Состояние уранованадатов *d*-переходных элементов в гетерогенных водно-солевых системах

© О. В. Нипрук*^{*a*}, Н. Г. Черноруков^{*a*}, К. А. Чаплиёва^{*a*}, Г. Н. Черноруков^{*a*}, Р. В. Абражеев^{*a*}

^а Нижегородский государственный университет им. Н. И. Лобачевского, 603950, Нижний Новгород, пр. Гагарина, д. 23; *e-mail: nipruk@yandex.ru

Получена 17.10.2018, после доработки 10.01.2019, принята к печати 10.01.2019

УДК 546.791.6

Исследовано состояние уранованадатов состава $A^{II}(VUO_6)_2 \cdot nH_2O$ ($A^{II} = Mn$, Fe, Co, Ni, Cu, Zn, Cd) в водных растворах в широком интервале кислотности среды. Установлены кислотно-основные интервалы существования соединений в водных растворах, идентифицированы продукты конверсии, определена растворимость $A^{II}(VUO_6)_2 \cdot nH_2O$. На основании полученных данных вычислены произведения растворимости, функции Гиббса образования уранованадатов, рассчитаны кривые растворимости исследуемых соединений, построены диаграммы состояния U(VI) и V(V) в водных растворах и в равновесных твердых фазах.

Ключевые слова: уранованадаты, *d*-переходные элементы, растворимость, диаграммы состояния, конверсия.

DOI: 10.1134/S0033831119050022

Представленное сообщение является продолжением публикаций, посвященных исследованию минералоподобных соединений урана с общей формулой $A^{k}(UO_{2}An)_{k} \cdot nH_{2}O$, где A^{k} – элементы в степени окисления +1, +2, +3; An = VO_4^{3-} , As O_4^{3-} , PO $_4^{3-}$, HSiO₄³⁻, HGeO₄³⁻ [1-6]. Уранованадаты щелочных и щелочноземельных элементов A^k(VUO₆)_k·nH₂O широко распространены в природе [7, 8]. В лабораторных условиях получены их синтетические аналоги, функцию A^{k} в которых выполняют катионные формы *d*-переходных элементов [9]. Все известные уранованадаты имеют подобную слоистую структуру, что и обусловливает аналогичные свойства соединений рассматриваемого ряда. В состав уранованадатных слоев [VUO₆]_{2^{*m*}} входят пентагональные бипирамиды урана UO₇ и квадратные пирамиды ванадия VO₅. Отрицательно заряженные слои объединены в трехмерную кристаллическую решетку посредством гидратированных ионов \hat{A}^{k+} , которые определяют компоновку слоев в структуре исследуемых соединений и влияют на их химическую устойчивость.

Поскольку уранованадаты являются одной из основных форм практически значимых минеральных сырьевых форм урана и служат источником радиоактивного загрязнения окружающей среды, то их всестороннее исследование имеет не только важное научное, но и практическое значение [10]. Любое направление использования этих соединений затрагивает вопросы их состояния в водных растворах. В этой связи в данном сообщении представлены результаты исследования состояния уранованадатов с общей формулой $A^{II}(VUO_6)_2 \cdot nH_2O$ ($A^{II} = Mn$, Fe, Co, Ni, Cu, Zn, Cd) в водных растворах в широком интервале кислотности среды.

Экспериментальная часть

Синтез соединений $A^{II}(VUO_6)_2 \cdot nH_2O$. Уранованадаты *d*-переходных элементов состава $A^{II}(VUO_6)_2 \cdot nH_2O$ ($A^{II} = Mn$, Fe, Co, Ni, Cu, Zn, Cd) синтезировали путем взаимодействия кристаллического пированадата уранила (UO_2)₂ V_2O_7 с водным раствором нитрата соответствующего металла $A^{II}(NO_3)_2$ (или хлорида) в молярном соотношении 1 : 5 при pH ~3

$$(\mathrm{UO}_{2})_{2}\mathrm{V}_{2}\mathrm{O}_{7(\kappa)} + \mathrm{A}^{\mathrm{II}}(\mathrm{NO}_{3})_{2} + (n+1)\mathrm{H}_{2}\mathrm{O} \rightarrow$$
$$\rightarrow \mathrm{A}^{\mathrm{II}}(\mathrm{VUO}_{6})_{2} \cdot n\mathrm{H}_{2}\mathrm{O}_{(\kappa)} + 2\mathrm{HNO}_{3}. \tag{1}$$

Реакцию проводили кипячением полученного раствора с осадком в круглодонной колбе с обратным холодильником в течение суток. Полученные образцы твердой фазы промывали $1 \cdot 10^{-3}$ моль/л HNO₃, дистиллированной водой и высушивали на воздухе. Методика получения (UO₂)₂V₂O₇ приведена в работе [11].

Полноту протекания реакции (1) и образование соединений А^П(VUO₆)₂·nH₂O подтверждали рентгенографически. Содержание H₂O в уранованадатах устанавливали весовым методом, прокаливая исследуемые образцы при температуре 600°С в течение 2 ч. Элементный анализ полученных соединений проводили методом рентгенофлуоресцентной спектрометрии. Массовую долю U, V и *d*-переходного элемента в твердых фазах определяли методом фундаментальных параметров с поправочными коэффициентами чувствительности. Величины последних устанавливали предварительно с использованием образцов сравнения, приготовленных смешиванием и растиранием UO₃, V_2O_5 , $A^{II}O$ в молярном соотношении 2:1:1. Определяемое содержание элементов твердой фазы совпадало с теоретическими значениями в пределах относительной погрешности 0.5%.

Исследование состояния соединений А^{II}(VUO₆)₂. *n*H₂O в водных растворах. Для изучения химической устойчивости уранованадатов, навеску вещества массой 0.1-0.3 г заливали дистиллированной водой или растворами HClO₄/NaOH с концентрацией от 10⁻³ до 1 моль/л объемом 0.005-0.1 л. Эксперименты проводили в герметичных пластиковых емкостях с минимальным свободным объемом для исключения контакта растворов с углекислым газом атмосферы. Содержимое емкостей периодически перемешивали в течение нескольких месяцев и измеряли рН для наблюдения за состоянием системы. После достижения постоянного значения рН осадок отделяли от раствора центрифугированием. Твердую фазу промывали дистиллированной водой, высушивали при комнатной температуре и исследовали методами рентгенофазового анализа и рентгенофлуоресцентной спектрометрии. Концентрацию U(VI) и V(V) определяли с использованием фотометрических методик, приведенных ниже. Отсутствие взвешенных и коллоидных частиц контролировали методами турбидиметрии и нефелометрии.

