Синтез и структура селенатных комплексов пятивалентного нептуния $M[(NpO_2)(SeO_4)(H_2O)]$ (M = K, Rb, Cs)

© А. Г. Иванова^{*a*}, А. М. Федосеев*^{*b*}

^а Институт кристаллографии им. А. В. Шубникова ФНИЦ «Кристаллография и фотоника» РАН, 119333, Москва, Ленинский пр., д. 59

> ⁶ Институт физической химии и электрохимии им. А. Н. Фрумкина РАН, 119071, Москва, Ленинский пр., д. 31, корп. 4; *e-mail: fedosseev@ipc.rssi.ru

Получена 29.10.2018, после доработки 04.02.2019, принята к публикации 04.02.2019 УДК 539.26+546.798.21

Синтезированы и исследованы методом рентгеноструктурного анализа новые селенатные комплексы Np(V) с различными внешнесферными катионами: K[(NpO₂)(SeO₄)(H₂O)] (1), Rb[(NpO₂)(SeO₄)(H₂O)] (2), Cs[(NpO₂)(SeO₄)(H₂O)] (3). Соединения являются изоструктурными, координационный полиэдр Np(V) представляет собой пентагональную бипирамиду. Нептуноил-ионы NpO₂⁺ объединены в зигзагообразные цепочки посредством катион-катионного взаимодействия.

Ключевые слова: нептуний(V), селенат, катионы щелочных металлов, синтез, кристаллическая структура, катион-катионное взаимодействие.

DOI: 10.1134/S0033831119060029

Селенатные соединения Np(V) изучаются довольно давно. Так, гидраты селената нетуноила были синтезированы и описаны еще в работе [1]. Подробно изучены условия синтеза дигидратов и моногидратов изоструктурных сульфата и селената нептуноила. Структура гидратов селената нептуноила NpO_2^+ детально исследована в работах [2–4]. Комплексные селенаты с мольным отношением Np(V) : SeO₄²⁻ менее 2 : 1 описаны только для соединений с натрием и гексаамминкобальтом в качестве внешнесферного катиона: Na(NpO₂)(SeO₄). (H₂O) [3] и Co(NH₃)₆NpO₂(SeO₄)₂·3H₂O [4]. В этих работах установлено, что в структуре комплекса $Na(NpO_2)(SeO_4)(H_2O)$ имеет место катион-катионное взаимодействие, а в комплексах Na₃(NpO₂). $(SeO_4)_2(H_2O)_n$ (*n* = 1, 2) [3] с более низким мольным отношением Np(V) : SeO₄²⁻ координационные полиэдры (КП) нептуния содержат помимо "ильных" атомов О только атомы О селенат-ионов. Родственные селенатам сульфаты Np(V) с щелочными внешнесферными катионами – NaK₃(NpO₂)₄(SO₄)₄· $(H_2O)_2$ и NaNpO₂SO₄(H₂O) – описаны в работе [5]. Представляло интерес расширить набор внешнесферных катионов в селенатных анионных комплексах нептуноила с целью определения возможного влияния природы таких катионов на структурные особенности комплексов Np(V).

В статье представлены результаты синтеза и рентгеноструктурного исследования новых селенатов Np(V) с разными внешнесферными катионами: $K[(NpO_2)(SeO_4)(H_2O)]$ (1), $Rb[(NpO_2)(SeO_4)(H_2O)]$ (2), $Cs[(NpO_2)(SeO_4)(H_2O)]$ (3).

Экспериментальная часть

 237 Np с незначительной примесью других изотопов очищали анионообменным методом. Гидроксид Np(V) осаждали водным раствором аммиака, осадок несколько раз промывали водой и затем растворяли в ~0.3 моль/л H₂SeO₄, получая раствор ~0.1 моль/л (NpO₂)₂SeO₄. К вышеуказанному раствору селената Np(V) добавляли раствор 1 моль/л селената соответствующего щелочного металла до мольного отношения Np : щелочной металл 1 : 4 или 1 : 10. Растворы нагревали в запаянных стеклянных ампулах при ~180°C в течение 20 ч. В результате в реакционной смеси образовывались зеленые призматические кристаллы, из которых и отбирали образцы для исследования.

Рентгенодифракционные данные получены на автоматическом четырехкружном дифрактометре с двумерным детектором XCalibur Eos S2 (Rigaku Oxford diffraction) (излучение Mo K_{α} , $\lambda = 0.71073$ Å, графитовый монохроматор, $\omega/2\theta$ -сканирование). Экспериментальные данные обрабатывали в программе CrysAlis PRO (версия 171.38.43) [6]. Поправки на поглощение вводили аналитическим методом с использованием реальной огранки кристаллов [7]. Структуры расшифровывали методом переворота заряда (charge flipping) по программе SuperFlip [8] и уточняли в анизотропном приближении для всех неводородных атомов полноматричным методом наименьших квадратов с использованием программного комплекса JANA2006 [9]. Атомы водорода молекулы воды локализовали из разностного синтеза, построенного в окрестности

Параметр	1 2		3			
Химическая формула	$K[(NpO_2)(SeO_4)(H_2O)]$	Rb[(NpO ₂)(SeO ₄)(H ₂ O)]	Cs[(NpO ₂)(SeO ₄)(H ₂ O)]			
Сингония	Ромбическая					
Пространственная группа	$Pna2_1$					
<i>a</i> , Å	9.0556(1)	9.0556(1) 9.1439(3)				
b, Å	13.0658(2)	12.9551(3)	12.7022(2)			
<i>c</i> , Å	5.654(1)	5.8703(2)	6.2206(2)			
<i>V</i> , Å ³	668.98(2)	695.40(3)	732.01(3)			
Ζ	4					
Температура, К	293					
$ρ_{\rm выч}$, γ/cm ³	4.658	4.924	5.108			
μ, мм ⁻¹	11.15	15.71	14.81			
20 _{тах} , град	77.6	81.4	83.2			
Число измеренных рефлексов	4422	19165	20708			
Число независимых рефлексов	2498	5718	5646			
Число независимых отражений с $I > 2\sigma(I)$	2181	3583	4358			
Число параметров уточнения	98					
$R(F) \left[I > 2\sigma(I) \right]$	0.035	0.041	0.033			
$wR(F^2) \left[I > 2\sigma(I)\right]$	0.043	0.042	0.030			

