Описание экстракции нитратов редкоземельных элементов из слабокислых растворов концентрированными растворами трибутилфосфата

© Е. А. Пузиков*^{*a*}, Б. Я. Зильберман^{*a*}, Н. Д. Голецкий^{*a*}, А. С. Кудинов^{*a*}

^а Радиевый институт им. В. Г. Хлопина, 194021, Санкт-Петербург, 2-й Муринский пр., д. 28; * e-mail: egor puzikov@mail.ru

Получена 27.08.2018, после доработки 25.03.2019, принята к публикации 26.03.2019 УДК 546.65:542.61

На основе литературных данных разработана математическая модель экстракции нитратов РЗЭ (от La до Lu, а также Y) в широком диапазоне концентраций в слабокислых ([H⁺] << [РЗЭ]) системах в ТБФ с учетом его разбавления парафинами, в том числе в присутствии высаливателей. При этом предполагается параллельное протекание нескольких реакций комплексообразования в водной и органической фазах и нестехиометрического физико-химического взаимодействия компонентов. В модели учитывается образование трисольвата, тетрасольвата и гидратосольвата РЗЭ, а также соэкстракция цериевых и иттриевых РЗЭ в виде ионной пары и эффект самовысаливания, обусловленный кажущейся гидратацией Ln³⁺ в водной фазе. Модель учитывает влияние нитратов аммония, натрия и алюминия в качестве высаливателей. Описано также влияние температуры на экстракцию РЗЭ этих системах. Погрешность расчета коэффициентов распределения $\leq 10\%$.

Ключевые слова: трибутилфосфат, экстракция, нитраты РЗЭ, высаливатели, моделирование.

DOI: 10.1134/S0033831119040075

Введение

В нашей обобщающей работе [1] была предложена математическая модель экстракции разбавленным трибутилфосфатом (ТБФ) воды, азотной кислоты, а также нитратов шести- и четырехвалентных актинидов с применением мультиреакционного подхода. Последний заключается в предположении, что исследуемые объекты находятся в различных химических формах в водной и органической фазах, равновесие между которыми определяет суммарный коэффициент распределения. При этом равновесные концентрации компонентов рассчитывают путем совместного решения уравнений материального баланса с использованием закона действующих масс в концентрационном виде. В работе [2] была предложена двухуровневая система нумерации уравнений типовых химических реакций, используемых в модели. Модель была ориентирована на описание экстракции компонентов из азотнокислых растворов отработавшего ядерного топлива (ОЯТ) с помощью разбавленного ТБФ (преимущественно 30%-ного ТБФ в парафиновом разбавителе) и позволяла использовать ее для сравнительно близких концентраций ТБФ (15-40% ТБФ), но не была ориентирована на более высокие концентрации экстрагента.

Упомянутая модель не охватывала экстракцию трехвалентных актинидов и продуктов деления, поскольку их экстрагируемость в 30%-ный ТБФ сравнительно невелика, а основной массив данных по их межфазному распределению относится к областям гидрометаллургической переработки руд в присутствии высаливателей с применением растворов ТБФ высокой концентрации вплоть до 100%-ного ТБФ.

Для адекватного моделирования в области высоких концентраций ТБФ нами был изменен подход в том плане, что за базовое состояние был принят 100%-ный ТБФ с его разбавлением по аналогии с разбавлением азеотропа HNO₃ в работе [3]. Такой подход тем более логичен, что в перспективе позволит описывать влияние на экстракцию различных по природе разбавителей как разбавление одного и того же вещества (ТБФ) в виде расходящихся лучей [4] от точки, соответствующей чистому веществу. Это позволит в перспективе описывать на единой основе влияние различных разбавителей на экстракцию элементов разбавленным ТБФ, что ранее было сделано лишь в рамках модели «прямого счета» А. М. Розена [5], созданную в свое время в условиях ограниченных вычислительных ресурсов. Их возросшие возможности позволили нам предложить модель экстракции компонентов ОЯТ и азотной кислоты, базирующуюся на представлении о множестве параллельно протекающих реакций [1], но применительно к разбавленному ТБФ.

В данной работе описываются эффекты высаливания и самовысаливания при экстракции РЗЭ из слабокислых водных растворов в 100%-ный ТБФ и при его разбавлении. В дальнейшем предполагается использовать такой унифицированный мультиреакционный подход для описания подобных равновесий в других системах.

Рис. 1. Изотермы экстракции нитратов цериевых (*a*, *в*) и иттриевых (*б*) РЗЭ в 100%-ный ТБФ (*a*, *б*) и в 50%-ный ТБФ с С13 (*в*), а также значения параметров уравнений в табл. 1 для каждого элемента (*г*). Здесь и далее: *линии* – расчет, *точки* – экспериментальные (литературные) данные.

