Восстановление U(VI) при оптической накачке неорганических лазерных жидкостей

© Е. А. Серегина^{*a*}, Г. В. Тихонов*^{*a*}

^а Физико-энергетический институт им. А. И. Лейпунского, 249033, Обнинск Калужской обл., пл. Бондаренко, д. 1; *e-mail: tigen@ippe.ru

Получена 17.10.2018, после доработки 20.06.2019, принята к публикации 20.06.2019

УДК 546.791-145.3

Изучены генерационные свойства Nd³⁺ при оптической накачке лазеров на неорганических жидкостях на основе оксихлорида фосфора и сульфурилхлорида, активированных Nd³⁺ и UO₂²⁺. При накачке светом в видимом диапазоне с $\lambda \ge 500$ нм уранил не влияет на генерационные свойства Nd³⁺ в лазерных жидкостях. После расширения диапазона накачки до 400 нм обнаружены ухудшение лазерных свойств жидкостей и образование U(IV). Фотовосстановление уранила в системе POCl₃–SnCl₄–UO₂²⁺–Nd³⁺ носит необратимый характер. В системе SO₂Cl₂–GaCl₃–UO₂²⁺–Nd³⁺ после окончания фотооблучения происходит обратимое окисление U(IV), и через ~200 ч генерационные свойства лазерной жидкости восстанавливаются.

Ключевые слова: сульфурилхлорид, оксихлорид фосфора, уранил, U(IV), восстановление, неодим, лазерная жидкость.

DOI: 10.1134/S0033831119050034

Жидкие среды привлекательны для создания мощных и высокоэнергетичных источников лазерного излучения прежде всего вследствие возможности охлаждения активной среды с большой плотностью активатора путем прокачки и отсутствия внутренних деформаций и термического напряжения, которые возникают при большой энергии накачки в твердотельных активных элементах. Наиболее исследованы неорганические лазерные жидкости (НЛЖ) на основе оксихлорида фосфора (POCl₃), активированные ионами Nd³⁺, которые обладают широкими полосами поглощения в видимой и ближней ИК области спектра. Мощные низкопороговые лазерные системы с накачкой газоразрядными лампами были изготовлены при использовании в качестве активной среды НЛЖ POCl₃-ZrCl₄-Nd³⁺ за рубежом и POCl₃-SnCl₄-Nd³⁺ в России [1], получена и надежно зарегистрирована инверсная заселенность верхнего лазерного уровня Nd³⁺ при прямой ядерной накачке систем POCl₃-SnCl₄-²⁵⁵UO₂²⁺-Nd³⁺ и POCl₃-BCl₃-Nd³⁺ на импульсном реакторе БАРС-6 [2].

Если в лазерно-активную жидкость ввести делящееся вещество, например ²³⁵U, то можно осуществить прямую ядерную накачку, преобразовать энергию деления в оптическое и лазерное излучение и создать мощные и высокоэнергетичные источники лазерного излучения. Первые такие урансодержащие НЛЖ POCl₃–SnCl₄–²³⁵UO₂²⁺–Nd³⁺ были созданы, и их лазерные свойства были исследованы при оптическом возбуждении и при облучении на импульсном реакторе БАРС-6 (см., например, работы [2, 3]).

Оксихлорид фосфора – токсичное и агрессивное вещество. НЛЖ на основе тионилхлорида (SOCl₂) и сульфурилхлорида (SO₂Cl₂) менее токсичны и, кроме того, при прочих равных условиях обладают значительно меньшей вязкостью и существенно меньшей чувствительностью к следам влаги, что важно для мощных прокачных лазерных систем. Создать урансодержащие НЛЖ на основе $SOCl_2$ и SO_2Cl_2 и исследовать их лазерные свойства представлялось важным для разработки лазеров с прямой ядерной накачкой. НЛЖ на основе SOCl₂ имеют ряд достоинств [4]. Они сохраняют неизменными свои люминесцентные и генерационные свойства при очень высокой - до 3 моль/л – концентрации Nd³⁺ при отсутствии полимеризации; максимальная растворимость UO₂Cl₂ в смеси SOCl₂-GaCl₃ составила 0.57 моль/л при содержании GaCl₃ 50 мол% [4]. В то же время сера в SOCl₂ находится в промежуточном состоянии окисления (+4). Поэтому в растворах SOCl₂-GaCl₃-UO₂²⁺-Nd³⁺ уранил интенсивно восстанавливался до U(IV), концентрация U(IV) возрастала пропорционально концентрации UO_2^{2+} , и в результате резко уменьшались время затухания и интенсивность люминесценции Nd³⁺ [5].