Фотометрические методики анализа растворов. Концентрацию U(VI) в анализируемых водных растворах определяли по поглощению его комплекса с арсеназо III ($\lambda_{\text{макс}} = 650$ нм, pH 3) [12]. Анализ водных растворов на содержание V(V) проводили по реакции с ксиленоловым оранжевым при $\lambda_{\text{макс}} = 580$ нм, pH 4 [13]. Стандартный раствор U(VI) с концентрацией 1·10⁻² моль/л готовили растворением навески UO₂(NO₃)₂·6H₂O в дистиллированной воде. Для приготовления стандартного растворяли в 3 моль/л H₂SO₄. Растворы меньших концентраций, необходимые для построения градуировочных графиков, готовили из этих растворов путем последовательного разбавления.

Расчет произведений растворимости А^{II}(VUO₆)₂· *n*H₂O. Произведения растворимости труднорастворимых уранованадатов рассчитывали с использованием полученных данных о растворимости. Переход труднорастворимого соединения в раствор был представлен следующим уравнением реакции:

$$A^{II}(VUO_6)_2 \cdot nH_2O_{(\kappa)} \rightleftharpoons A^{2+} + 2UO_2^{2+} + 2VO_4^{3-} + nH_2O.$$
(2)

Константа равновесия этой реакции с учетом постоянства активности соединения в твердой фазе и молекул воды является произведением растворимости $K_{\rm S}$ [14]

$$K_{\rm S}[{\rm A}^{\rm II}({\rm VUO}_6)_2 \cdot n{\rm H}_2{\rm O}] = a({\rm A}^{2+})a({\rm UO}_2^{2+})^2 a({\rm VO}_4^{3-})^2.$$
(3)

При расчете активностей ионов, фигурирующих в этом уравнении, учитывали, что U(VI), V(V) и A(II) в

водных растворах существуют в виде различных ионно-молекулярных форм, представленных в табл. 1 [15–19]. Коэффициенты активности ионов рассчитывали по уравнению Дебая–Хюкеля с учетом теории специфического ионного взаимодействия [16]

$$\lg \gamma_{z\pm} = -z^2 \cdot 0.5090 I^{1/2} / (1 + 1.5 I^{1/2}) + \sum_{m} \varepsilon_{(z\pm,m,I)} C_m,$$
(4)

где I – ионная сила раствора, $\varepsilon_{(z\pm,m,I)}$ – коэффициент ионного взаимодействия иона с зарядом $z\pm$ с противоионами (общее число учтенных ионов m) [16], C_m – молярная концентрация m-го противоиона в растворе.

Коэффициенты активности молекулярных форм принимали равными единице.

Расчет кривых растворимости А^{II}(VUO₆)₂. nH_2O и диаграмм состояния U(VI), V(V) и A(II). Расчет кривых растворимости уранованадатов в водных растворах и диаграмм состояния U(VI), V(V) и *d*-переходных элементов A(II) в гетерогенных водносолевых системах проводили с использованием полученных значений K_S. При вычислении учитывали, что равновесные гетерогенные системы наряду с первичными соединениями $A^{II}(VUO_6)_2 \cdot nH_2O$ могут содержать соединения вторичного происхождения, такие как V_2O_5 · H_2O , $A^{II}(OH)_2$, $Na_2U_2O_7$. Для расчетов была составлена система уравнений, в которой можно выделить три блока. Первый блок включает уравнения (5)-(8), которые представляют собой константы равновесия гетерогенных реакций растворения соединений первичного и вторичного происхождения

$$K_{\rm S}[A^{\rm II}({\rm VUO}_6)_2 \cdot n{\rm H}_2{\rm O}] = a({\rm A}^{2+})a({\rm UO}_2^{2+})^2a({\rm VO}_4^{3-})^2 = = a({\rm A}^{2+})a({\rm UO}_2^{2+})^2[K_{{\rm V10}4}a({\rm VO}_2^{+})/a({\rm H}^{+})^4]^2,$$
(5)

$$K_{\rm S}({\rm V}_{2}{\rm O}_{5}\cdot{\rm H}_{2}{\rm O}) = a({\rm VO}_{2}^{+})^{2}a({\rm H}^{+})^{-2} =$$

$$= [K_{\rm V104}a(\rm VO_2^+)/a(\rm H^+)^4]^2 a(\rm H^+)^{-2}, \qquad (6)$$

$$K_{\rm S}[{\rm A}^{\rm II}({\rm OH})_2] = a({\rm A}^{2+})a({\rm OH}^{-})^2,$$
 (7)

$$K_{\rm S}({\rm Na}_2{\rm U}_2{\rm O}_7) = a({\rm Na}^+)^2 a({\rm UO}_2^{2+})^2 a({\rm OH}^-)^6.$$
 (8)

Уравнения второго блока (9)–(11) учитывают равновесия между различными ионно-молекуляр-ными формами U(VI), V(V) и A(II) в водных растворах

$$C_{\rm U} = a({\rm UO}_2^{2^+})/\gamma_2 + \sum_i \{K_{{\rm U}ij}a({\rm UO}_2^{2^+})^i/[a({\rm H}^+)^j\gamma_{(2i-j)\pm}]\},$$

$$(9)$$

$$C_{\rm V} = a({\rm VO}_2^+)/\gamma_1 + \sum \{K_{{\rm V}jhl}a({\rm VO}_2^+)^j/[a({\rm H}^+)^{2l-4j-h}\gamma_{(h+5j-2l)\pm}]\},$$

$$C_{\rm A} = a({\rm A}^{2+})/\gamma_2 + \sum_i \{K_{{\rm A}2ij}a({\rm A}^{2+})^i/[a({\rm H}^+)^j\gamma_{(2i-j)\pm}]\}.$$
(11)

Третий блок состоит из уравнений баланса (12)– (14), которые учитывают распределение первоначального взятого количества U(VI), V(V) и A(II) между различными компонентами твердой фазы и раствором в равновесной гетерогенной системе

Таблица 1. Константы равновесия реакций U(VI), V(V) и *d*-переходного элемента А^{II} в водных растворах