Литературные базы данных приводятся по ходу изложения материала. Учитывая возможный гидролиз катионов РЗЭ в нейтральных растворах, обрабатывали данные в области рН не выше 2, где по литературным данным гидролиз катионов пренебрежимо мал.

Разработка унифицированной модели

Проведенные оптимизационные расчеты показали, что существенной переработки ранее предложенной модели и метода расчета констант уравнений экстракционного равновесия [1] не потребовалось. Однако оказалось необходимым учесть относительное изменение общей концентрации ТБФ $(C_{\text{ТВР}}^*/C_{\text{ТВР}})$ при экстракции, рассчитывая его с использованием мольных объемов компонентов органической фазы по уравнению 1.7 из работы [1]

$$C^{*}_{\text{TBP}}/C_{\text{TBP}} = (C_{\text{TBP}}V_{\text{TBP}} + C_{\text{pas6}}V_{\text{pas6}})/(C_{\text{TBP}}V_{\text{TBP}} + C_{\text{pas6}}V_{\text{pas6}} + Y_{\text{H}_{2}\text{O}}V_{\text{H}_{2}\text{O}} + Y_{\text{H}_{2}}V_{\text{H}_{2}}V_{\text{L}_{1}}),$$

где *Y* – концентрация компонента в органической фазе; *V* – мольные объемы, мл/моль: ТБФ – 274, парафиновый разбавитель C13 – 228, H₂O – 18, HNO₃ – 42. В случае экстракции РЗЭ мольный объ-

ем их нитратов был приближенно принят равным 60 мл/моль.

Экстракция нитратов индивидуальных РЗЭ из их слабокислых растворов

Основой для разработки модели послужили литературные данные [6-8]. На рис. 1 приведены изотермы экстракции нитратов индивидуальных РЗЭ из их водных растворов, подкисленных до рН 2, для которых имеется достаточно данных по экстракции растворами 50 и 100 об% ТБФ. Для наглядности и сопоставимости изотермы экстракции представлены как функции от концентрации нитрат-иона в водном растворе, которая в данном случае представляет собой утроенную концентрацию РЗЭ. Литературные экспериментальные данные нанесены на рисунок точками, а линиями – результаты расчетов по разработанной модели. При промежуточных и более низких концентрациях ТБФ достоверные данные отсутствуют. Наибольший объем информации относится к европию, который занимает среднее положение в ряду РЗЭ. К сожалению, такие данные, как правило, не охватывают область высококонцентрированных растворов [>1.5 моль/л Ln(NO₃)₃].

Таблица 1. Систематизированные уравнения математической модели экстракции трехвалентных РЗЭ в ТБФ и при его разбавлении парафинами. Параметр *a* отражает влияние общей концентрации ТБФ, параметр *b* – влияние температуры на константы равновесий

Уравнение ^а	Параметр	Значение для РЗЭ																
		La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu	Y	a
1.7	V _{Ln}	~60 мл/моль																
1.8	<i>n</i> _{Ln, 1.8}	6	9	9	9	9	12	16	16	16	16	16	16	16	16	16	16	
4.1	$K_{4.1} \cdot 10^3$	0.20	0.88	1.5	3.1	4.45	6.0	5.7	5.7	5.7	5.05	4.0	3.2	2.7	1.6	1.0	2.9	-0.48
	$b_{4.1}$	1.7	2	1.7	1.7	_	1.7	1.7	1.6	1.5	1.5	1.4	1.3	1.3	1.3	1.2	2.2	
4.2	$K_{4.2} \cdot 10^3$	1.1	2.0	3.5	3.6	2.0	0.5	0.1										-0.57
	$b_{4.2}$	2.2	3.5	3.6	3.2													
4.3	$K_{4.3} \cdot 10^3$	5.0	4.9	4.7	4.6	4.5	4.2	4.0	4.0	4.0	3.6	3.3	2.5	2.1	1.3	1.0	1.4	-3.3
	$b_{4.3}$	3.2	3	2.3	1.8	_	1.2	1.1	1.0	0.8	0.7	0.5	0.6	0.5	0.5	0.4	1.9	
4.4	$K_{4.4} \cdot 10^4$	- 0.8 1.0 1.2 - 5.3 4.0 3.7 Нет данных									2							
4.1 4.2 4.3 4.4	$\begin{array}{c} & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & &$	1.7 1.1 2.2 5.0 3.2 -	2 2.0 3.5 4.9 3 0.8	1.73.53.64.72.31.0	1.7 3.6 3.2 4.6 1.8 1.2	2.0 4.5 	1.7 0.5 4.2 1.2 5.3	1.7 0.1 4.0 1.1 4.0	1.6 4.0 1.0 3.7	1.5 4.0 0.8	1.5 3.6 0.7	1.4 3.3 0.5 He	1.3 2.5 0.6 ет дан	1.3 2.1 0.5 нных	1.3 1.3 0.5	1.2 1.0 0.4	2.2 1.4 1.9	(`