При введении UO₂Cl₂ в НЛЖ SO₂Cl₂–GaCl₃–Nd³⁺ люминесцентные и генерационные характеристики не ухудшались [6, 7]. При этом в спектре возбуждения Nd³⁺ полоса поглощения UO₂²⁺ в области 350–450 нм не наблюдалась, что свидетельствует об отсутствии межионных взаимодействий между Nd³⁺ и UO₂²⁺ [7]. При синтезе и хранении НЛЖ SO₂Cl₂–GaCl₃–UO₂²⁺–Nd³⁺ U(IV) не зарегистрировали [8].

В настоящей работе исследовано влияние уранила на генерационные характеристики HJTK POCl₃–SnCl₄– ²³⁵UO₂²⁺–Nd³⁺ и SOCl₂–GaCl₃–UO₂²⁺–Nd³⁺ в одинаковых условиях эксперимента при накачке светом разного спектрального состава.

Экспериментальная часть

НЛЖ POCl₃–SnCl₄–Nd³⁺ и POCl₃–SnCl₄–²³⁵UO₂²⁺– Nd³⁺ готовили по известной технологии соответственно путем растворения Nd(OH)₃ и совместного растворения Nd(OH)₃ и UO₂(ClO₄)₂· 5H₂O в матрице POCl₃–SnCl₄ [9]. НЛЖ SO₂Cl₂–GaCl₃–Nd³⁺ и SO₂Cl₂– GaCl₃–UO₂²⁺–Nd³⁺ были приготовлены в РГПУ им. А. И. Герцена сольвотермальным способом из безводных NdCl₃ и UO₂Cl₂ [8].

Для проведения генерационных экспериментов НЛЖ заливали в цельнопаянные кварцевые кюветы с плоскопараллельными торцевыми окнами (длина l = 350 мм, внутренний диаметр 7.5 мм). Часть растворов отбирали в специальные спектрометрические кюветы $l \approx 10$ мм для измерений спектральнолюминесцентных характеристик. Кюветы запаивали для исключения контакта НЛЖ с атмосферой.

Исследование генерационных свойств НЛЖ проводили на установке с запасенной энергией до 3 кДж. В системе накачки использовали коаксиальную ксеноновую лампу «Солигорск» с длительностью импульса накачки 150 мкс и КПД преобразования электрической энергии в световую около 30%.

Для охлаждения лампы накачки и лазерной кюветы, а также для фильтрации УФ с целью уменьшения неэффективного нагрева лазерной среды из-за поглощения УФ матрицей генерационную кювету с НЛЖ окружали светофильтром: хроматным (1%ный водный раствор K₂CrO₄) либо нитритным (10%ный водный раствор NaNO₂). Поскольку длина лампы накачки была 200 мм, то активная часть кюветы составляла 200 мм.

Плоскопараллельный резонатор длиной 500 мм состоял из двух зеркал с коэффициентами отражения 99.8 и 56% на длине волны генерации Nd^{3+} . Между зеркалами резонатора помещали квантрон с лазерной кюветой. Энергию лазерного излучения регистрировали калориметром ИМО-2Н. Временные характеристики импульсов генерации и накачки измеряли фотодиодами, сигналы с которых подавали на входные каналы двухканального запоминающего осциллографа. Для выделения излучения с $\lambda > 1$ мкм устанавливали светофильтры ИКС-1 перед ИМО-2Н и фотодетектором, регистрирующим лазерное излучение. Свет от лампы накачки с областью пропускания $400 \le \lambda \le 700$ нм выделяли с помощью специального термофильтра, установленного перед вторым фотодетектором.

