Особенности распределения ²²⁶Ra, ²³⁸U и ²³²Th в поверхностном слое морских осадков в условиях активной биоседиментации в зоне арктического фронта

© М. М. Доманов*^{*a*}, А. К. Амбросимов^{*a*}, Е. А. Новичкова^{*a*}

Институт океанологии им. П. П. Ширшова РАН, 117997, Москва, Нахимовский пр., д. 36; *e-mail domanov@ocean.ru

Получена 17.10.2018, после доработки 17.10.2018, принята к публикации 25.12.2018 УДК 551.46.0:574.632

Исследовано распределение естественных радионуклидов и органического вещества в донных осадках зоны активной биоседиментации на разрезе через арктический фронт в Северной Атлантике. При этом выполнена оценка соотношения количеств ²²⁶Ra, ²³⁸U и ²³²Th, как осажденных в поверхностном слое донных осадков из морской воды, так и поступивших в виде терригенного материала. Показано, что прямое осаждение радия из воды в морские осадки коррелирует с содержанием в осадке органического вещества. Концентрация неравновесного с ураном радия изменяется в пределах 95–99% от общего содержания и увеличивается при увеличении содержания в осадке хлороформного битумоида (XБА) (R = 0.95). Осаждение неравновесного ²³⁸U из воды в морские осадки также существенно и составляет от 42 до 69% от общего содержания ²³⁸U в осадках. Отношение концентраций неравновесного урана и неравновесного радия в осадках уменьшается с увеличением глубины и увеличивается при увеличении содержания в осадке XБА. Наблюдается положительная связь между содержанием тория и урана (R = 0.93) и его неравновесной и терригенной фракциями (R = 0.93 и 0.94 соответственно).

Ключевые слова: осадочное вещество, углеводороды, радионуклиды.

DOI: 10.1134/S0033831119050150

На основе данных о пространственном распределения $^{226}\mathrm{Ra},\,^{238}\mathrm{U}$ и $^{232}\mathrm{Th}$ в поверхностном слое морских осадков [1-6] были предложены различные гипотезы об источниках и механизме накопления естественных радионуклидов в осадках [3, 5]. При этом возможность прямого осаждения ²²⁶Ra из морской воды недооценивалась или вообще отвергалась [3]. В работах [4, 5], напротив, было показано, что прямое осаждение радия из воды в морские осадки является существенным фактором его накопления в поверхностном слое донных осадков. Такой механизм осаждения радионуклидов наиболее выражен в зонах активной биоседиментации однако сведения об исследовании этого процесса весьма ограничены. Известно также, что существует положительная корреляционная связь содержания ²²⁶Ra, ²³²Th в осадке с ароматическими структурами органического вещества осадка, которые способствуют селективному накоплению радионуклидов [7]. При этом найденные зависимости распределения ²²⁶Ra, ²³²Th в поверхностном слое осадков и их связь с органическим веществом осадков отражают региональные особенности формирования донных осадков.

В настоящей работе с целью изучения условий формирования зон повышенной концентрации ²²⁶Ra, ²³⁸U и ²³²Th в донных осадках с высоким содержанием органического вещества исследовано распределение естественных радионуклидов и органического вещества в донных осадках зоны активной биоседиментации на разрезе через арктический фронт в Северной Атлантике. При этом выполнена оценка соотношения количеств ²²⁶Ra, ²³⁸U и ²³²Th, как осажденных в поверхностном слое донных осадков из морской воды, так и поступивших в виде терригенного материала.

Район работ и методика

Широтный разрез по 60° с.ш. пересекает квазистационарный полярный фронт с резко изменяющимися гидрологическими, гидрохимическими и биологическими характеристиками среды. В этой высокопродуктивной зоне океана величина среднегодовой первичной продукции в пределах фронта изменяется от 200 до 500 мг С/м² в день [8]. В рассматриваемом районе ежегодно наблюдается массовое развитие кокколитофорид, первичная продукция которых часто составляет 5-40% от первичной продукции фитопланктона [8, 9]. Кокколитофориды, имеющие кальциевый скелет, извлекают из морской воды кальций и вносят основной вклад в формирование седиментационного потока карбоната кальция, поступающего в донные осадки [10, 11]. В этих условиях биологический фактор становится одним из доминирующих факторов в создании потока седиментации, распределении органического вещества и формировании элементного состава донных осадках.