Vnabileline neaklinn	Константа равновесия		Courter			
у равнение реакции	обозначение	значение	Ссылка			
Гомо	Гомогенные равновесия					
Общее уравнение реакции $iUO_2^{2+} + jH_2$	$\mathbf{O} \rightleftharpoons (\mathrm{UO}_2)_i (\mathrm{OH})_j^{(2l-j)} -$	$+j\mathrm{H}^+$, константа равно	весия К _{Uij}			
$UO_2^{2+} + H_2O \rightleftharpoons UO_2OH^+ + H^+$	$K_{ m U11}$	$5.62 \cdot 10^{-6}$				
$\mathrm{UO}_{2}^{2+} + 2\mathrm{H}_{2}\mathrm{O} \rightleftharpoons \mathrm{UO}_{2}(\mathrm{OH})_{2}^{0} + 2\mathrm{H}^{+}$	$K_{\rm U12}$	$7.08 \cdot 10^{-13}$				
$\mathrm{UO}_2^{2+} + 3\mathrm{H}_2\mathrm{O} \rightleftharpoons \mathrm{UO}_2(\mathrm{OH})_3^- + 3\mathrm{H}^+$	$K_{\rm U13}$	$5.62 \cdot 10^{-21}$				
$UO_2^{2+} + 4H_2O \rightleftharpoons UO_2(OH)_4^{2-} + 4H^+$	$K_{ m U14}$	$3.98 \cdot 10^{-33}$				
$2\mathrm{UO}_2^{2+} + 2\mathrm{H}_2\mathrm{O} \rightleftharpoons (\mathrm{UO}_2)_2\mathrm{OH}^{3+} + \mathrm{H}^+$	$K_{\rm U21}$	$2.00 \cdot 10^{-3}$	[15-17]			
$2UO_2^{2+} + 2H_2O \rightleftharpoons (UO_2)_2(OH)_2^{2+} + 2H^+$	K_{1122}	$2.40 \cdot 10^{-6}$				
$3UO_2^{2+} + 5H_2O \rightleftharpoons (UO_2)_3(OH)_5^+ + 5H^+$	K_{U35}	$2.82 \cdot 10^{-16}$				
$3UO_2^{2+} + 7H_2O \rightleftharpoons (UO_2)_3(OH)_7^{-} + 7H^+$	K_{1137}	$6.31 \cdot 10^{-33}$				
$4UQ_{2}^{2+} + 7H_{2}Q \rightleftharpoons (UQ_{2})_{4}(QH)_{7}^{+} + 7H^{+}$	K1147	$1.26 \cdot 10^{-22}$				
Общее уравнение реакции $iVO_2^+ + (l - 2i)H_2O_2^+$	$\rightleftharpoons H_k V_i O_l^{(h+5j-2l)} + (2l)$	$(1 - 4i - h)H^+$, константа	равновесия Куль			
$VO_2^+ + 2H_2O \rightleftharpoons H_2VO_4^0 + H^+$	K _{V124}	$2 04.10^{-3}$	F vjm			
$VO_2^+ + 2H_2O \rightleftharpoons H_2VO_4^- + 2H^+$	K _{V124}	$1.61 \cdot 10^{-7}$				
$VO_{2}^{+} + 2H_{2}O \Rightarrow HVO_{2}^{2-} + 3H^{+}$	K _{V124}	$2.79 \cdot 10^{-16}$				
$VO_2^+ + 2H_2O \Rightarrow VO_3^{3-} + 4H^+$	K	$1.54 \cdot 10^{-30}$				
$2VO_2^+ + 3H_2O \rightarrow H_2V_2O_2^{2-} + 4H^+$	K_{V104}	1.0410				
$2VO_2^+ + 3H_2O \Rightarrow HV_2O_2^{3-} + 5H^+$	KV227 V	4.9710 $1.24.10^{-21}$	[15, 19]			
$2VO_2^+ + 3H_2O \rightleftharpoons HV_2O_1^{4-} + 6H^+$	KV217 V	$1.24^{\circ}10^{\circ}$				
$2VO_2^+ + 3\Pi_2O \leftarrow V_2O_7^- + 0\Pi^+$ $4VO^+ + 4\Pi_1O \rightarrow V_1O_2^{4-} + 9\Pi^+$	κ_{V207}	$0.48 \cdot 10$ 2.85 10^{-20}				
$4 VO_2 + 4\Pi_2 O \leftarrow V_4 O_{12} + 6\Pi$ $10VO^+ + 8UO \rightarrow UV = O \frac{4}{2} + 14U^+$	K_{V4012}	$2.85 \cdot 10$ 1.47.10 ⁻¹⁰				
$10VO_2^+ + 8\Pi_2O \rightleftharpoons \Pi_2V_{10}O_{28}^- + 14\Pi_1$	K _{V10228}	$1.4/\cdot 10^{-15}$				
$10VO_2 + 8H_2O \rightleftharpoons HV_{10}O_{28} + 15H$ K_{V10128} $9.18 \cdot 10^{-13}$						
Оощее уравнение реакции $iA^- + jH$	$_{2}$ O \rightleftharpoons A _i (OH) _j \rightarrow j + JH		ИЯ К _{А2ij}			
$Mn^{2} + H_{2}O \rightleftharpoons MnOH^{2} + H^{2}$	K _{A211}	$1.80 \cdot 10^{-11}$				
$Mn^{2} + 2H_2O \rightleftharpoons Mn(OH)_2^{\circ} + 2H$	K_{A212}	$1.07 \cdot 10^{-26}$				
$Mn^2 + 3H_2O \rightleftharpoons Mn(OH)_3 + 3H'$	K_{A213}	$7.12 \cdot 10^{-55}$				
$Mn^2 + 4H_2O \rightleftharpoons Mn(OH)_4^2 + 4H^4$	K_{A214}	$9.95 \cdot 10^{-51}$				
$Fe^{2+} + H_2O \rightleftharpoons FeOH^+ + H^+$	K _{A211}	$1.90 \cdot 10^{-7}$				
$\operatorname{Fe}^{2+} + 2\operatorname{H}_2\operatorname{O} \rightleftharpoons \operatorname{Fe}(\operatorname{OH})^0_2 + 2\operatorname{H}^+$	K_{A212}	$1.07 \cdot 10^{-28}$				
$Co^{2+} + H_2O \rightleftharpoons CoOH^+ + H^+$	K_{A211}	$6.54 \cdot 10^{-12}$				
$\operatorname{Co}^{2^+} + 2\operatorname{H}_2\operatorname{O} \rightleftharpoons \operatorname{Co}(\operatorname{OH})^0_2 + 2\operatorname{H}^+$	K_{A212}	$1.07 \cdot 10^{-28}$	[15 10]			
$Ni^{2+} + H_2O \rightleftharpoons NiOH^+ + H^+$	K _{A211}	$1.77 \cdot 10^{-11}$	[13-18]			
$\mathrm{Ni}^{2+} + 2\mathrm{H}_{2}\mathrm{O} \rightleftharpoons \mathrm{Ni}(\mathrm{OH})_{2}^{0} + 2\mathrm{H}^{+}$	K_{A212}	$1.07 \cdot 10^{-28}$				
$Cu^{2+} + H_2O \rightleftharpoons CuOH^+ + H^+$	K _{A211}	$4.77 \cdot 10^{-8}$				
$Cu^{2+} + 2H_2O \rightleftharpoons Cu(OH)_2^0 + 2H^+$	K_{A212}	$1.07 \cdot 10^{-28}$				
$Zn^{2+} + H_2O \rightleftharpoons ZnOH^+ + H^+$	K_{A211}	$1.14 \cdot 10^{-9}$				
$\operatorname{Zn}^{2+} + 2\operatorname{H}_2\operatorname{O} \rightleftharpoons \operatorname{Zn}(\operatorname{OH})_2^0 + 2\operatorname{H}^+$	K_{A212}	$1.07 \cdot 10^{-28}$				
$Zn^{2+} + 3H_2O \rightleftharpoons Zn(OH)_3^- + 3H^+$	K _{A213}	$4.38 \cdot 10^{-29}$				
$Zn^{2+} + 4H_2O \rightleftharpoons Zn(OH)_4^{2-} + 4H^+$	KA214	$6.98 \cdot 10^{-42}$				
Гетерогенные равновесия						
$Mn(OH)_{2(T)} \rightleftharpoons Mn^{2+} + 2OH^{-}$	1 44	$\cdot 10^{-13}$				
$Fe(OH)_{2(T)} \rightleftharpoons Fe^{2+} + 2OH^{-}$	7 33					
$Co(OH)_{2(T)} \rightleftharpoons Co^{2+} + 2OH^{-}$	1 49					
$Ni(OH)_{2(T)} \rightleftharpoons Ni^{2+} + 2OH^{-}$	5.86					
$Cu(OH)_{2(T)} \rightleftharpoons Cu^{2+} + 2OH^{-}$	5.00 A 30	[15–18]				
$Zn(OH)_{2(T)} \rightleftharpoons Zn^{2+} + 2OH^{-}$						
$V_2 O_5 H_2 O_{(r)} + 2H^+ \rightleftharpoons 2VO_2^+ + 2H_2 O_2$	2.07					
$Na_2U_2O_{7(2)} + 3H_2O \rightleftharpoons 2UO_2^{2+} + 2Na^+ + 6OH^-$	1.00	.10 ⁻⁵⁷				
1.020207(K) + 5.002 + 2.002 + 2.001	3.98	10				