Для измерения линейного коэффициента неактивных потерь μ_{in} в НЛЖ использовали неодимовый лазер на фосфатном стекле ($\lambda_g = 1054$ нм). Кювету с НЛЖ помещали между лазером и измерителем энергии и поочередно регистрировали энергию без кюветы и энергию лазерного излучения, прошедшего через кювету с исследуемой НЛЖ.

Значение μ_{in} определяли в соответствии с выражением

$$\mu_{\rm in} = l^{-1} \ln \left[E_1 / (0.96E_0) \right],$$

где E_0 и E_1 – энергия лазерного излучения без кюветы и с кюветой; l – длина кюветы; 0.96 – коэффициент, учитывающий френелевские потери излучения на торцах кюветы. Одновременно с измерением энергии регистрировали амплитуду и форму импульсов лазерного излучения на входе и на выходе из кюветы с НЛЖ, что повысило точность измерения µ_{in}.

Электронные спектры поглощения (ЭСП) регистрировали на двухлучевом спектрофотометре СФ-20, работающем в режиме on-line с персональным компьютером. Спектры возбуждения измеряли на спектрофлуориметре на основе установки СДЛ-2. Время жизни люминесценции т Nd³⁺ измеряли на т-метре с использованием импульсной ксеноновой лампы ИСШ-400 с $\tau_{imp} \leq 5$ мкс, фотоэлектронного умножителя ФЭУ-62, работающего в интегральном режиме, и запоминающего осциллографа TDS 1012 Tektronix.

Результаты и обсуждение

Генерационные испытания проводили на образцах НЛЖ на основе $POCl_3$ и SO_2Cl_2 , активированных только Nd^{3+} и соактивированных Nd^{3+} и UO_2^{2+} (см. таблицу).

На рис. 1 приведены зависимости энергии лазерного излучения $E_{\rm g}$ НЛЖ на основе POCl₃ от энергии накачки $E_{\rm p}$ с охлаждающим хроматным светофильтром (область пропускания света $\lambda \ge 500$ нм). Удельная энергия лазерного излучения $E_{\rm g}$ обеих НЛЖ была практически пропорциональна удельной энергии накачки при $E_{\rm p} = 75-180$ Дж/см³. Более высокий КПД в НЛЖ POCl₃–SnCl₄–Nd³⁺ без урана объясняется более высоким качеством активной среды: бо́льшим т Nd³⁺ и меньшим $\mu_{\rm in}$. Формы генерационных импульсов для обеих НЛЖ были подобны, а длительность импульсов почти не зависела от удельной энергии накачки в исследованном диапазоне, что указывало на отсутствие влияния термооптических эффектов на лазерные свойства среды.

Основные характеристики НЛЖ

НЛЖ	[Nd ³⁺], моль/л	[UO ₂ ²⁺], моль/л	τ, мкс	$\mu_{in} \cdot 10^3, \ cm^{-1}$
POCl ₃ -SnCl ₄ -Nd ³⁺	0.15	_	250	2.0 ± 0.2
$POCl_3-SnCl_4-UO_2^{2+}-Nd^{3+}$	0.15	0.06	150	4.0 ± 0.5
SO ₂ Cl ₂ -GaCl ₃ -Nd ³⁺	0.12	_	240	3.0 ± 0.5
SO_2Cl_2 -GaCl_3-UO_2^{2+}-Nd^{3+}	0.07	0.07	180	3.0 ± 0.5

Рис. 1. Зависимости удельной энергии генерации от удельной энергии накачки НЛЖ POCl₃–SnCl₄–Nd³⁺ (1) и POCl₃–SnCl₄–UO₂²⁺–Nd³⁺ (2).

Рис. 2. Полосы поглощения Nd^{3+} , UO_2^{2+} и U^{4+} в растворителе $POCl_3$ -SnCl₄.

