи типа С–H···O с атомами O

| Параметр                        | Np(1)     | Np(2)     | Np(3)     | Np(4)     | Np(5)     | Np(6)     |
|---------------------------------|-----------|-----------|-----------|-----------|-----------|-----------|
| Связь                           | d, Å      |           |           |           |           |           |
| Np(n)=O(n1)                     | 1.750(5)  | 1.748(5)  | 1.742(5)  | 1.755(5)  | 1.747(5)  | 1.752(5)  |
| Np(n)=O(n2)                     | 1.756(5)  | 1.759(5)  | 1.747(5)  | 1.752(5)  | 1.758(5)  | 1.744(6)  |
| Np(n)-O(n3)                     | 2.433(5)  | 2.473(5)  | 2.489(5)  | 2.431(5)  | 2.443(5)  | 2.454(5)  |
| Np(n)-O(n4)                     | 2.441(5)  | 2.434(5)  | 2.466(5)  | 2.467(5)  | 2.450(5)  | 2.474(5)  |
| Np(n)-O(n5)                     | 2.484(5)  | 2.475(5)  | 2.451(5)  | 2.473(5)  | 2.461(5)  | 2.449(5)  |
| Np(n)-O(n6)                     | 2.442(6)  | 2.490(5)  | 2.465(5)  | 2.496(5)  | 2.446(5)  | 2.458(5)  |
| Np(n)-O(n7)                     | 2.460(5)  | 2.448(5)  | 2.462(5)  | 2.475(5)  | 2.418(5)  | 2.445(5)  |
| Np(n)-O(n8)                     | 2.416(5)  | 2.425(5)  | 2.463(5)  | 2.423(5)  | 2.475(5)  | 2.444(5)  |
| C( <i>n</i> 1)–O( <i>n</i> 3)   | 1.260(8)  | 1.252(9)  | 1.263(8)  | 1.248(9)  | 1.251(8)  | 1.269(9)  |
| C( <i>n</i> 1)–O( <i>n</i> 4)   | 1.266(9)  | 1.287(9)  | 1.273(9)  | 1.272(9)  | 1.269(9)  | 1.250(8)  |
| C(n1)-C(n2)                     | 1.484(11) | 1.497(12) | 1.507(10) | 1.491(10) | 1.494(11) | 1.513(10) |
| Среднее (С-С)цикл               | 1.548(13) | 1.508(15) | 1.534(11) | 1.512(12) | 1.527(12) | 1.541(12) |
| C( <i>n</i> 6)–O( <i>n</i> 5)   | 1.263(9)  | 1.256(9)  | 1.261(9)  | 1.261(9)  | 1.262(9)  | 1.272(8)  |
| C( <i>n</i> 6)–O( <i>n</i> 6)   | 1.262(9)  | 1.265(8)  | 1.255(9)  | 1.262(9)  | 1.284(8)  | 1.259(9)  |
| C( <i>n</i> 6)–C( <i>n</i> 7)   | 1.506(11) | 1.491(10) | 1.520(11) | 1.519(11) | 1.487(11) | 1.511(11) |
| Среднее (С–С) <sub>цикл</sub>   | 1.528(12) | 1.533(13) | 1.540(11) | 1.520(14) | 1.543(12) | 1.527(13) |
| C( <i>n</i> 11)–O( <i>n</i> 7)  | 1.258(9)  | 1.261(10) | 1.276(9)  | 1.261(9)  | 1.263(9)  | 1.258(9)  |
| C( <i>n</i> 11)–O( <i>n</i> 8)  | 1.290(9)  | 1.265(10) | 1.257(10) | 1.264(8)  | 1.246(8)  | 1.280(8)  |
| C( <i>n</i> 11)–C( <i>n</i> 12) | 1.475(10) | 1.493(11) | 1.511(12) | 1.489(10) | 1.488(10) | 1.493(11) |
| Среднее (С-С) <sub>цикл</sub>   | 1.526(12) | 1.526(18) | 1.506(15) | 1.535(11) | 1.526(15) | 1.524(13) |
| Угол                            |           | ω, град   |           |           |           |           |
| O(n1)=Np(n)=O(n2)               | 179.7(3)  | 179.3(3)  | 179.9(3)  | 179.9(3)  | 179.2(3)  | 179.2(3)  |
| O(n3)-Np(n)-O(n4)               | 53.06(17) | 52.85(17) | 52.66(17) | 52.72(17) | 52.95(17) | 52.47(17) |
| O(n5)-Np(n)-O(n6)               | 52.82(17) | 52.24(17) | 52.59(17) | 52.58(17) | 53.17(17) | 52.66(16) |
| O(n7)-Np(n)-O(n8)               | 53.12(18) | 53.06(19) | 52.58(17) | 52.84(17) | 52.49(18) | 53.00(16) |
| O(n3)-Np(n)-O(n8)               | 66.59(17) | 67.01(18) | 68.56(17) | 65.36(17) | 66.13(17) | 68.06(17) |
| O(n4)-Np(n)-O(n5)               | 69.09(18) | 67.65(18) | 66.05(17) | 66.26(17) | 68.69(18) | 65.77(16) |
| O(n6)-Np(n)-O(n7)               | 65.55(17) | 68.14(18) | 67.83(18) | 70.40(17) | 66.60(18) | 68.46(16) |