$$2m^{0}[A^{II}(VUO_{6})_{2} \cdot nH_{2}O]/M[A^{II}(VUO_{6})_{2} \cdot nH_{2}O] = C_{U}V + \sum_{L} m_{L}\omega_{U,L}/M(U),$$
(12)

$$2m^{0}[A^{II}(VUO_{6})_{2} \cdot nH_{2}O]/M[A^{II}(VUO_{6})_{2} \cdot nH_{2}O] = C_{V}V + \sum_{L} m_{L}\omega_{V,L}/M(V),$$
(13)

$$n^{0}[A^{II}(VUO_{6})_{2} \cdot nH_{2}O]/M[A^{II}(VUO_{6})_{2} \cdot nH_{2}O] = C_{A}V + \sum_{L} m_{L}\omega_{A,L}/M(A),$$
(14)

где $K_{\text{U}ij}, K_{\text{V}ihl}, K_{\text{A}2ij}, K_{\text{S}}$ – константы равновесия (табл. 1); $m^0[\text{A}^{\text{II}}(\text{VUO}_6)_2:n\text{H}_2\text{O}]$ – начальная масса уранованадата; V – объем раствора HClO₄, H₂O или NaOH; M – молекулярная масса; m_{L} – масса вторичной донной фазы; $\text{L} = \text{V}_2\text{O}_5, \text{A}^{\text{II}}\text{U}_2\text{O}_7; \omega_{\text{U},\text{L}}, \omega_{\text{V},\text{L}}, \omega_{\text{A},\text{L}}$ – массовые доли U(VI), V(V) и элемента A(II) в L.

В целом предложенная нами система, состоящая из трех блоков уравнений, позволяет производить расчеты различных параметров равновесных гетерогенных водно-солевых систем соединений U(VI) в широком интервале кислотности среды. Так, при заданных значениях рН равновесного раствора, его объема V и массы исходного соединения в донной фазе m^0 [A^{II}(VUO₆)₂·*n*H₂O] были вычислены активности ионно-молекулярных форм $a(UO_2^{2+}), a(VO_2^{+}),$ $a(A^{2+})$ и аналитические концентрации U(VI), V(V) и A(II) в растворе – $C_{\rm U}$, $C_{\rm V}$, $C_{\rm A}$, а также массы компонентов твердой фазы первичного и вторичного происхождения: $\hat{m}[A^{II}(VUO_6)_2 \cdot nH_2O], \quad \hat{m}(V_2O_5 \cdot H_2O),$ $m[A^{II}(OH)_2], m(Na_2U_2O_7)$. На базе вычисленных значений масс были построены диаграммы состояния соответствующих элементов в равновесной твердой фазе и установлены кислотно-основные интервалы существования ее отдельных компонентов. Расчетные величины концентраций использованы для построения кривых растворимости. Активности ионов в водных растворах использованы для расчета диаграмм состояния U(VI), V(V) и A(II) в насыщенных водных растворах.