Материал для исследования отобран дночерпателем «Океан-0.25» из поверхностного слоя 0–5 см донных осадков в северной Атлантике на широтном разрезе по 60°N в 49-м и 51-м рейсах НИС «Академик Иоффе» в рамках проекта РНФ «Мировой

Номер	Широта	Долгота	Глубица м	Тип осолко
станции	(с.ш.)	(з.д.)	т лубина, м	Типосадка
3348	59°30′	18°	2183	Серый, мелкий алеврит, примесь гравия
3352	59°30.1′	20°38.47′	2821	Коричневый пелит с примесью мелкого алеврита
3545	59°29.91′	20°41.68′	2825	Коричневый песок с примесью пелита, фораминиферовый
3359	59°30′	24°40.56′	2515	Темно-коричневый пелит
3556	59°30.31'	24°42.96′	2517	Темно-серо-коричневый алеврито-пелитовый ил фораминиферовый
3568	59°30′	28°39.97′	1694	Оливково-коричневый песчано-пелитовый ил, фораминиферовый
3378	59°30.12′	32°50.66′	2175	Светло-коричневый мелкий алеврит
3383	59°29′	36°06.15′	3083	Коричневый мелкий алеврит
3414	59°58′	43°04.9′	2985	Светло-коричневый алеврит с песчаной примесью

Таблица 1. Координаты станций в районе работ и характеристика осадков (горизонт 0-5 см)

океан в XXI веке: климат, экосистемы, ресурсы, катастрофы» [12, 13]. Положение станций и характеристика осадков показаны в табл. 1. Поверхностный слой осадков в основном представлен известковым кокколито-фораминиферовым песком различной размерности. Распределения полярного вида планктонных фораминифер *Neogloboquadrina pachyderma (s)* (Ehrenberg), IRD (терригенные зерна ледового разноса) и CaCO₃ в осадках свидетельствуют о межледниковых (голоценовых) условиях осадконакопления в данном районе [14].

Измерения концентрации ²²⁶Ra и ²³²Th в осадке выполнены в лаборатории дозиметрии и радиоактивности окружающей среды химического факультета МГУ им. М. В. Ломоносова с помощью γ -спектрометра с детектором из сверхчистого германия GC-3020 с относительной эффективностью по линии ⁶⁰Co (1.332 МэВ), равной 30%, и разрешением по этой линии 1.8 кэВ. Использоваи программное обеспечение GENIE-400 PC. ²²⁶Ra определяли по дочернему продукту ²¹⁴Bi (энергия 609 кэВ), ²³²Th – по ²²⁸Ac (энергия 583, 909 кэВ). Перед измерением осадки, упакованные в герметичные контейнеры, выдерживали для накопления дочерних продуктов распада в течение месяца. Точность определения ²²⁶Ra 4–7%, ²³²Th – 7–12%.

Дополнительно методом масс-спектрометрии с индуктивно связанной плазмой (ИСП МС) измеряли содержание в осадках Al и U. Для контроля качества использовали стандартные образцы GSD-2 и СДО-1. Погрешности измерений составляют для Al 5, для U – 13%.

Содержание в осадках хлороформного битумоида (ХБА) определяли методом холодной экстракции на ультразвуковой бане. Предварительно высушенные при температуре 60°С пробы трижды экстрагировали хлороформом, затем экстракты объединяли и выпаривали на роторном испарителе.

Результаты и обсуждение

Результаты определения концентрации 226 Ra, 238 U, 232 Th, Al и XБA приведены в табл. 2. Концен-

Таблица 2. Концентрация радионуклидов 226 Ra, 238 U, 232 Th. а также Al и XБA в поверхностном слое осадков

,	-		- · I.			
Номер	²²⁶ Ra,	²³⁸ U,	²³² Th,	Al,	ХБА,	Глубина,
станции	Бк/кг	Бк/кг	Бк/кг	%	$M\Gamma/\Gamma$	М
3348	75.1	5	6.9	2.1	0.016	2183
3352	43.1	5.8	4.4	2.2	0.013	2821
3545	36.3	4.6	4.1	1.9	0.012	2825
3359	67.3	8.5	10.5	3.5	0.019	2515
3556	69.9	5.9	7.2	2.4	0.0185	2517
3568	67.4	5.8	5.9	2.3	0.0175	1694
3378	28.5	4.9	5.2	2	0.01	2175
3383	19.1	7.6	10.7	3	0.01	3083
3414	26.5	8.9	12.2	3	0.01	2985

трации 226 Ra, 232 Th и 238 U в поверхностном слое осадков были сопоставлены с содержанием в осадке органического вещества (ХБА) (рис. 1).