Таблица 3. Длины связей (d) и валентные углы (ω) в КП атомов Np в структуре [N(CH<sub>3</sub>)<sub>4</sub>][NpO<sub>2</sub>(cbc)<sub>3</sub>] (III)



**Рис. 4.** Водородные связи, образованные катионами  $NH_4^+$  и  $C(NH_2)_3^+$  в структурах I и II. Атомы H анионов  $C_4H_7COO^-$  не показаны. Операции симметрии: I: a - (x + 1/2, -y + 3/2, -z), b - (1 - x, y - 1/2, -z + 1/2); II: a - (y + 5/4, -x + 5/4, z + 9/4), b - (x - 1/2, y - 1, -z - 3/2).



Рис. 5. Упаковка молекул в структуре III. Атомы Н анионов C<sub>4</sub>H<sub>7</sub>COO<sup>-</sup> не показаны.

| Соединение                         | cbc1      | cbc2       | cbc3       |
|------------------------------------|-----------|------------|------------|
| Ι                                  | 4.0(7)    | 28.4(7)    | -86.3(6)   |
| II                                 | -154(3)   | 17(3)      | -180(2)    |
| III, $[Np(1)O_2(cbc)_3]^-$         | 111.6(9)  | -166.94(8) | -129.4(8)  |
| III, $[Np(2)O_2(cbc)_3]^-$         | -177.1(9) | -0.7(11)   | -175.1(11) |
| III, $[Np(3)O_2(cbc)_3]^-$         | -175.1(6) | 12.1(11)   | -60.3(13)  |
| III, $[Np(4)O_2(cbc)_3]^-$         | 42.5(12)  | -21.9(12)  | -159.6(7)  |
| III, $[Np(5)O_2(cbc)_3]^-$         | 62.6(10)  | 72.1(10)   | -32.9(12)  |
| <b>III</b> , $[Np(6)O_2(cbc)_3]^-$ | -127.4(8) | 136.7(9)   | 151.4(8)   |

Таблица 4. Торсионные углы в структурах I-III (град)

анионных комплексов, и межатомные контакты С…О лежат в пределах 3.150(9)–3.484(10) Å. Такой тип взаимодействия не является структурообразующим, но способствует стабилизации структуры. Наличие в структуре III крупных внешнесферных катионов тетраметиламмония обусловливает, повидимому, стерические затруднения при упаковке катионов и комплексных анионов. Это влияет на строение анионов [NpO<sub>2</sub>(cbc)<sub>3</sub>]<sup>–</sup> и приводит к конформационному различию между ними и, как следствие, к понижению симметрии кристалла с образованием большого количества кристаллографически независимых формульных единиц (рис. 5).