Расчет стандартных функций Гиббса образования. Полученные значения произведений растворимости использовали для расчета стандартных функций Гиббса образования уранованадатов *d*-переходных элементов. Вычисления проводили с использованием следующих уравнений:

$$\Delta G_{\rm r} = -RT \ln K_{\rm S},\tag{15}$$

$$\Delta G_{\rm f}^{0}[{\rm A}^{\rm II}({\rm VUO}_{6})_{2}:n{\rm H}_{2}{\rm O}] = \Delta G_{\rm f}^{0}({\rm A}^{2+}) + 2\Delta G_{\rm f}^{0}({\rm UO}_{2}^{2+}) + + 2\Delta G_{\rm f}^{0}({\rm VO}_{4}^{3-}) + n\Delta G_{\rm f}^{0}[{\rm H}_{2}{\rm O}_{({\rm I})}] - \Delta G_{\rm r}^{0},$$
(16)

где $\Delta G_{\rm f}^0$ – стандартная функция Гиббса образования ионов или молекул [15–19], $\Delta G_{\rm r}^0$ – стандартная функция Гиббса реакции (2).

Полученные значения и известные стандартные функции Гиббса образования уранованадатов *d*-переходных элементов позволили провести термодинамическую оценку процессов конверсии исследуемых соединений в различные вторичные донные фазы.

Расчеты проводили с помощью следующего уравнения:

$$\Delta G_{\rm r}^0 = \sum \Delta G_{\rm f}^0$$
(продукты реакции) – $\sum \Delta G_{\rm f}^0$ (исходные вещества). (17)

Таблица 2. Кислотно-основные интервалы существования уранованадатов *d*-переходных элементов A^{II}(VUO₆)₂. 4H₂O в насыщенных водных растворах

Coorting	Интервал рН			
Соединение	граница	ширина		
Mn(VUO ₆) ₂ ·4H ₂ O	1.6-11.6	10.0		
$Co(VUO_6)_2 \cdot 4H_2O$	1.8-11.2	9.4		
Ni(VUO ₆) ₂ ·4H ₂ O	2.0-11.0	9.0		
$Cu(VUO_6)_2 \cdot 4H_2O$	1.6-11.0	9.4		
$Zn(VUO_6)_2 \cdot 4H_2O$	1.8-11.2	9.4		
$Cd(VUO_6)_2 \cdot 4H_2O$	1.4-11.8	10.4		

Приборы и оборудование. Рентгенограммы исследуемых соединений и равновесных донных фаз записывали на дифрактометре XRD-6000 (Shimadzu, излучение CuK_a). Элементный анализ твердых образцов проводили с использованием рентгенофлуоресцентного спектрометра с энергетической дисперсией EDX-900 фирмы Shimadzu. Значения pH растворов измеряли рН-метром рН 410 (Аквилон) со стеклянным электродом ЭСК-10601/7. Все синтезированные соединения и реактивы, используемые в данной работе, соответствовали квалификации х.ч. В экспериментах использовали дистиллированную воду и растворы NaOH без примеси CO2 [19]. Для отделения твердой фазы от насыщенного раствора использовали центрифугу ЦЛН-2. Центрифугирование проводили при скорости 9000 об/мин. Оптическую плотность окрашенных растворов измеряли на спектрофотометре Shimadzu UV-1650. Интенсивность рассеянного излучения оценивали с помощью нефелометра НФМ (Россия). Статистическую обработку результатов и математическое моделирование состояния гетерогенных систем проводили с помощью программы Mathcad 2000 Professional.

Результаты и обсуждение

Кислотно-основные интервалы существования и конверсия соединений А^{II}(VUO₆)₂·nH₂O (A^{II} = Mn, Fe, Co, Ni, Cu, Zn, Cd) в водных растворах. Проведенные исследования гетерогенных систем А^{II}(VUO₆)₂·*n*H₂O_(к)-водный раствор показали, что наиболее существенное влияние на химическую устойчивость уранованадатов *d*-переходных элементов оказывает кислотность водного раствора. В зависимости от рН изменяется состав и структура соединений донной фазы, а также ионно-молекулярные формы и концентрации U(VI), V(V) и *d*-переходных элементов в водном растворе. В целом уранованадаты *d*-переходных элементов сохраняют состав и строение при контакте с водными растворами в широком интервале рН от 2 до 11. При этом устойчивость A^{II}(VUO₆)₂·nH₂O несущественно зависит от природы межслоевого атома (табл. 2), что обусловлено подобием строения исследуемых соединений и

Рис. 1. Состояние равновесной гетерогенной системы Ni(VUO₆)₂. 4H₂O_(к)–водный раствор (*сплошные линии* – расчетные кривые, *точки* – экспериментальные значения). a – зависимость массовой доли ω компонентов донной фазы от кислотности среды; δ – зависимость концентраций U(VI) (*квадрат*), V(V) (*треугольник*) в растворе от кислотности среды.

Рис. 2. Расчетные кривые растворимости $Ni(VUO_6)_2$ ·4H₂O, V_2O_5 ·H₂O, $Ni(OH)_2$, $Na_2U_2O_7$ (расчет проведен без учета конверсии).

близостью кристаллохимических характеристик межслоевых атомов.

В сильнокислых и сильнощелочных средах за пределами интервала устойчивости уранованадатов их структура разрушается и в донной фазе образуются соединения вторичного происхождения. Диаграммы состояния твердой фазы гетерогенных водно-солевых систем уранованадатов идентичны для всех производных *d*-переходных элементов. На рис. 1 в качестве примера представлена зависимость массовой доли компонентов твердой фазы от pH насыщенного раствора для соединения Ni.

В кислых средах при pH < 2 в равновесии с водным раствором находится аморфная фаза. Исследо-

Таблица 3. Константы равновесия и стандартные функции Гиббса реакции конверсии уранованадатов d-переходных элементов $A^{II}(VUO_6)_2 \cdot 4H_2O$

	Реак	ция (18)	Реакция (19)		
Соединение	Ks	$\Delta_{\rm r}G^0$,	V	$\Delta_{\rm r}G^0$,	
		кДж/моль	ΛS	кДж/моль	
$Mn(VUO_6)_2 \cdot 4H_2O$	$5.3 \cdot 10^2$	-15.5	$3.4 \cdot 10^{10}$	-60.1	
Fe(VUO ₆) ₂ ·4H ₂ O	$2.6 \cdot 10^3$	-19.5	$3.3 \cdot 10^{13}$	-77.1	
$Co(VUO_6)_2 \cdot 4H_2O$	$5.1 \cdot 10^3$	-21.2	$3.2 \cdot 10^{13}$	-77.1	
$Ni(VUO_6)_2 \cdot 4H_2O$	$5.2 \cdot 10^4$	-26.9	$8.2 \cdot 10^{16}$	-96.5	
$Cu(VUO_6)_2 \cdot 4H_2O$	$3.3 \cdot 10^2$	-14.4	$7.0 \cdot 10^{16}$	-96.2	
$Zn(VUO_6)_2 \cdot 4H_2O$	$1.0 \cdot 10^4$	-22.9	$3.6 \cdot 10^{14}$	-83.1	
$Cd(VUO_6)_2 \cdot 4H_2O$	$1.5 \cdot 10^{1}$	-6.7	$6.9 \cdot 10^9$	-56.1	