Наиболее существенные изменения концентрации ²²⁶Ra и содержания органики (ХБА) в осадках наблюдались в восточной части разреза 20–30° з.д. (Исландский бассейн). Эта часть разреза находится в области арктического фронта в высокопродуктивной зоне океана. Связь концентрации ²²⁶Ra с содержанием в осадке органического вещества хорошо выражена, коэффициент корреляции R = 0.95, что указывает на существенный вклад биологического сооб-

Рис. 1. Концентрация ²²⁶Ra (1), ²³²Th (2), ²³⁸U (3) и ХБА (4) на разрезе.

Рис. 2. Зависимость концентрация ²²⁶Ra в осадке от содержания хлороформного битумоида.

щества в накоплении ²²⁶Ra в донных осадках зоны повышенной продуктивности (рис. 2).

Содержание ²²⁶ Ra в осадке определяется суммой концентраций радия: ²²⁶Ra, инкорпорированного в биогенные частицы, такие как карбонаты, опал, органическое вещество, равновесного с ураном радия, поступающего в осадки с терригенным материалом, где он находится в радиоактивном равновесии в ряду ²³⁸U-²³⁰Th-²²⁶Ra, и ²²⁶Ra, образованного при распаде ²³⁰Th. Вычитая из общей активности радия (²²⁶Ra_{общ}) концентрацию равновесного с терригенным ураном радия (²²⁶Ra_{рав}), можно оценить эксцесс радия – количество неравновесного радия (²²⁶Ra_{экс}), непосредственно извлеченного из воды и образованного при распаде 230 Th (226 Ra_{Io}). Содержание неравновесного радия изменяется в пределах 95-99% и увеличивается при увеличении содержания в осадке ХБА (R = 0.95). Содержание радия, образованного при распаде 230 Th, в данной работе не рассчитывали. Однако для косвенной оценки величины ²²⁶Ra_{Io} на станции 3348 можно использовать данные работы [5], где отношение 226 Ra_{IO}/ 226 Ra_{общ} в осадках океана изменялось в пределах 0.2-0.9 (среднее 0.46) и зависело от скорости осадкообразования (R = -0.77). При этом уравнение регрессии представлено выражением

$$y = -0.1539x + 0.7893$$

Таблица 3. Концентрация неравновесного ²²⁶Ra (эксцесс ²²⁶Ra_{экс}), терригенной фракции урана (²³⁸U_{тер}) и эксцесс урана (²³⁸U_{экс}) в поверхностном слое осадков

Номер	²²⁶ Ra _{экс} ,	²³⁸ U _{тер} ,	²³⁸ U _{экс} ,	²³⁸ U/ ²²⁶ Ra,	Глубина,
станции	Бк/кг	Бк/кг	Бк/кг	%	М
3348	74.4	0.70	4.3	6.7	2183
3352	42.4	0.73	5.0	13.3	2821
3545	35.7	0.62	4.0	12.7	2825
3359	66.2	1.13	7.4	12.6	2515
3556	69.1	0.79	5.1	8.4	2517
3568	66.7	0.75	5.0	8.5	1694
3378	27.8	0.66	4.2	17.1	2175
3383	18.1	0.98	6.6	39.9	3083
3414	25.4	1.14	7.7	33.5	2985

где $y - {}^{226}\text{Ra}_{\text{Io}}/{}^{226}\text{Ra}_{\text{общ}}$, $x - \text{скорость осадкообразова$ ния, см/1000 лет.

Скорость осадкообразования в районе станции 3348, согласно данным, приведенным в работе [16], составляет 1 см /2000 лет. При этом отношение 226 Ra₁₀/ 226 Ra_{общ} получается равным 0.71. Таким образом, величина 226 Ra, извлеченного из воды, составит 29%.