^a Уравнения: $1.7 - C_{\text{ТВР}}^*/C_{\text{ТВР}} = (C_{\text{ТВР}}V_{\text{ТВР}} + C_{\text{разб}}/_{\text{разб}})/(C_{\text{ТВР}}V_{\text{ТВР}} + C_{\text{разб}}V_{\text{раз6}} + Y_{\text{H}_2\text{O}}V_{\text{H}_2\text{O}} + Y_{\text{H}}V_{\text{H}} + Y_{\text{Ln}}V_{\text{Ln}}), 1.8 - X_{\text{H}_2\text{O}}^* = (1/M_{\text{H}_2\text{O}})(1000\rho - \sum X_i M_i - X_{\text{H}M}) - \sum n_i X_i (M_i - \text{молярная масса, г/моль; } X_i - \text{концентрация, моль/л}), 4.1 - Me_{(aq)}^{3+} + 3NO_{(aq)}^{3} + 3TBP_{(s)} = Me(NO_3)_3(\text{TBP})_{3(s)}, 4.2 - Me_{(aq)}^{3+} + 3NO_{(aq)}^{3} + 4TBP_{(s)} = Me(NO_3)_3 (TBP)_{4(s)}, 4.3 - Me_{(aq)}^{3+} + 3NO_{(aq)}^{3} + m_2O \cdot \text{TBP}_{(s)} = Me(NO_3)_3(H_2O \cdot \text{TBP})_{m(s)}, 4.4 - Ln_{(aq)}^{3+} + Ln_{(aq)}^{3+} + 6NO_{(aq)}^{3} + 3TBP_{(s)} + 1.5H_2O = [Ln_{\Sigma}(NO_3)_2(\text{TBP})_3(H_2O)_{1.5}][Ln_i(NO_3)_4]_{(s)}.$ Индекс (s) указывает на органическую фазу.

При описании экстракции индивидуальных РЗЭ приходится принимать во внимание не только классическое взаимодействие с образованием трисольвата нитрата РЗЭ, описываемое уравнением 4.1 (табл. 1), но и образование тетрасольвата (уравнение 4.2), роль которого снижается по мере роста атомного номера РЗЭ. Возможно, в этом взаимодействии участвует вода. Вклад реакции 4.3 с участием воды как растворителя заметен только при низкой концентрации металла и не превышает 10%. Последнее обусловлено низкими коэффициентами распределения РЗЭ, выходящими за пределы области достоверных значений. Существенную роль играет также связывание воды ионами РЗЭ в водной фазе. ранее введенное нами для высаливателей (уравнение 1.8); при этом эффективное число молекул воды (n), координируемое ионом металла, существенно выше, чем в кристаллогидрате. Значения плотности водной фазы (р) рассчитывали также с учетом мольных объемов растворенных компонентов [9]. Значения констант равновесий и параметров нестехиометрических взаимодействий представлены в сводной табл. 1 и на рис. 1, г, а примеры изменения их вклада для нитратов Се и Еи с ростом концентрации элементов – на рис. 2. На нем видно, что для Ce(NO₃)₃ характерна форма тетрасольвата, а трисольват и гидратосольват существуют по краям области насыщения, тогда как для Eu(NO₃)₃ во всем диапазоне преобладает трисольват.

При разбавлении ТБФ за точку отсчета принимаются значения констант или параметров равновесия для 100%-ного ТБФ, а экстракцию при его более низких молярных концентрациях рассчитывали через его разбавление по уравнению $\lg K = \lg K_{100} - a \lg (C_{\text{ТВР}}/C_{100})$, где $\lg K_{100}$ – константа экстракции для 100%-ного ТБФ ($C_{100} = 3.65$ моль/л – концентрация чистого ТБФ), $\lg K$ – константа экстракции при

концентрации ТБФ $C_{\text{ТВР}}$, а параметр *a* отражает угол наклона зависимости логарифма константы от логарифма относительной концентрации ТБФ (рис. 3), причем значения *a* совпадали для всех РЗЭ, для которых имелись соответствующие данные. Это делает модель потенциально пригодной для описания влияния различных разбавителей через параметр *a* в привязке к константе каждого базового уравнения

Рис. 2. Вклад различных реакций при экстракции нитратов Ce (*a*) и Eu (δ) в 100%-ный ТБФ из их водных растворов различной концентрации.