вание этой фазы методом рентгенофлуоресцентного анализа показало отсутствие в ней значительных количеств урана и элемента А^{II}. Это дало основание полагать, что в кислых средах уранованадаты разрушаются с образованием гидратированного оксида V(V) по реакции

$$A^{II}(VUO_6)_2 \cdot nH_2O_{(\kappa)} + 6H^+ \rightleftharpoons A^{2+} + 2UO_2^{2+} + V_2O_5 \cdot H_2O_{(am)} + (n+2)H_2O.$$
(18)

В пользу этой реакции свидетельствуют и многочисленные литературные данные о низкой растворимости V_2O_5 в рассматриваемых условиях [13, 20, 21]. В качестве иллюстрации на рис. 2 представлены кривые растворимости Ni(VUO₆)₂·4H₂O и V_2O_5 ·H₂O, которые вычислены из предположения конгруэнтного растворения соединений и устойчивости их структуры в широком интервале кислотности. Из этого рисунка видно, что растворимость оксида V(V) в кислых средах ниже, чем прогнозируемая растворимость уранованадатов. Это и обусловливает протекание процесса конверсии исследуемых соединений по реакции (18).

Возможность образования оксида ванадия в кислых средах в исследуемых гетерогенных системах подтверждают и результаты термодинамических расчетов. Значения констант равновесия и стандартных функций Гиббса реакции (18), представленные в табл. 3, согласуются с экспериментальными данными и интервалами существования уранованадатов в водных растворах (табл. 2, 4).

В щелочных средах исследуемые соединения превращаются в смесь диураната натрия и труднорастворимого гидроксида A^{II}(OH)₂ согласно следующему уравнению реакции:

$$AII(VUO6)2·nH2O(κ) + 2Na+ + 8OH- ≈ Na2U2O7(κ) ++ AII(OH)2 + 2VO43- + (n + 3)H2O. (19)$$

Процесс конверсии начинается уже в слабощелочных растворах, где растворимость соответствующих гидроксидов становится заметно ниже, чем исследуе-

Растворитель	Параметр	Mn	Со	Ni	Cu	Zn	Cd
	pН	1.32	1.19	1.17	1.25	1.18	1.22
1·10 ⁻¹ моль/л HClO ₄	$C_{\rm U} \cdot 10^2$	9.5 ± 0.3	1.98 ± 0.08	5.4 ± 0.3	4.20 ± 0.25	8.6 ± 0.3	1.01 ± 0.04
	$C_{\rm V} \cdot 10^2$	0.72 ± 0.03	0.91 ± 0.04	0.81 ± 0.04	0.92 ± 0.05	1.15 ± 0.06	1.23 ± 0.05
	pН	2.26	2.61	2.65	2.34	2.52	2.61
1·10 ⁻² моль/л HClO ₄	$C_{\rm U} \cdot 10^3$	1.36 ± 0.07	0.76 ± 0.03	0.52 ± 0.03	0.25 ± 0.02	1.95 ± 0.10	0.20 ± 0.01
	$C_{\rm V} \cdot 10^3$	0.76 ± 0.04	0.22 ± 0.01	0.30 ± 0.01	0.37 ± 0.04	0.17 ± 0.01	0.12 ± 0.01
	pН	3.24	3.10	3.20	3.19	3.12	3.22
1·10 ⁻³ моль/л HClO ₄	$C_{\rm U} \cdot 10^5$	2.29 ± 0.12	5.84 ± 0.23	12.8 ± 0.6	9.3 ± 0.4	7.4 ± 0.4	1.32 ± 0.07
	$C_{\rm V} \cdot 10^5$	2.51 ± 0.17	5.59 ± 0.22	5.00 ± 0.19	4.88 ± 0.24	5.2 ± 0.3	1.16 ± 0.07
H ₂ O	pН	6.55	6.21	6.68	6.49	6.92	6.75
	$C_{\rm U} \cdot 10^7$	1.66 ± 0.17	2.27 ± 0.23	4.7 ± 0.6	1.0 ± 0.3	4.0 ± 0.6	3.9 ± 0.5
1.10^{-3} North /# NoOH	pН	7.58	7.18	7.32	7.67	7.68	7.88
1.10 моль/л NaOH	$C_{\rm U} \cdot 10^7$	2.57 ± 0.20	0.68 ± 0.15	4.8 ± 0.5	3.3 ± 0.3	4.6 ± 0.4	4.7 ± 0.6
	pН	9.23	9.42	9.58	9.33	9.74	9.67
1·10 ⁻² моль/л NaOH	$C_{\rm U} \cdot 10^7$	7.7 ± 0.6	3.26 ± 0.16	25.1 ± 2.1	12.6 ± 0.6	21.5 ± 1.7	11.6 ± 0.6
	$C_{\rm V} \cdot 10^{6}$	1.00 ± 0.12	1.55 ± 0.14	6.6 ± 0.8	4.47 ± 0.22	8.2 ± 0.4	3.75 ± 0.25
	pH	13.00 ^a					
1·10 ⁻¹ моль/л NaOH	$C_{\rm U} \cdot 10^4$	1.12 ± 0.03	0.83 ± 0.03	0.92 ± 0.05	0.46 ± 0.03	1.12 ± 0.06	1.32 ± 0.06
	$C_{\rm V}$ ·10 ²	1.18 ± 0.06	0.96 ± 0.05	0.84 ± 0.04	1.47 ± 0.07	1.45 ± 0.05	1.79 ± 0.09
	pH	14.00 ^a	14.00^{a}				
1 моль/л NaOH	$C_{\rm U} \cdot 10^4$	2.16 ± 0.11	1.65 ± 0.08	2.91 ± 0.15	3.26 ± 0.16	4.58 ± 0.25	0.73 ± 0.04
	$C_{\rm V} \cdot 10^2$	2.48 ± 0.10	2.15 ± 0.10	3.35 ± 0.17	4.73 ± 0.24	2.36 ± 0.12	2.09 ± 0.12

Таблица 4. Концентрации U(VI), V(V) и A(II) в насыщенных водных растворах соединений $A^{II}(VUO_6)_2 \cdot nH_2O$ ($A^{II} = Mn$, Co, Ni, Cu, Zn, Cd) (25°C)

^а Рассчитано по концентрации NaOH.