С изменением глубины меняются несколько факторов, определяющих как интенсивность поступления Ra в осадки, так и соотношение форм нахождения Ra в воде и взвеси. Это связано с уменьшением органического вещества в осадках и выделением Ra в водную фазу при разложении органического вещества. Уменьшение общего содержания ²²⁶Ra и эксцесса радия во взвеси с глубиной было отмечено ранее в пробах взвеси из седиментационных ловушек [17]. В диапазоне глубин 389-5086 м концентрация ²²⁶Ra во взвеси уменьшилась в 2.2 раза, а величина потока эксцесса ²²⁶Ra – в 5.2 раза (PARFLUX E site) [17]. Разложение органического вещества продолжается и в осадке. При этом в самом осадке происходит накопление ²²⁶ Ra_{Io}, образованного при распаде²³⁰Th. Таким образом, различные по направленности и интенсивности процессы создают сложную систему формирования концентрации радионуклидов на разных глубинах. В исследованном районе с увеличением глубины для большинства проб (исключая станцию 3378) общее содержание Ra и его неравновесная часть (эксцесс ²²⁶Ra) в осадках уменьшается (R = -0.82).

Концентрация ²³⁸U в осадке изменяется в пределах 4.6–8.9 Бк/кг. Среднее значение 6.3 Бк/кг (табл. 2, 3). Эта величина близка к кларковому содержанию ²³⁸U в базальте (7.5 Бк/кг) [18]. Поскольку кларковое соотношение U с Al хорошо отражает их содержание в терригенных осадках, то можно оценить терригенную часть ²³⁸U (²³⁸U_{тер}) в осадке

$$^{238}U_{\text{rep}} = (^{238}U_{\kappa\pi}/\text{Al}_{\kappa\pi}) \cdot \text{Al}_{\mu_{3M}},$$

где 238 U_{кл}/Al_{кл} – соотношение кларкового содержания 238 U и Al в базальтах, Al_{изм} – концентрация алюминия в пробе.

Терригенная часть ²³⁸U в осадке составляет 13– 14%. Эксцесс урана (²³⁸U_{экс}) (часть ²³⁸U, связанная с частицами биогенного генезиса, такими как карбонаты, опал, органическое вещество) получена вычитанием терригенной фракции из общего содержания ²³⁸U в осадке (табл. 3). Эта часть ²³⁸U, по-видимому, извлечена непосредственно из морской воды и не связана с дочерними изотопами. Такой вывод ранее был сделан ранее в работе [17]. Эксцесс урана составляет 86–87% от общего содержания ²³⁸U в осадках. Эти результаты подтверждают вывод, сделан-

Таблица 4. Корреляционная матрица значений коэффициентов корреляции

Пара-	²²⁶ Ra	²³² Th	238 _{I I}	238 _{I I}	238 _{I I}	²²⁶ Ra	XΕΔ
метр	ixa	111	0	Оэкс	Отер	ICC 3KC	ADA
²²⁶ Ra	1.00					1.00	0.95
²³² Th		1.00	0.93	0.93	0.94		
²³⁸ U		0.93	1.00	1.00	1.00		
²³⁸ U _{экс}		0.93	1.00	1.00			
²³⁸ U _{тер}		0.94	1.00		1.00		
²²⁶ Ra ^{экс}	1.00					1.00	0.95
ХБА	0.95					0.95	1.00

ный в работе [4] о том, что основная часть урана на глубоководных станциях происходит из урана морской воды.

Корреляционная связь ХБА, ²²⁶Ra, ²³²Th, ²³⁸U и их фракций в осадках представлена в табл. 4.

Концентрация ²³²Th (Бк/кг) изменяется от 4.1 до 12.2 при среднем значении 6.2. Повышенное содержание²³²Th характерно для западной части разреза, где в осадках преобладает алевритовая и песчаная фракция с примесью гравийно-галечного материала. Эти результаты согласуются с выводами работы [5], в которой было показано, что содержание Th в осадках определяется поступлением в них терригенного материала, где Th присутствует в кристаллической решетке минералов. Концентрация ²³²Th коррелирует с содержанием Al (R = 0.94). Наблюдается положительная связь между содержанием Th и U (R =(0.93) и его биогенной и терригенной фракциями (R =0.93 и 0.94 соответственно). В области зоны с повышенной концентрацией битумоида увеличение концентрации Th и U в осадке не отмечено. Наблюдается положительная связь между отношением радиоактивности ²²⁶Ra/²³²Th и концентрацией ХБА в осадке, что обусловлено увеличением концентрации ²²⁶ Ra в осадке с повышением содержания ХБА при снижении содержания ²³²Th.