Рис. 3. Осциллограммы импульсов генерации Nd³⁺ в НЛЖ POCl₃–SnCl₄–UO₂²⁺–Nd³⁺; охлаждающий светофильтр – 1%-ный водный раствор K₂CrO₄, $\lambda \ge 500$ нм (*1*) и 10%-ный водный раствор NaNO₂, $\lambda \ge 400$ нм (*2*).

Для исследования влияния возбужденного уранила на генерационные свойства НЛЖ хроматный светофильтр заменили на нитритный с областью пропускания света $\lambda \ge 400$ нм. Полоса поглощения UO_2^{2+} находится в области $\lambda = 400-500$ нм (рис. 2) [9], и при работе с нитритным светофильтром возбуждаются не только ионы Nd^{3+} , но и UO_2^{2+} .

В первом же эксперименте с нитритным свето-

Рис. 4. Спектры возбуждения Nd^{3+} в НЛЖ $POCl_3$ -SnCl₄- Nd^{3+} (1) и $POCl_3$ -SnCl₄- UO_2^{2+} - Nd^{3+} (2); $\lambda_{reg} = 1052$ нм.

фильтром энергия лазерного излучения НЛЖ POCl₃-SnCl₄–UO₂²⁺–Nd³⁺ увеличилась на ~40% в сравнении с экспериментами с хроматным светофильтром. На рис. З приведены генерационные импульсы НЛЖ POCl₃-SnCl₄-UO₂²⁺-Nd³⁺ с разными охлаждающими светофильтрами и с одинаковой энергией накачки. Видно, что при одновременном возбуждении Nd^{3+} и UO₂²⁺ снижается порог лазерной генерации и существенно возрастает амплитуда генерационного импульса. По-видимому, в этом случае энергия лазерного излучения увеличивается благодаря сенсибилизации Nd³⁺ уранилом. На рис. 4 представлен спектр возбуждения Nd³⁺ в НЛЖ POCl₃-SnCl₄-UO₂²⁺-Nd³⁺, на котором наряду с полосами поглощения Nd³⁺ четко проявляется полоса поглощения UO₂²⁺. Перенос энергии возбуждения $UO_2^{2+*} \rightarrow Nd^{3+}$ в растворах POCl₃-SnCl₄ связывают с образованием гетерокомплексов, которые содержат одновременно UO_2^{2+} и Nd³⁺ [10–13].

При последующих экспериментах с нитритным светофильтром энергия генерации лазера на POCl₃- $SnCl_4-UO_2^{2+}-Nd^{3+}$ постепенно снижалась, при этом форма и длительность генерационных импульсов практически не изменялись. Эти результаты указывают на ухудшение лазерных свойств уранилсодержащей жидкости при одновременном фотовозбуждении UO2²⁺ и Nd³⁺. Действительно, до и после генерационных экспериментов с хроматным светофильтром коэффициент неактивных потерь µ_{in} оставался постоянным, тогда как при работе с нитритным светофильтром неактивные потери НЛЖ POCl3-SnCl4- $UO_2^{2+}-Nd^{3+}$ постепенно возрастали. Увеличение μ_{in} приводило к росту пороговой энергии накачки и снижению выходной энергии генерации. Очевидной причиной увеличения µ_{in} служит фотовосстановление UO_2^{2+} и накопление U^{4+} , который поглощает оптическое излучение на длине волны лазерной генерации $Nd^{3+} \lambda_g = 1.05$ мкм (рис. 2). Полученные результаты подтверждают и объясняют экспериментальные данные, полученные при изучении генерационных свойств НЛЖ POCl₃-SnCl₄-UO₂²⁺-Nd³⁺ с нитритным светофильтром в работе [14].

Рис. 5. Осциллограммы импульсов накачки (1, 2) и генерации (3, 4) Nd³⁺ в НЛЖ SO₂Cl₂–GaCl₃–UO₂²⁺–Nd³⁺; $E_p = 78$ (1, 3) и 154 Дж/см³ (2, 4).

Рис. 6. Зависимость энергии генерации лазерного излучения лазера на НЛЖ SO_2Cl_2 -Ga Cl_3 -UO²⁺-Nd³⁺ с нитритным светофильтром от порядкового номера импульса накачки: испытания в течение первых суток (1) и через 40 ч (2).