мых уранованадатов (рис. 2). Однако вследствие незначительной растворимости этих соединений в указанных условиях массовая доля образующегося $A^{II}(OH)_2$ мала (рис. 1, *a*). Конверсия становится заметной лишь в более щелочных растворах и приводит к полному разрушению структуры уранованадатов при рН 11 и выше. Термодинамическая оценка процесса конверсии исследуемых соединений также свидетельствует о самопроизвольном протекании реакции (19) в щелочной среде и разрушении структуры уранованадатов *d*-переходных элементов в этих условиях (табл. 3).

Растворимость соединений $A^{II}(VUO_6)_2 \cdot nH_2O$ ($A^{II} = Mn$, Fe, Co, Ni, Cu, Zn, Cd). Концентрации U(VI) и V(V) в насыщенных водных растворах уранованадатов *d*-переходных элементов приведены в табл. 4. Расчетные кривые растворимости исследуемых соединений изображены на рис. 1, *б*. Из всех представленных результатов видно, что уран и другие структурообразующие элементы переходят в водный раствор в стехиометрическом соотношении в широком интервале кислотности. Это свидетельствует о конгруэнтном растворении соединений и согласуется с устойчивостью структуры уранованадатов в установленных интервалах кислотности.

При образовании в донной фазе соединений вторичного происхождения даже в небольших количествах стехиометрическое соотношение концентраций элементов в растворе нарушается. Так, в кислых средах при pH < 1-2 содержание урана в водном растворе существенно превышает концентрацию ванадия. Это обусловлено образованием труднорастворимого V_2O_5 в кислых средах, растворимость которого и лимитирует концентрацию ванадия в водных растворах. Уран при этом полностью переходит в водный раствор и его концентрация практически не изменяется в зависимости от pH раствора.

В щелочных средах напротив, концентрация ванадия превышает концентрацию урана, что вызвано образованием труднорастворимого диураната натрия в этих условиях. При этом образование даже небольших количеств гидроксида *d*-переходного элемента $A^{II}(OH)_2$ приводит к резкому уменьшению концентрации A(II) в растворе уже в слабощелочных средах.

Растворимость уранованадатов существенно изменяется в зависимости от кислотности среды. Она минимальна в нейтральных растворах при pH 6–8. Увеличение или уменьшение кислотности приводит к возрастанию растворимости исследуемых соединений на несколько порядков до 10^{-4} – 10^{-2} моль/л в сильнокислых и сильнощелочных растворах (табл. 4). При одинаковой кислотности среды растворимость уранованадатов *d*-переходных элементов слабо зависит от природы межслоевого атома и изменяется в ряду исследуемых соединений не более чем в 5– 10 раз.

В табл. 5 представлены значения логарифмов произведений растворимости уранованадатов *d*-переходных элементов, вычисленные по эксперименталь-

Таблица 5. Произведения растворимости, стандартные функции Гиббса растворения и образования уранованадатов *d*-переходных элементов A^{II}(VUO₆)₂·4H₂O

Соединение	$\lg K_{\rm S}$	$\Delta_{\rm r}G^0$,	$\Delta_{\rm f} G^0$,	
		кДж/моль	кДж/моль	
Mn(VUO ₆) ₂ ·4H ₂ O	-58.7 ± 0.5	335 ± 12	5202 ± 30	
Fe(VUO ₆) ₂ ·4H ₂ O	-58.0 ± 0.7	331 ± 12	5046 ± 30	
Co(VUO ₆) ₂ ·4H ₂ O	-57.7 ± 0.5	329 ± 12	5019 ± 30	
Ni(VUO ₆) ₂ ·4H ₂ O	-56.7 ± 0.5	323 ± 12	5005 ± 30	
Cu(VUO ₆) ₂ ·4H ₂ O	-58.9 ± 0.5	336 ± 12	4907 ± 30	
Zn(VUO ₆) ₂ ·4H ₂ O	-57.4 ± 0.5	328 ± 12	5111 ± 30	
Cd(VUO ₆) ₂ ·4H ₂ O	-60.3 ± 0.5	344 ± 12	5057 ± 30	

ным данным об их растворимости в водных растворах. Зависимость lgK_S от ионных радиусов межслоевых атомов показана на рис. 3. Она с достаточно высокой степенью корреляции описывается линейным уравнением, что дало нам возможность оценить произведение растворимости Fe(VUO₆)₂·4H₂O, экспериментальное исследование которого не проводилось по причине неустойчивости ионов Fe(II) в условиях окислительной атмосферы. Из представленных данных видно, что значения K_S уранованадатов d-переходных элементов уменьшаются с увеличением радиуса межслоевого атома, что хорошо согласуется с увеличением устойчивости соединений в этом направлении. Эта тенденция может быть обусловлена увеличением энергии кристаллической решетки уранованадатов в ряду Ni < Zn < Co < Mn вследствие возрастания ионной составляющей связи А^{II}-О. Соединение меди выпадает из этой зависимости в соответствии с эффектом Яна-Теллера [17].

Вычисленные значения произведений растворимости были использованы для расчета термодинамических функций образования и растворения исследуемых уранованадатов. Расчетные данные представлены в табл. 5. Большие положительные значения $\Delta G_r^0(298)$ хорошо согласуются с низкой растворимостью и высокой устойчивостью уранованадатов *d*-переходных элементов.

Ионно-молекулярный состав насыщенных водных растворов соединений $A^{II}(VUO_6)_2 \cdot nH_2O$ ($A^{II} =$ Mn, Fe, Co, Ni, Cu, Zn, Cd). Немаловажным аспектом в изучении состояния соединений является исследование ионно-молекулярного состава водных растворов. На рис. 4 представлены диаграммы состояния U(VI), V(V) и Ni(II) в насыщенном водном растворе уранованадата никеля. Из этого рисунка видно, что в достаточно широком интервале кислотности ванадий присутствует в виде ванадиевой кислоты и ее диссоциированных форм. Образование полимерных ионов и молекул в насыщенных водных растворах не происходит, несмотря на то, что о существовании таких форм известно в литературе и их образование было учтено при расчете диаграммы.