Ссылка	Номер	Высали-	Доля элемента в концентрате, мас%														
	концентрата	ватель	La	Ce	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu	Y
[11]	См. рис. 9, 10 в [11]	_	20	40	8.8	30	0.85	-	0.35								
	См. рис. 11 в [11]	—	26	52.7	3	15	1.7	_	1.0	_	0.4	-	0.2				
[12, 13]	1	—					10	1	14.4	2.6	18.6	6	31				16.4
	2	_					17	1.8	21.8	4.6	31.7	7.6	15.4				0.1
	3	_					6.66	2.43	9.35	1.82	11.6	2.17	6.32	0.24	0.45	0.35	58.6
	5	_											10.8	0.72	5.43	0.63	82.5
[18]	_	NH ₄ NO ₃	28	52	5	13	1	0.5	0.3								0.2

Таблица 2. Составы концентратов РЗЭ

равновесия. По смыслу он подобен коэффициенту активности сольвата металла [10], если принять чистый экстрагент за своего рода стандартное состояние, несмотря на его пребывание в виде жидкости, с тем отличием, что эффект смешения сухих экстрагента и разбавителя не принимается во внимание, что значительно упрощает расчеты.

Экстракция нитратов РЗЭ из их концентратов

Более сложным случаем является экстракция РЗЭ при их совместном присутствии в виде концентратов, составы которых приведены в табл. 2. Имеется три группы таких данных [11-13], первая из которых касается в основном цериевых земель, а вторые две – иттриевых. Обработка этих данных приведена на рис. 4 и 5. Совместное распределение РЗЭ хорошо описывается приведенными выше уравнениями и их константами для индивидуальных РЗЭ при их сопоставимых концентрациях. Однако, когда элементы на стыке цериевой и иттриевой подгрупп оказываются в роли микрокомпонентов [11], а в концентрате лантан и церий составляют более 50% (табл. 2), извлечение микрокомпонентов в области концентраций, соответствующей максимальным значениям коэффициента распределения, оказывается заметно выше прогноза (рис. 4, в), что указывает, по-видимому, на соэкстракцию РЗЭ середины ряда и иттриевых РЗЭ (Ln_(i)) с трисольватом цериевых РЗЭ (Ln_(Σ)) в виде ионной пары с включением воды (табл. 1, уравнение 4.4). Этот эффект

Рис. 3. Зависимость констант уравнений экстракции Eu от концентрации ТБФ.

Рис. 4. Зависимость коэффициентов распределения РЗЭ цериевой подгруппы от их суммарной концентрации в водной фазе при их экстракции в 100%-ный (a, s) и 70%-ный (δ) ТБФ [11] при учете соэкстракции лантанидов (a, δ) и без ее учета (s).

Рис. 5. Зависимость коэффициентов распределения РЗЭ иттриевой подгруппы от их суммарной концентрации в водной фазе [11, 12]. Номер концентрата: *a* – 1, *b* – 2, *b* – 3, *c* – 4.

требует уточнения с проведением тщательных дополнительных исследований с парами индивидуальных веществ для определения констант взаимодействий каждой пары. Для упрощения модели в данной работе рассчитаны значения $K_{4,4}$ для соэкстракции индивидуальных РЗЭ с суммой остальных более легких РЗЭ из водного раствора.

Экстракция РЗЭ из растворов высаливателей

Влияние высаливателей на экстракцию РЗЭ в ТБФ в чистом виде можно изучать только в области их микроконцентраций, не вызывающих самовысаливания. Граница этой области, по данным работы [14], при экстракции нитратов лантана, гадолиния и гольмия в 20-, 40- и 60%-ный ТБФ из раствора 4 моль/л LiNO₃ приходится на диапазон их концентраций 0.005–0.05 моль/л (рис. 6) в соответствии с общей тенденцией изменения коэффициента распределения, который проходит через максимум при 0.0005–0.001 моль/л РЗЭ. Такой характер зависимости может быть связан с образованием плохо экстрагируемых полиядерных гидроксокомплексов с повышением концентрации РЗЭ. Пока надо принять во внимание, что область достоверных коэффициентов распределения РЗЭ в присутствии высаливателей начинается с 0.002 моль/л Ln, тогда как при более низких концентрациях при указании микроконцентраций результат становится неопределенным.