| D–H…A                            | D–H, Å  | H…A, Å  | D…A, Å   | D–Н···А, град | Операция симметрии         |
|----------------------------------|---------|---------|----------|---------------|----------------------------|
| $[NH_4][NpO_2(cbc)_3]$ (I)       |         |         |          |               |                            |
| N(1)-H(1)···O(4)                 | 0.86(2) | 1.98(3) | 2.835(6) | 170(5)        | x + 1/2, -y + 3/2, -z      |
| N(1)–H(2)····O(3)                | 0.84(2) | 2.05(4) | 2.821(6) | 153(6)        |                            |
| N(1)–H(3)····O(7)                | 0.84(2) | 2.00(3) | 2.823(5) | 165(6)        | 1-x, y-1/2, -z+1/2         |
| N(1)-H(4)···O(8)                 | 0.84(2) | 2.21(4) | 2.927(6) | 143(5)        |                            |
| $[C(NH_2)_3][NpO_2(cbc)_3] (II)$ |         |         |          |               |                            |
| N(1)-H(1)····O(7)                | 0.88    | 2.12    | 2.92(2)  | 152           | -y + 5/4, x + 1/4, z + 1/4 |
| N(1)–H(2)···O(3)                 | 0.88    | 1.89    | 2.76(2)  | 172           |                            |
| N(2)–H(3)····O(4)                | 0.88    | 1.90    | 2.77(2)  | 167           | x, y + 1/2, 1 - z          |
| N(2)–H(4)····O(8)                | 0.88    | 2.04    | 2.83(2)  | 149           |                            |
| N(3)–H(5)····O(7)                | 0.88    | 2.26    | 3.04(2)  | 148           | -y + 5/4, x + 1/4, z + 1/4 |
| N(3)-H(6)···O(5)                 | 0.88    | 2.14    | 2.89(2)  | 144           | x, y + 1/2, 1 - z          |

Таким образом, выделены три новых комплекса Np(VI) с анионами циклобутанкарбоновой кислоты и однозарядными внешнесферными катионами:  $[NH_4][NpO_2(cbc)_3]$  (I),  $[C(NH_2)_3][NpO_2(cbc)_3]$  (II) и  $[N(CH_3)_4][NpO_2(cbc)_3]$  (III). Строение комплекса I близко к строению изученного ранее соединения Cs[NpO\_2(cbc)\_3]. В комплексах I и II водородное взаимодействие типа N–H···O с атомами O анионов C<sub>4</sub>H<sub>7</sub>COO<sup>-</sup> стабилизирует кристаллическую упаковку. В комплексе III крупные внешнесферные катионы N(CH<sub>3</sub>)<sup>4</sup> являются причиной различия в стереохимии анионных комплексов [NpO<sub>2</sub>(cbc)<sub>3</sub>]<sup>-</sup>.

Рентгенодифракционные эксперименты выполнены в ЦКП ФМИ ИФХЭ РАН. Работа выполнена при частичном финансировании Министерством науки и высшего образования Российской Федерации (тема N AAAA-A18-118040590105-4).

## Список литературы

- Grigoriev M. S., Antipin M. Yu., Krot N. N. // Acta Crystallogr., Sect. E. 2005. Vol. 61, N 10. P. m2078–m2079.
- [2] Серёжкин В. Н., Григорьев М. С., Абдульмянов А. Р. и

*др.* // Кристаллография. 2015. Т. 60, N 6. С. 906–914.

- [3] Савченков А. В., Вологжанина А. В., Серёжкин В. Н. и др. // Кристаллография. 2014. Т. 59, N 2. С. 235–241.
- [4] Grigoriev M. S., Fedosseev A. M. // Acta Crystallogr., Sect. C. 2011. Vol. 67, N 6. P. m205–m207.
- [5] Андреев Г. Б., Буданцева Н. А., Федосеев А. М., Антипин М. Ю. // Пятая Рос. конф. по радиохимии «Радиохимия-2006»: Тез. докл. Дубна, 23–27 октября 2006 г. С. 73–74.
- [6] Grigoriev M. S., Fedosseev A. M. // Acta Crystallogr., Sect. C. 2011. Vol. 67, N 6. P. m205–m207.
- [7] Иванова А. Г., Юсов А. Б., Григорьев М. С., Федосеев А. М. // Радиохимия. 2014. Т. 56, N 4. С. 317–321.
- [8] Чарушникова И. А., Григорьев М. С., Федосеев А. М. // Радиохимия. 2017. Т. 59, N 5. С. 385–392.
- [9] Чарушникова И. А., Григорьев М. С., Федосеев А. М. // Радиохимия. 2017. Т. 59, N 6. С. 488–494.
- [10] Григорьев М. С., Чарушникова И. А., Федосеев А. М. // Радиохимия. 2018. Т. 60, N 5. С. 442–446.
- [11] Sheldrick G. M. SADABS. Madison, Wisconsin (USA): Bruker AXS, 2008.
- [12] Sheldrick G. M. // Acta Crystallogr., Sect. A. 2008. Vol. 64, N 1. P. 112–122.
- [13] Sheldrick G. M. // Acta Crystallogr., Sect. C. 2015. Vol. 71, N 1. P. 3–8.
- [14] Уэллс А. Структурная неорганическая химия. М.: Мир. 1987. Т. 1. 408 с.