Рис. 3. Зависимость логарифма произведения растворимости $A^{II}(VUO_6)_2$ ·4H₂O от ионного радиуса A^{2+} . Уравнение регрессии: y = -14.12x - 47.02, $R^2 = 0.980$.

Рис. 4. Диаграммы состояния U(VI), V(V) и Ni(II) в насыщенных водных растворах Ni(VUO₆) $_2$ ·4H₂O.

Отсутствие коллоидных частиц в системе подтверждено результатами нефелометрического и турбидиметрического исследования, которые свидетельствуют об истинности растворов во всем интервале кислотности.

При pH 6–8, где наблюдается минимум растворимости уранованадатов, в растворе одновременно присутствуют ионно-молекулярные формы урана и ванадия с наименышим зарядом. Это и обусловливает минимальное взаимодействие молекул растворителя с кристаллическим веществом в рассматриваемых условиях. При увеличении и уменьшении pH в растворе появляются ионы с бо́льшим зарядом и растворимость соединений увеличивается.

Обращает на себя внимание образование ванадилионов VO_2^+ в кислых средах. Их наличие является следствием способности H_3VO_4 в данных условиях отщеплять молекулы воды и образовывать устойчивые положительно заряженные частицы VO_2^+ , подобные $UO_2^{2^+}$. Появление этих ионов в водных растворах совпадает с образованием в твердой фазе оксида V(V). Это подтверждает взаимосвязь состава водного раствора и твердой фазы, а также всех процессов, происходящих в гетерогенной системе.

Таким образом, наиболее существенное влияние на состояние исследуемых соединений в гетерогенных водно-солевых системах оказывает кислотность среды. Величина рН водного раствора определяет кислотно-основные границы существования уранованадатов в водных растворах, природу вторичных донных фаз и их растворимость. В целом А^{II}(VUO₆)₂. nH2O характеризуются высокой химической устойчивостью, что подтверждается сохранением состава и строения при контакте с водными растворами в широком интервале рН от 2 до 11. За пределами этого интервала соединения $A^{II}(VUO_6)_2 nH_2O$ трансформируются в соединения иного состава и строения. Растворимость уранованадатов *d*-переходных элементов в зависимости от кислотности среды изменяется на несколько порядков. Гораздо меньшее влияние на величину растворимости оказывает природа межслоевого атома. Показано, что ионно-молекулярный состав насыщенных водных растворов уранованадатов во многом обусловливает закономерности растворения и конверсию исследуемых соединений в водных растворах. Экспериментальные данные использованы для расчета произведений растворимости и термодинамических функций образования и растворения.

Работа выполнена при финансовой поддержке Министерства образования и науки РФ (грант N 4.5706.2017/БЧ в рамках базовой части государственного задания).

Список литературы

- [1] Нипрук О. В., Черноруков Н. Г., Еремина А. А. и др. // Радиохимия. 2014. Т. 56, N 4. С. 332.
- [2] Нипрук О. В., Черноруков Н. Г., Годованова Н. С., Арова М. И. // Радиохимия. 2012. Т. 54, N 6. С. 514.
- [3] Черноруков Н. Г., Нипрук О. В., Пыхова Ю. П., Годованова Н. С. // ЖОХ. 2012. Т. 82, N 8. С. 1263.
- [4] Черноруков Н. Г., Нипрук О. В., Еремина А. А. // ЖНХ. 2013. Т. 58, N 11. С. 1432.
- [5] Nipruk O. V., Chernorukov N. G., Zakharycheva N. S., Kostrova E. L. // J. Radioanal. Nucl. Chem. 2013. Vol. 298. P. 519.
- [6] Nipruk O. V., Chernorukov N. G., Zakharycheva N. S., Kostrova E. L. // J. Radioanal. Nucl. Chem. 2017. Vol. 311, N 1. P. 519.
- [7] Соболева М. В., Пудовкина И. А. Минералы урана. М.: Госгеолтехиздат, 1957. 407 с.
- [8] Наумов Г. Б. // Химия урана / Под ред. Б. Н. Ласкорина. М.: Наука, 1981. С. 5.
- [9] Черноруков Н. Г., Сулейманов Е. В., Князев А. В., Сучков А. И. // ЖНХ. 1999. Т. 44, N 6. С. 874.
- [10] Tokunaga T. K., Kim Y., Wan J. // Environ. Sci. Technol. 2009. Vol. 43. P. 5467.
- [11] Черноруков Н. Г., Сулейманов Е. В., Князев А. В., Климов Е. Ю. // Радиохимия. 1999. Т. 41, N 6. С. 481.
- [12] Марков В. К., Верный Е. А., Виноградов А. В. и др. Уран. Методы его определения. М.: Атомиздат, 1964. 502 с.
- [13] Музгин В. Н., Хамзина Л. Б., Золотавин В. Н., Безруков И. Я. Аналитическая химия ванадия. М.: Наука, 1981. 215 с.
- [14] Кумок В. Н. Произведения растворимости. Новосибирск: Наука, 1983. 267 с.
- [15] Термические константы веществ / Под ред. В. П. Глушко. М.: Изд-во АН СССР, 1965–1981. Вып. IX.
- [16] *Grenthe I., Fuger J., Koning R. et al.* Chemical Thermodynamics of Uranium. Amsterdam: Elsevier, 2004. 715 p.
- [17] *Guillaumont R., Fanghänel T., Fuger J. et al.* Update on the Chemical Thermodynamics of Uranium, Neptunium, and Plutonium. Amsterdam: Elsevier, 2003.
- [18] Larson J. W. // J. Chem. Eng. Data. 1995. Vol. 40. P. 1276.
- [19] Киселева Е. К., Сусленникова В. М. Справочное руководство по приготовлению титрованных растворов и установке их титров. Л.: Типолитография ЛКВВИА им. А. Ф. Можайского, 1959. 197 с.
- [20] Коттон Ф., Уилкинсон Дж. Современная неорганическая химия. М.: Мир, 1969. 592 с.
- [21] Trypuc M., Kielkowska U., Chalat M. // J. Chem. Eng. Data. 2002. Vol. 47. P. 765.