Совместное действие неэкстрагируемого нитрата высаливателя при наличии самовысаливания макроколичеств РЗЭ выборочно отражено на рис. 7, *а-с* [15–17]. В этих расчетах следует ориентироваться на суммарную концентрацию нитрат-иона в водной фазе и на способность высаливателей связывать в ней воду, повышая тем самым кажущуюся концентрацию экстрагируемого элемента (уравнение 4.6, табл. 1 и 3). Наибольшее влияние оказывает трехзарядный нитрат алюминия, который связывает более 6 молекул воды на 1 моль соли, тогда как однозарядные катионы связывают по 1 молекуле воды. Эти выводы не могут быть подтверждены для других концентраций ТБФ, поскольку такие данные практически отсутствуют.

Особое внимание следует уделить экстракции РЗЭ при высаливании их нитратом лития, поскольку в этом случае, по-видимому, имеет место кажущаяся сверхстехиометрическая экстракция РЗЭ (соотношение ТБФ : Ln в органической фазе оказы-

Рис. 6. Влияние малых концентраций La (*a*), Gd (*б*) и Ho (*в*) в водной фазе на их экстракцию в 20-, 40- и 60%-ный ТБФ [14] из 4 моль/л LiNO₃. *Цифрами* обозначена концентрация ТБФ в органической фазе, моль/л.

Рис. 7. Зависимости коэффициентов распределения макроконцентраций Eu (a, e), Tm (δ) и Nd (s) от суммарной концентрация нитрат-иона при их экстракции 100%-ным ТБФ в присутствии нитратов аммония (a, δ), натрия (s) и алюминия (e).

вается меньше 3, табл. 4). Указанный эффект усиливается с уменьшением радиуса иона РЗЭ и со снижением общей концентрации ТБФ. Так, при экстракции иттрия в 20%-ный ТБФ из 5.4 моль/л LiNO₃ с полным насыщением экстракта иттрием отношение ТБФ : $Y \approx 1$. Вероятно, такая картина может быть обусловлена преобладанием в экстракте комплексной соли РЗЭ с литием [11] типа Li[Y(NO₃)4· (ТВР)], аналогичной известной комплексной кислоте $H_x[Ln(NO_3)_{3+x}(TBP)_n]$ [18, 19]. При этом авторы работы [11] предполагали, что n = 3, как и в нейтральном сольвате. На наш взгляд, n = 1, а значение x зависит от концентрации катиона высаливателя, в частности H^+ или Li^+ . При этом со снижением концентрации ТБФ достаточно круто падает концентрация экстрагированной воды, что резко снижает

Вариант уравнения	Высаливатель	<i>n</i> _{Me,1.8}
1.81	LiNO ₃	2.1
1.82	NH ₄ NO ₃	0.8
1.83	NaNO ₃	1.0
1.84	$Mg(NO_3)_2$	_
1.85	$Ca(NO_3)_2$	1.5
1.86	Al(NO ₃) ₃	2.0
1.87	Fe(NO ₃) ₃	2.1

Таблица 3. Параметры гидратации и экстракции высаливателей на 1 моль/л нитрат-иона в уравнениях 1.8

коэффициент распределения нитрата лития, который, вероятно, экстрагируется в виде гидратосольватов [20, 21] (рис. 8).

В свою очередь, снижение экстрагируемости нитрата лития при разбавлении ТБФ способствует переходу упомянутой выше комплексной соли РЗЭ и лития в экстракт из концентрированного раствора высаливателя в водной фазе, где имеет место сильное нитратное комплексообразование [18, 22].

«Сверхстехиометрическая» экстракция значительно слабее в случае цериевых РЗЭ, где она проявляется только в сильноразбавленном ТБФ, тогда как в чистом ТБФ и при относительно небольшом его разбавлении D_{Ce} заметно ниже расчетного для аналогичной системы с нитратом алюминия, характеризуемой примерной равным кажущимся коэффициентом гидратации. Известно, что нитратное комплексообразование у цериевых РЗЭ является более слабым в сравнении с иттриевыми РЗЭ, и поэтому сдвиг в сторону экстракции комплексного аниона является для них менее выраженным [19]. К сожалению, количественно эти эффекты не могут быть описаны моделью в настоящее время ввиду ограниченности экспериментальных данных.

Экстракция нитратов РЗЭ из их концентратов в присутствии высаливателей

В работе [23] приводится математическое описание экспериментальных данных, полученных одним из авторов в дипломной работе, которая посвящена экстракции цериевых РЗЭ из соликамского концен-

Рис. 8. Экстракция высаливателей в 100%-ный ТБФ в отсутствие РЗЭ.