Рис. 7. Спектр поглощения SO_2Cl_2 -Ga Cl_3 -U O_2^{2+} -N d^{3+} до (1) и после (2) генерационных испытаний с нитритным светофильтром.

Периодические измерения неактивных потерь в НЛЖ POCl₃–SnCl₄–UO₂²⁺–Nd³⁺ после завершения генерационных испытаний показали, что μ_{in} практически не изменялся и оставался на уровне 1.7×10^{-2} см⁻¹. Таким образом, с течением времени наработанный U(IV) не окисляется и характеристики НЛЖ POCl₃–SnCl₄–UO₂²⁺–Nd³⁺ в процессе генерационных экспериментов с нитритным светофильтром ухудшаются необратимо. Интересными оказались результаты генерационных испытаний НЛЖ на основе сульфурилхлорида. При работе с хроматным светофильтром для НЛЖ SO₂Cl₂–GaCl₃–Nd³⁺ и SO₂Cl₂–GaCl₃–UO²⁺₂–Nd³⁺ зависимости энергии лазерного излучения от энергии накачки в области $70 \le E_p \le 160 \text{ Дж/см}^3$ имели линейный характер, как и для НЛЖ на основе POCl₃. Представленные на рис. 5 осциллограммы импульсов свободной генерации лазера на SO₂Cl₂–GaCl₃–UO²⁺₂–Nd³⁺ показывают, что в данных условиях срыв генерации отсутствует по крайней мере до $E_p = 154 \text{ Дж/см}^3$.

Из анализа генерационных экспериментов с НЛЖ $SO_2Cl_2-GaCl_3-UO_2^{2+}-Nd^{3+}$ с нитритным светофильтром было установлено, что при одной и той же энергии накачки форма генерационных импульсов менялась несущественно, а энергия лазерного излучения и амплитуда лазерного импульса с каждым последующим импульсом накачки резко уменьшались. На рис. 6 приведена зависимость выходной энергии лазерного излучения SO_2Cl_2 -GaCl_3-UO₂²⁺-Nd³⁺ от порядкового номера импульса накачки. Экспоненциальное уменьшение E_g, наиболее вероятно, связано с появлением и накоплением U(IV), причем скорость фотовосстановления UO₂²⁺ оказалась неожиданно очень высокой: после первого цикла из шести генерационных импульсов неактивные потери в НЛЖ увеличились от $3.0 \cdot 10^{-3}$ до $1.4 \cdot 10^{-2}$ см⁻¹. Перед началом второй серии импульсов после 40 ч перерыва было обнаружено, что μ_{in} уменьшился до $9.0 \cdot 10^{-3}$ см⁻¹. После трех генерационных импульсов неактивные потери снова увеличились до $\mu_{in} = 2.0 \cdot 10^{-2} \text{ см}^{-1}$.

До и после генерационных экспериментов с нитритным светофильтром были измерены ЭСП НЛЖ SO_2Cl_2 -GaCl_3-UO₂²⁺-Nd³⁺. Если до облучения светом с $\lambda \ge 400$ нм U(IV) в ЭСП не обнаружили, то после фотооблучения в области длины волны лазерной генерации Nd³⁺ зарегистрировали полосу поглощения U(IV) (рис. 7), накопление которого, очевидно, и привело к росту неактивных потерь и снижению энергии лазера на НЛЖ SO₂Cl₂-GaCl₃-UO₂²⁺-Nd³⁺. Здесь следует добавить, что для НЛЖ SO₂Cl₂-GaCl₃-Nd³⁺ коэффициент неактивных потерь не изменялся и не зависел ни от количества генерационных экспериментов, ни от типа охлаждающего светофильтра.

