Радиационное разложение воды на поверхности ВеО

© С. Р. Гаджиева", Э. М. Кадырова*", Н. К. Рамазанова", Я. Д. Джафаров⁶ М. Я. Аббасов"

^а Бакинский государственный университет, AZ1148, Баку, ул. Акад. 3. Халилова, д. 23; * e-mail: elmina2010@mail.ru

^б Институт радиационных проблем НАН Азербайджана, АZ1143, Баку, ул. Б. Вагабзаде, д. 9

^в Институт катализа и неорганической химии им. акад. М. Ф. Нагиева НАН Азербайджана,

АZ1143, Баку, пр. Г. Джавида, д. 29

Получена 18.06.2018, после доработки 12.07.2018, принята к публикации 24.07.2018 УДК 541.15:541.183:539.104

Методом Фурье ИК спектроскопии изучено радиационное разложение воды в системе BeO-адсорбированная H_2O при комнатной температуре (T = 300 K) и при различных временах воздействия γ -квантов. Показано, что адсорбция воды в BeO происходит по молекулярному и диссоциативному механизмам. Зарегистрированы промежуточные активные продукты радиационно-гетерогенного разложения воды: гидриды бериллия и гидроксильные группы. Показано, что наиболее высокое значение радиационно-химического выхода молекулярного водорода $G(H_2)$ наблюдается при размере частиц BeO $d \le 4$ мкм.

Ключевые слова: радиационное разложение, вода, ВеО, водород.

DOI: 10.1134/S0033831119040117

На основе исследований радиационного разложения (радиолиза) воды с участием ряда дисперсных оксидов металлов под воздействием у-излучения установлено, что применение порошковых оксидов в качестве катализаторов (ZrO₂, SiO₂, TiO₂, Al₂O₃), значительно увеличивает скорость накопления молекулярного водорода [1-4]. При этом резко возрастает радиационно-химический выход водорода по сравнению с выходом гомогенных процессов разложения воды [5]. Среди этих оксидов наиболее интересным и перспективным представляется оксид бериллия (BeO), так как он является селективным катализатором радиационно-гетерогенных процессов [6]. Для выявления механизма радиационно-каталитического действия оксидных катализаторов в процессах радиолиза воды применялись различные, в том числе спектроскопические, методы. В частности, методом ИК спектроскопии изучено изменение гидроксильного покрова поверхности ВеО, инициированной у-радиацией [6]. Рассмотрен вопрос размерного эффекта в процессе радиолиза воды в системе ВеО-адсорбированная вода на основе данных ЭПР-исследований [4]. Фактически отсутствуют ИК спектроскопическая информации о влиянии дисперсности ВеО на разложение воды в системе ВеО-адсорбированная вода под действием у-радиации.

В настоящей работе представлены результаты Фурье ИК спектроскопических исследований радиационного разложения воды в гетерогенной системе ВеО–адсорбированная вода при комнатной температуре (T = 300 K) и воздействии γ -квантов с целью выявления влияния дисперсности ВеО на радиолиз H₂O.

Экспериментальная часть

Использовали порошки BeO с размером частиц d < 4, 4-32, 32-53, 53-75 и 75-106 мкм. Перед адсорбцией образцы BeO подвергали термовакуумной обработке при T = 673 К и давлении $P = 10^{-3}$ Па в

течение 4 ч для очистки от органических загрязнений и дегидроксилирования поверхности. Чистоту поверхности контролировали по интенсивности полос в ИК спектрах, обусловленных водой и углеводородными загрязнениями.

Фурье ИК спектры поглощения регистрировали на FT-IR спектрометре Varian 640 IR в диапазоне частот v = 4000-400 см⁻¹ при комнатной температуре. Для снятия спектров поглощения из порошков ВеО прессовали таблетки толщиной 50–100 мкм. ИК спектры образцов снимали в специальной кварцевой ячейке с окнами из CaF₂, позволяющими получить спектры адсорбированной воды, разлагаемой под действием γ -излучения. При перекрывании полос, относящихся к различным формам адсорбированной воды, суммарный контур разлагали на индивидуальные компоненты по методике [7].

Адсорбатом служила бидистиллированная вода, из которой посторонние газы удаляли многократным вымораживанием в ловушке с жидким азотом с последующей откачкой. Адсорбцию паров воды изучали по методике, описанной в работе [6].