Рис. 9. Зависимости коэффициентов распределения РЗЭ цериевой и переходной подгрупп в 100%-ный ТБФ от их суммарной концентрации в равновесной водной фазе в присутствии снижающегося количества нитрата аммония [23].

трата в 100%-ный ТБФ (табл. 2). Высаливателем являлся нитрат аммония, причем его концентрация понижалась с ростом суммарной молярной концентрации РЗЭ. Результат обработки этих данных с использованием вышеуказанных уравнений вполне удовлетворителен, что отражено на рис. 9. Данные для более сильных высаливателей [11] носят отрывочный характер и не могут быть однозначно интерпретированы.

Таблица 4. Сопоставление расчетных и экспериментальных данных при экстракции нитратов Y и Ce(III) (М) в ТБФ (разбавитель – бензол) на фоне 5.4 моль/л LiNO₃

	C_{TBP}	r	Эксперимен	Т	Pac	чет	Максимальная	TBP/M _(o)		
Μ	общая,	<i>C</i> _M в фазе, моль/л			$C_{\mathrm{M(o)}},$	מ	концентрация	экспери-	noouer	
	моль/л	(B)	(0)	D	моль/л	D	$[M(NO_3)_3(TBP)_3]$	мент	packet	
	3.65	1.19	1.31	1.10	1.17	0.98	1.17	2.68	3.01	
Y	2.56	1.19	0.85	0.92	0.81	0.68	0.82	2.89	3.03	
	1.83	1.17	0.87	0.74	0.57	0.49	0.58	2.02	3.07	
	0.73	1.22	0.65	0.54	0.22	0.18	0.23	1.07	3.15	
	3.65	0.88	0.72	0.81	1.05	1.19	1.17	4.90	3.34	
Ce	2.56	0.88	0.56	0.64	0.72	0.82	0.82	4.37	3.40	
	1.83	0.88	0.48	0.55	0.51	0.58	0.58	3.65	3.47	
	0.91	0.87	0.35	0.40	0.24	0.28	0.29	2.51	3.66	

Рис. 10. Изотермы экстракции нитрата лантана при различной температуре (*a*) [24], влияние температуры на константы равновесий реакций 4.1–4.3 (δ) при экстракции в 100%-ный ТБФ, а также расчетное распределение экстрагированных форм от насыщения экстракта (*e*) при 80°С.

Влияние температуры на экстракцию РЗЭ из слабокислых растворов

Из данных, приведенных на рис. 10 [24], следует, что экстрагируемость лантана в ТБФ заметно падает с ростом температуры, причем эффект снижается с ростом концентрации элемента (рис. 10, *a*). Температурные зависимости логарифмов констант уравнений 4.1–4.3 (рис. 10, δ) удовлетворительно описываются уравнением [2]

$$\lg K(t) = \lg K_{20}[1 + b(t - 20)/(273 + t)].$$

При этом с ростом температуры медленно снижается плотность органической фазы и соответственно

Рис. 11. Изотермы экстракции нитрата неодима при различной температуре (*a*) [17] и влияние температуры на константы равновесий реакций 4.1–4.3 (δ) при экстракции в 100%-ный ТБФ в присутствии нитратов натрия или алюминия. На *a* через запятую указаны концентрация NaNO₃ (моль/л) и температура (°C).

молярная концентрация ТБФ, однако емкость экстрагента по лантану остается неизменной вследствие снижения роли экстракции в форме тетрасольвата (уравнение 4.2) при возрастании роли трисольвата (уравнение 4.1) (рис. 10, δ).

В присутствии высаливателей (нитраты натрия и алюминия) [16, 17] характер температурных зависимостей при экстракции цериевых РЗЭ не изменяется (рис. 11).

Для иттриевых РЗЭ прямые экспериментальные данные приведены для гольмия (рис. 12). Однако для остальных они могут быть восстановлены с использованием так называемых термодинамических констант образования трисольвата РЗЭ при разных температурах, приведенных в работах [16, 17].

Обработка всех данных показывает (рис. 13), что значения коэффициента *b* для констант уравнения 4.1 линейно снижаются от значения 1.9 до 1.3. Уравнение 4.2, как указывалось выше, вырождается для иттриевых РЗЭ. Для цериевых РЗЭ значения коэффициентов *b* для уравнения 4.2 лежат в интервале 2.2–3.5, проходя через максимум. Для констант уравнения 4.3 это значение нелинейно падает с атомным номером РЗЭ в интервале 3.2–0.5 (рис. 13).