После прекращения генерационных экспериментов кювету с НЛЖ SO₂Cl₂–GaCl₃–UO₂²⁺–Nd³⁺ хранили в темноте. Периодические измерения коэффициента неактивных потерь показали, что значение µ_{in} с течением времени уменьшается. Уменьшение µ_{in} до первоначального значения и полное восстановление генерационных свойств НЛЖ произошло через ~200 ч после окончания генерационных экспериментов. Учитывая отсутствие межионных взаимодейст-

вий между Nd^{3+} и UO_2^{2+} в SO_2Cl_2 -Ga Cl_3 -U O_2^{2+} -N d^{3+} [7], оценили наблюдаемую константу скорости реакции обратного окисления U(IV) при комнатной температуре: $k_1[UO_2^{2+}] \approx 1.4 \cdot 10^{-5} c^{-1}$.

Различие в протекании фотовосстановления уранила в разных НЛЖ можно объяснить следующим образом. Наиболее устойчивым состоянием окисления урана считается U(VI) [15]. Существенных химических изменений в водных растворах солей уранила, которые не содержат восстановителей, не наблюдали даже при фотооблучении [16]. В результате синтеза НЛЖ $POCl_3$ -SnCl_4-UO $^{2+}_2$ -Nd³⁺ образуются дихлорфосфатные гетерокомплексы мостикового О-Р–О-типа, которые одновременно содержат UO_2^{2+} и Nd³⁺, а также координированные к ним молекулы POCl₃. При облучении растворов светом в полосу поглощения UO₂²⁺ электроны с орбиталей POCl₃ переходят на орбитали фотовозбужденного уранила $(UO_2^{2^+})^*$ и образуются дихлорфосфатные комплексы U(IV) и газообразный хлор [17]

$$[UO_2(POCl_3)_x(PO_2Cl_2)_2] \cdot SnCl_4 \rightarrow [U(POCl_3)_{(x-2)}(PO_2Cl_2)_4] \cdot \\ \cdot SnCl_4 + Cl_2\uparrow.$$

В общем случае образование U(IV) из U(VI) является обратимым процессом. Однако в урансодержащих растворах $POCl_3$ -SnCl₄ равновесие смещается в сторону накопления U(IV), так как U⁴⁺ образует устойчивые комплексы с дихлорфосфат-ионами, причем в системе $POCl_3$ -SnCl₄-UO₂²⁺-Nd³⁺ образуются значительно более прочные комплексные структуры U(IV), чем в системе $POCl_3$ -SnCl₄-UO₂²⁺ [9].

При синтезе НЛЖ SO_2Cl_2 –Ga Cl_3 –UO $_2^{2+}$ –Nd³⁺ в результате сольватации формируются аддукты, в которых Nd³⁺ и UO $_2^{2+}$ изолированы друг от друга. При фотовозбуждении UO $_2^{2+}$, по-видимому, происходит внутрикомплексный перенос заряда за счет перехода электронов с орбиталей лиганда на орбитали UO $_2^{2+}$ и образование U(IV)

$[\mathrm{UO}_2(\mathrm{SO}_2\mathrm{Cl}_2)_y](\mathrm{GaCl}_4)_2 \to \mathrm{U}^{4+}.$

Судьбу «илового» кислорода $UO_2^{2^+}$ можно только предполагать, наиболее вероятно образование пиросульфурилхлорида $S_2O_5Cl_2$ или же кислородсодержащих соединений хлора. В любом случае в отсутствие оптической накачки образовавшийся U(IV) в SO_2Cl_2 -GaCl₃-UO₂²⁺-Nd³⁺ в герметично запаянных лазерных кюветах в закрытой системе переходил в состояние окисления U(VI): U⁴⁺ \rightarrow UO₂²⁺.

Ранее подобное обратимое восстановление UO_2^{2+} было отмечено только в растворе $POCl_3$ -SbCl₅-²³⁵UO₂²⁺, приготовленном из $UO_2(ClO_4)_2$ ·5H₂O: при облучении закрытой кюветы с раствором $POCl_3$ -SbCl₅-²³⁵UO₂²⁺ светом ксеноновой лампы происходило накопление U(IV), который практически полностью исчезал через несколько дней после снятия облучения [17]. Следует отметить, что SbCl₅ – сильный акцептор хлорид-ионов, и в отличие от других кислот Льюиса MCl_x координация хлора с сурьмой приводит к большей стабильности комплексных частиц, чем координация с кислородом [18].