Радиационное разложение воды в системе ВеО– адсорбированная вода проводили при температуре T = 300 К. Образцы облучали на изотопном источнике ⁶⁰Со с мощностью дозы $dD_{\gamma}/dt = 0.19$ Гр/с. Дозиметрию источника осуществляли дозиметром Фрике. Перерасчет поглощенной дозы облучения в исследуемых системах проводили сравнением электронных плотностей [8]. При этом время облучения составляло $\tau = 30$ –600 минут, а поглощенная доза облучения – $D_{\gamma} = 0.34$ –6.85 кГр.

Результаты и обсуждение

В качестве примера на рис. 1 приведены Фурье ИК спектры BeO (размеры частиц d < 4 мкм), исходного (спектр I) и после адсорбции воды (BeO–

Рис. 1. Фурье ИК спектры ВеО, обработанного при 673 К (1), и системы ВеО– H_2O до (2) и после воздействия γ -облучения в течение 30 (3), 150 (4) и 450 мин (5).

адсорбированная вода, спектр 2). Затем проводили γ -облучение системы BeO–адсорбированная вода в течение различного времени (спектры 3–5). Как видно из рис. 1 (спектр *I*), поверхность BeO, прошедшая термовакуумную обработку, чистая, так как в ней отсутствуют полосы поглощения (ПП), обусловленные наличием воды и углеводородных загрязнений.

В спектрах в области решеточных колебаний BeO ($v = 1200-400 \text{ см}^{-1}$) обнаруживаются полосы поглощения с максимумами при 1080, 950, 720 и 690 см⁻¹. Согласно работе [8], полосы при 1080 и 950 см⁻¹ относятся к валентному колебанию связи Be–O, а полосы при 720 и 690 см⁻¹ – к деформационному колебанию Be–O. При изучении процессов адсорбции и радиационного разложения воды сохранение положения ПП решеточных колебаний BeO и постоянство их интенсивностей – одно из основных критериев идентичности условий экспериментов.

В необлученной гетеросистеме после адсорбции воды на поверхности ВеО в области валентных колебаний групп ОН появляются ПП, что указывает на протекание молекулярной адсорбции (полосы с максимумами при 3238, 3300 и 3420 см⁻¹) и диссоциативной хемосорбции (сравнительно узкие полосы с максимумами при 3520 и 3488 см⁻¹) (рис. 1, спектр 2). Протекание двух видов адсорбции подтверждаются также появлением ПП в области деформационных колебаний ОН с максимумами при 1642 и 1634 см⁻¹.

Облучение гетеросистемы ВеО–адсорбированная вода γ -квантами при комнатной температуре (T = 300 K) приводит к радиационному разложению

воды и образованию промежуточных активных продуктов разложения. Среди этих продуктов наиболее интересными представляются поверхностные гидриды бериллия. Так, в спектре в области частот v = $1800-1600 \text{ см}^{-1}$ появляются ПП с максимумами при 1780 и 1740 см⁻¹. Эти полосы поглощения относятся к валентному колебанию Ве–Н и указывает на образование поверхностных гидридов бериллия, среди которых наиболее стабильной формой является ВеН₂ (v = 1740 см⁻¹). К сожалению, нам не удалось зарегистрировать ПП кислородсодержащих промежуточных активных продуктов [O_{2(адс)}, O_{2(адс)}² и др.], так как эти ПП перекрываются с полосами поглощения валентных колебаний Ве–О (v = 1100–900 см⁻¹).

На рис. 1 видны изменения в области валентных колебаний групп ОН, связанные с разложением воды в гетерогенной системе ВеО–адсорбированная вода. В Фурье ИК спектрах поглощения образцов ВеО с адсорбированной водой в области валентных колебаний групп ОН и воды ($v = 4000-3000 \text{ см}^{-1}$) наблюдаются полосы водородно-связанных групп с максимумами при 3520, 3488, 3440, 3420, 3330 см⁻¹, а также адсорбированных молекул воды при 3258 см⁻¹.

Радиационное разложение воды при комнатной температуре ($\tau = 30$ мин) сопровождается уменьшением интенсивности полосы молекулярной воды и образованием ряда ПП водородно-связанных групп ОН при 3300, 3400, 3450 и 3500 см⁻¹ (рис. 1, спектр 3). Появления в ИК спектрах оксидов нескольких полос, принадлежащих свободным гидроксильным группам поверхности, обусловлено различной функцией групп ОН (концевые, μ_2 - и μ_3 -мостиковые). Образование координационной связи понижает частоту валентного колебания ОН. Согласно рис. 1, в ИК спектре проявляются концевые и μ_3 -мостиковые группы ОН; μ_2 -мостиковые группы ОН в ИК спектре не проявляются [9].