Рис. 12. Изотермы экстракции нитрата гольмия при различной температуре (*a*) [16], а также влияние температуры на константы равновесий уравнений 4.1 и 4.3 (δ) при экстракции в 100%-ный ТБФ в присутствии нитрата алюминия. На *a* через запятую указаны концентрация Al(NO₃)₃ (моль/л) и температура (°C).

Рис. 13. Изменение температурного коэффициента *b* для уравнений 4.1–4.3 по ряду РЗЭ.

Для реакции 4.4 (соэкстракция иттриевых и цериевых РЗЭ) отсутствует база данных при различных температурах. Итоговые результаты отражены в сводной табл. 1.

Заключение

На примере РЗЭ предложена и применена к широкому массиву экспериментальных данных унифицированная математическая модель экстракции в ТБФ и растворы, полученные его разбавлением. Модель базируется на представлениях о параллельном протекании большого числа равновесных взаимодействий одного компонента в водной и органической фазах, причем эти взаимодействия связаны уравнениями материального баланса по каждому компоненту системы. В данной работе это описание ограничено слабокислыми растворами нитратов чистых РЗЭ и их смесей, а также присутствием нейтральных нитратных солей в качестве высаливателей.

Показано, что экстракция макроконцентраций РЗЭ (выше 0.005 моль/л) в слабокислой среде при любой концентрации ТБФ описывается системой из трех уравнений параллельно протекающих экстракционных взаимодействий с образованием трисольвата, тетрасольвата и гидратосольвата (уравнения 4.1, 4.2 и 4.3 соответственно) при учете кажущейся гидратации РЗЭ и высаливателей в водной фазе с помощью параметра уравнения 1.8. Уравнения применимы в присутствии различных высаливателей (в частности, нитратов аммония, натрия, кальция и алюминия), за исключением нитрата лития, где возможно образование солевых форм ацидокомплексов (ионных пар) в обеих фазах. Преобладающим взаимодействием, характерным для всех РЗЭ, является образование трисольвата и гидратосольвата, тогда как образование тетрасольвата заметно проявляется лишь у первых РЗЭ цериевой подгруппы.

Одновременно с ростом номера элемента возрастает склонность к экстракции в виде анионного комплекса, что проявляется в случае соэкстракции иттриевых РЗЭ с превосходящим количеством цериевых РЗЭ (уравнение 4.4) и соэкстракции РЗЭ в различной мере с нитратом лития. Этот эффект подлежит прямой экспериментальной проверке с отдельными парами РЗЭ. Вместе с тем, эффект экстракции РЗЭ в виде анионного комплекса не доходит до их димеризации в экстракте или соэкстракции с другими нейтральными высаливателями.

Разбавление ТБФ парафинами (в принципе, любым разбавителем) описывается показателем *а* зависимости логарифма константы реакции от логарифма относительной концентрации ТБФ.

Температурная зависимость констант равновесия описывается обычным уравнением для каждой реакции и каждого элемента с помощью параметра *b*, значение которого для базовой реакции 4.1 (образование трисольвата РЗЭ) медленно снижается по ряду РЗЭ. Для уравнения 4.2 кривая ограничивается фактически четырьмя элементами (La–Nd) и характеризуется наличием максимума (как и для самой константы), но далее вырождается сама реакция 4.2. Применительно к уравнению 4.3 соответствующая кривая имеет монотонно падающий характер, обусловленный, по-видимому, относительным ростом роли экстракции РЗЭ в виде гидратосольвата с повышением температуры.

Зависимости коэффициентов распределения всех РЗЭ от концентрации нитрат-иона (рис. 1) имеют максимум при 2–3 моль/л NO₃, однако взаимное расположение и вид этих зависимостей для последовательного ряда РЗЭ заметно отличаются от привычного вида таковых при экстракции микроконцентраций РЗЭ из растворов HNO₃. Последние имеют максимум и минимум для РЗЭ цериевой группы, тогда как для РЗЭ иттриевой группы экстремумы сглаживаются и зависимость превращается в монотонно возрастающую. При этом кривые для почти всех цериевых РЗЭ (начиная с празеодима) и для все иттриевых РЗЭ пересекаются примерно в той же области 2–3 моль/л NO₃.

Суммарная погрешность расчета коэффициентов распределения ≤10%.

Описание экстракции микроконцентраций РЗЭ и ряда трансурановых элементов, заметно экстрагируемых трибутилфосфатом, в том числе в присутствии HNO₃ и ее смешанных растворов с солевыми высаливателями, будет дано в следующем сообщении.