Таким образом, нами подтверждена гипотеза о том, что прямое осаждение Ra из морской воды является существенным фактором в механизме накопления Ra в поверхностном слое донных осадков. Основное количество радия в осадке (95–99%) представлено неравновесным с ураном радием, абсорбированным из воды и поступившим в результате распада материнского ²³⁰Th. Доля терригенного, равновесного с ураном, радия незначительна. Содержание неравновесного Ra в осадках увеличивается с ростом содержания в осадке XБА (R = 0.95). Косвенная оценка доли Ra, полученного при распаде ²³⁰Th (станция 3348), дает величину 71% от общего содер-

жания Ra. Содержание осажденного из воды неравновесного ²³⁸U составляет 86–87% от общего содержания ²³⁸U в осадках. Отношение концентраций U к Ra в осадках растет с увеличением глубины и уменьшается при увеличении содержания в осадке XБА. Наблюдается положительная связь между содержанием Th и U (R = 0.93), а также с его неравновесной и терригенной фракциями (R = 0.92 и 0.94 соответственно).

Авторы признательны акад. А. П. Лисицыну за общее руководство работами, а также участникам экспедиции за помощь при отборе материала. Работы проведены при финансовой поддержке гранта РНФ N 14-50-00095. Обработка материала частично проведена в рамках Государственного задания, тема N 0149-2019-0007.

Список литературы

- [1] Piggot C. S. // Am. J. Sci. 1933. Vol. 25, N 5. P. 229-338.
- [2] Rona E., Urry F. D. // Am. J. Sci. 1952. Vol. 250. P. 241-245
- [3] Косци Ф. Ядерная геология. М.: Изд-во иностран. литературы, 1956. 345 с.
- [4] Старик И. Е., Кузнецов Ю. В., Легин В. К. // Радиохимия. 1959. Т. 1, N 3. С. 321–324.
- [5] Кузнецов Ю. В., Симоняк З. В., Лисицин А. П., Френклих М. С. // Геохимия. 1968. N 3. С. 323–333.
- [6] Miyake Y., Saruhashi K., Sugimura Y. // Rec. Oceanogr. Works Jpn., New Ser. 1968. Vol. 9, N 2. P. 179–187.
- [7] Доманов М. М., Верховская З. И., Доманова Е. Г. // Нефтехимия. 2011. Т. 51, N 4. С. 267–273.
- [8] Кобленц-Мишке О. И. Биология океана. М.: Наука, 1977. Т. 1. С. 62–64.
- [9] Poulton A. J., Adey T. R., Balch W. M., Holligan P. M. // Deep Sea Res. Part II. 2007. Vol. 54. P. 538–557.
- [10] Poulton A. J., Painter S. C., Young J. R. et al. // Global Biogeochem. Cycles. 2013. Vol. 27. P. 1023–1033.
- [11] Milliman J. D. // Global Biogeochem. Cycles. 1993. Vol. 7, N 4. P. 927–957.
- [12] Клювиткин А. А., Политова Н. В., Новигатский А. Н. и др. // Океанология. 2016. Т. 56, N 5. С. 833–835.
- [13] Клювиткин А. А., Политова Н. В., Новигатский А. Н. и др. // Океанология. 2017. Т. 57, N 3. С. 514–516.
- [14] Broecker W., Clark E. // Paleoceanogr. Paleoclimatol. 2009. Vol. 24. Paper PA3205. http://dx.doi.org/10.1029/2009PA001731.
- [15] Николаева Д. Ю., Баширова Л. Д., Новичкова Е. А., Козина Н. В. // Общество. Среда. Развитие. 2017. N 4. С. 145– 151.
- [16] Клювиткин А. А., Новигатский А. Н., Политова Н. В. Геология морей и океанов: Матер. XXII Междунар. науч. конф. (Школы) по морской геологии. М.: ИО РАН, 2017. Т. III. С. 82–86.
- [17] Brewer P. G., Nozaki Y., Spencer D. W., Fleer A. P. // J. Marine Res. 1980. Vol. 38, N 4. P. 703–728.
- [18] Taylor S. R. // Geochim. Cosmochim. Acta. 1964. Vol. 28. P. 1273–1285.