С увеличением времени облучения τ от 30 до 450 мин (или же поглощенной дозы γ -облучения D_{γ} от 0.34 до 5.14 кГр) происходит полное разложение молекул воды и частичное разложение H-связанных групп OH с увеличением интенсивности полос изолированных групп OH ($\nu = 3720$ и 3630 см⁻¹) (спектр 5).

На рис. 2 показаны зависимости интенсивностей полос изолированных (3630 см⁻¹), водородно-связанных (3450 см⁻¹) групп ОН и адсорбированных молекул воды (3330 см⁻¹) от времени облучения при радиационном разложении воды в гетерогенной системе ВеО–адсорбированная вода ($d \le 4$ мкм).

Сравнивая эти зависимости, отметим следующее. Увеличение времени облучения τ от 30 до 480 мин приводит к антибатным изменениям количества во-

Рис. 2. Зависимости интенсивностей полос изолированных (1), водородно-связанных поверхностных групп ОН (2) и адсорбированных молекул воды (3) от времени облучения при радиационном разложении воды в гетерогенной системе BeO–H₂O (300 K, $dD_y/dt = 0.19$ Гр/с, $d \le 4$ мкм).

Рис. 3. Зависимость радиационно-химического выхода молекулярного водорода $G(H_2)$ от размера частиц BeO.

дородно-связанных и изолированных поверхностных групп ОН, т.е. разложение водородно-связанных групп ОН сопровождается накоплением изолированных групп ОН. При этом происходит пол-

Экспериментальные значения радиационно-химического выхода молекулярного водорода G_{экс}(H₂) в системе ВеО–адсорбированная вода зависимости от размера частиц ВеО

Размер частиц, мкм	<i>G</i> _{экс} (H ₂), молекул/100 эВ
<u>≤</u> 4	3.1
4-32	2.6
32–53	1.83
53-75	1.4
75-106	0.92

ное разложение адсорбированных молекул воды.

В таблице приведены экспериментально полученные значения радиационно-химических выходов молекулярного водорода $G(H_2)$ в зависимости от размера частиц BeO. Как видно из таблицы, наиболее высокое значение $G(H_2)$ в указанной системе наблюдается при значении размера микрочастиц BeO $d \le 4$ мкм, что связано с наибольшей активностью поверхностно-активных центров типа Be²⁺. Не исключается и определенная роль возбужденных состояний, в частности поверхностных мод (колебаний) (поляритонов), в передаче поглощенной энергии от BeO к молекулам H₂O.

На рис. 3 приведена зависимость радиационнохимического выхода молекулярного водорода $G(H_2)$ от размера частиц ВеО. Эта зависимость линейна. Увеличение размера частиц ВеО приблизительно на порядок (от 4 до 100 мкм) сопровождается увеличением $G(H_2)$ приблизительно в 3 раза, что обусловлено ростом удельной поверхности ВеО. На основе исследований радиолиза воды выявлено, что на поверхности нанопорошковых оксидов в качестве катализаторов (Al₂O₃, TiO₂, ZrO₂ и др.) значение $G(H_2)$ иногда увеличивается на порядок [10].

Список литературы

- [1] Seino S., Fujimoto R., Yamamoto T. A. // Mater. Res. Soc. Symp. Proc. 1999. Vol. 608. P. 505.
- [2] Seino S., Yamamoto T. A., Fujimoto R. // J. Nucl. Sci. Technol. 2001. Vol. 33, N 8. P. 633.
- [3] Гезалов Х. Б., Гарибов А. А., Касумов Р. Д. и др. // ХВЭ. 1989. Т. 23, N 5. С. 472.
- [4] Гаджиева Н. Н., Абдуллаева Х. И., Гарибов А. А. и др. // ХВЭ. 1996. Т. 30, N 3. С. 176.
- [5] Гарибов А. А., Гезалов Х. Б., Велибекова Г. З. // ХВЭ. 1987.
 Т. 27, N 6. С. 505.
- [6] Miyata H., Fujii K., Imii S., Kubakawa Y. // Appl. Spectrosc. 1986. Vol. 40, N 8. P. 1177.
- [7] Пикаев А. К. Дозиметрия в радиационной химии. М.: Наука, 1975. С. 136.
- [8] Давыдов А. А. ИК спектроскопия в химии поверхности оксидов. Наука, Сиб. отделение. 1984. С. 27–30.
- [9] Цыганенко А. А., Филимонов В. Н. // Успехи фотоники. Л.: Изд-во ЛГУ, 1974. Вып. 4. С. 51–54.
- [10] Гарибов А. А., Агаев Т. Н., Иманова Г. Т. и др. // ХВЭ. 2014. Т. 48, N 4. С. 281–286.