Таким образом, при возбуждении светом в полосу поглощения $UO_2^{2^+}$ в НЛЖ $POCl_3$ -SnCl_4- $UO_2^{2^+}$ -Nd³⁺ и SO₂Cl₂-GaCl₃- $UO_2^{2^+}$ -Nd³⁺ происходит восстановление $UO_2^{2^+}$ и накопление U(IV). Однако если в НЛЖ $POCl_3$ -SnCl_4- $UO_2^{2^+}$ -Nd³⁺ наблюдали только образование U(IV), то в НЛЖ SO₂Cl₂-GaCl₃- $UO_2^{2^+}$ -Nd³⁺ с течением времени в отсутствие облучения происходит обратное окисление U(IV) до $UO_2^{2^+}$ и восстановление генерационных свойств НЛЖ.

Исследование выполнено при финансовой поддержке РФФИ и Правительства Калужской области (проект N 19-43-400004).

Список литературы

- [1] Аникиев Ю. Г., Жаботинский М. Е., Кравченко В. Б. Лазеры на неорганических жидкостях. М.: Наука, 1986. 248 с.
- [2] Серегина Е. А., Добровольский А. Ф., Кабаков Д. В. и др. // Квант. электроника. 2009. Т. 39, N 8. С. 705–713.
- [3] Добровольский А. Ф., Кабаков Д. В., Серегин А. А. и др. // Квант. электроника. 2009. Т. 39, N 2. С. 139–142.
- [4] Батяев И. М., Кабацкий Ю. А., Соклакова Н. А. // Радиохимия. 1993. Т. 35, N 2. С. 67–71.
- [5] Серегина Е. А., Дьяченко П. П., Калинин В. В. и др. Спектрально-люминесцентные свойства неорганической жидкости на основе хлористого тионила, активированного неодимом в присутствии уранила, при возбуждении продуктами ядерных реакций: Препринт ФЭИ N 2084. Обнинск, 1990. 12 с.
- [6] Батяев И. М., Кабацкий Ю. А., Морев С. Ю. // Письма в ЖТФ. 1991. Т. 17, вып. 17. С. 82–84.
- [7] Батяев И. М., Кабацкий Ю. А., Морев С. Ю. // Оптика и спектроскопия. 1992. Т. 72, N 6. С. 1489–1493.
- [8] Батяев И. М., Морев С. Ю. // ЖПХ. 1994. Т. 67, N 9. С. 1509–1513.
- [9] Тихонов Г. В., Серегина Е. А. // Радиохимия. 2008. Т. 50, N 4. С. 308–312.
- [10] Серёгина Е. А., Тихонов Г. В. // Хим. физика. 1996. Т. 15, N 8. С. 116–119.
- [11] Новодережкина Т. Л., Борина А. Ф., Серёгина Е. А., Куликовский Б. Н. // Координац. химия. 1996. Т. 29, N 10. С. 797–801.
- [12] Новодережкина Т. Л., Серёгина Е. А., Борина А. Ф., Куликовский Б. Н. // ЖНХ. 1998. Т. 43, N 2. С. 314–319.
- [13] Серёгина Е. А., Борина А. Ф., Новодережкина Т. Л., Куликовский Б. Н. // ЖНХ. 1999. Т. 44, N 7. С. 1201–1207.
- [14] Дьяченко П. П., Калинин В. В., Серёгина Е. А. и др. // Неорг. материалы. 1992. Т. 28, N 4. С. 905–907.
- [15] Нефедов В. Д., Текстер Е. Н., Торопова М. А. Радиохимия: Учеб. пособие для вузов. М.: ВШ, 1987. 272 с.
- [16] Юсов А. Б., Шилов В. П. // Изв. АН. Сер. хим. 2000. N 12. С. 1957–1984.
- [17] Тихонов Г. В. // Радиохимия. 2008. Т. 50, N 3. С. 198–202.
- [18] Гутман В. Химия координационных соединений в неводных растворах: Пер. с нем. М.: Мир, 1971. 220 с.