В дальнейшем планируется опробовать данный подход к моделированию для описания экстракции других компонентов растворов отработавшего ядерного топлива и ряда других редких металлов, а также ряда веществ, вовлекаемых в технологические процессы их извлечения и разделения.

Список литературы

- [1] Puzikov E. A., Zilberman B. Ya., Fedorov Yu. S. et al. // Solvent Extr. Ion Exch. 2015. Vol. 33, N 4. P. 362–384.
- [2] Пузиков Е. А., Зильберман Б. Я., Федоров Ю. С. и др. // Радиохимия. 2015. Т. 57, N 2. С. 119–123.
- [3] Зильберман Б. Я., Рябков Д. В., Пузиков Е. А. и др. // Радиохимия. 2016. Т. 58, N 3. С. 206–210.
- [4] Федоров Ю. С., Зильберман Б. Я., Поверкова Л. Я. // Радиохимия. 2000. Т. 42, N 5. С. 417–422.

- [5] Кудинов А. С., Пузиков Е. А., Блажева И. В. и др. // Радиохимия. 2017. Т. 59, N 2. С. 127–134.
- [6] Пяртман А. К., Копырин А. А. // Радиохимия. 1997. Т. 39, N 2. C. 149–154.
- [7] Кудрова А. В. Фазовые равновесия в системах нитраты редкоземельных металлов(III)-вода-три-н-бутилфосфатразбавители (экстрагенты) различных классов: Дис. ... к.х.н. СПб.: СПбГТИ(ТУ), 2004. 211 с.
- [8] Bednarczyk L., Siekierski S. // Solvent Extr. Ion Exch. 1989. Vol. 7, N 2. P. 273–287.
- [9] Dash D., Kumar Sh., Mallika C., Mudali U. K. // J. Solution Chem. 2015. Vol. 44, N 9. P. 1812–1832.
- [10] Пушленков М. Ф., Шувалов О. Н. // Радиохимия. 1963. Т. 5, N 5. С. 536–543.
- [11] Корпусов Г. В., Ескевич И. В., Патрушева Е. Н. и др. // Экстракция. Теория. Применение. Аппаратура / Под ред. А. П. Зефирова. М., 1962. Вып. П. С. 117–140.
- [12] Пяртман А. К., Копырин А. А., Кескинов В. А., Солодухин С. С. // Радиохимия. 1992. Т. 34, N 6. С. 39–47.
- [13] Пяртман А. К., Копырин А. А., Кескинов В. А., Солодухин С. С. // Радиохимия. 1992. Т. 34, N 6. С. 48–55.
- [14] Прояев В. В., Копырин А. А., Бурцев И. В. и др. // Радиохимия. 1987. Т. 29, N 6. С. 763–767.
- [15] Пяртман А. К., Копырин А. А., Солодухин С. С. и др. Деп. ВИНИТИ N 1116-В91. 1990. 46 с.
- [16] Пяртман А. К., Копырин А. А., Шувалов А. Н. Математическое и термодинамическое описание фазовых равновесий в экстракционных системах, содержащих нитраты редкоземельных металлов(III) и иттрия(III), нитрат алюминия(III) и три-н.-бутилфосфат: Учеб. пособие. СПб.: СПбГТИ, 2001. 36 с.
- [17] Пяртман А. К., Копырин А. А., Кескинов В. А., Шувалов А. Н. Деп. ВИНИТИ N 3611-B98. 1998. 36 с.
- [18] Шека З. А., Крисс Е. Е., Сенявская Э. И. // Редкоземельные элементы / Под ред. Д. И. Рябчикова. М.: Наука, 1963. С. 240–245.
- [19] Михлин Е. Б., Корпусов Г. В. // ЖНХ. 1967. Т. 12, N 6. С. 1633–1637.
- [20] McKay H. A. C., Healy T. V. // Progress in Nuclear Energy. Ser. III: Process Chemistry. London: Pergamon, 1958. Vol. 2. P. 546–556.
- [21] Тебелев А. Г., Мелкая Р. Ф. // Радиохимия. 1976. Т. 18, N 6. C. 864–869.
- [22] Шмидт О. В., Зильберман Б. Я., Фёдоров Ю. С. и др. // Радиохимия. 2002. Т. 44, N 5. С. 428–433.
- [23] Родыгина Л. С., Афонин М. А. // Тез. докл. V научнотехнической конф. «Неделя науки-2015» (25–27 марта 2015 г.) СПб.: СПбГТИ(ТУ), 2015. с. 185.
- [24] Михлин Е. Б., Михайличенко А. И., Вдовина Л. В. // Радиохимия. 1981. Т. 23, N 3. С. 347–353.