Таблица 1. Кристаллографические данные $M[(NpO_2)(SeO_4)(H_2O)]$ (M = K, Rb, Cs)

атома кислорода O(7), и включали в модель с изотропным температурным фактором, равным $1.2U_{eq}$ атома O(7), с которым они связаны. Позиционные параметры атомов водорода уточняли с фиксирующими ограничениями, соответствующими геометрии молекул воды. Структурные данные M[(NpO₂)· (SeO₄)(H₂O)] (M = K, Rb, Cs) депонированы в банк данных неорганических структур (депоненты ICSD 434601–434603 соответственно). Кристаллографи-

Таблица 2. Длины связей (*d*, Å) в М[(NpO₂)(SeO₄)(H₂O)] (M = K, Rb, Cs)

Связь	1	2	3
Np(1)–O(1)	1.831(8)	1.803(5)	1.794(4)
Np(1)–O(2)	1.849(7)	1.857(5)	1.853(4)
Np(1)–O(2)	2.397(7)	2.405(5)	2.441(4)
Np(1)–O(3)	2.462(6)	2.467(4)	2.460(3)
Np(1)–O(7)	2.490(7)	2.477(6)	2.482(4)
Np(1)–O(4)	2.494(7)	2.474(6)	2.463(4)
Np(1)–O(5)	2.501(8)	2.503(6)	2.495(4)
Se(1) - O(4)	1.638(7)	1.636(5)	1.642(4)
Se(1)-O(3)	1.642(7)	1.632(5)	1.638(4)
Se(1) - O(5)	1.643(8)	1.638(6)	1.634(5)
Se(1)–O(6)	1.667(8)	1.639(6)	1.658(6)
M(1)–O(1)	2.713(7)	2.812(5)	2.932(4)
M(1)–O(4)	2.792(7)	2.908(5)	3.061(4)
M(1)–O(3)	2.801(9)	2.952(7)	3.154(5)
M(1)–O(1)	2.902(7)	2.974(5)	3.056(4)
M(1)–O(6)	2.963(8)	3.124(6)	3.336(7)
M(1)–O(7)	2.985(9)	3.121(6)	3.325(5)
M(1)–O(4)	3.167(7)	3.278(5)	
M(1)-O(5)		3.339(6)	3.337

ческие данные и детали рентгеноструктурных экспериментов приведены в табл. 1, выбранные межатомные расстояния – в табл. 2, параметры водородных связей – в табл. 3.

Результаты и обсуждение

Синтезированные соединения 1–3 с общей формулой $M[(NpO_2)(SeO_4)(H_2O)]$ (M = K, Rb, Cs) являются изоструктурными. Атомы Np находятся в пентагонально-бипирамидальном окружении атомов О. Нептуноильные группы Np^VO₂ практически линейные. Углы O(1)–Np^V–O(2) несколько уменьшаются в ряду 1–3 и составляют 178.3(3), 177.7(2)

Таблица 3. Параметры водородных связей в структурах $M[(NpO_2)(SeO_4)(H_2O)]$ (M = K, Rb, Cs)^a

D–H…A	D–H, Å	H…A, Å	D…A, Å	D–Н…А, град			
K[(NpO ₂)(SeO ₄)(H ₂ O)]							
O(7)—H(1)····O(6a)	0.93(3)	1.83(1)	2.721(9)	160.3(5)			
O(7) - H(2) - O(6b)	1.08(1)	1.72(1)	2.661(11)	142.9(5)			
$Rb[(NpO_2)(SeO_4)(H_2O)]$							
O(7)— $H(1)$ ···· $O(6a)$	1.04(5)	1.71(6)	2.743(8)	173(6)			
O(7)— $H(2)$ ···· $O(6b)$	0.91(5)	1.80(6)	2.683(8)	163(7)			
$Cs[(NpO_2)(SeO_4)(H_2O)]$							
O(7) - H(1) - O(6c)	0.96(6)	1.74(6)	2.680(8)	164(5)			
O(7)—H(2)···O(6 <i>a</i>)	0.81(4)	1.96(4)	2.740(7)	163(5)			
^a Cummerphileckie operatorii: $a = (r - 1/2) = v + 1/2$ z): $b = (-r + 1/2)$							

^а Симметрические операторы: a - (x - 1/2, -y + 1/2, z); b - (-x + 1/2, y - 1/2, z - 1/2); c - (x + 1/2, y - 1/2, z + 1/2).

Рис. 1. Кристаллическая структура М[(NpO₂)(SeO₄)(H₂O)] (М = К, Rb, Cs). Вид в направлении [001].

и 177.0(2)° соответственно. Расстояния от Np до апикальных («ильных») атомов кислорода O(1), O(2) составляют 1.831(8), 1.849(7) Å в 1, 1.803(5), 1.857(5) Å в 2 и 1.795(4), 1.853(4) Å в 3. Пентагональные бипирамиды Np^V связаны через атомы О(2) вдоль оси с в зигзагообразные цепочки. В экваториальной плоскости полиэдров Np атомы O(3), O(4), O(5) являются общими с тремя тетраэдрами SeO₄, объединяющими цепочки полиэдров Np в каркас (рис. 1). Пятая вершина в экваториальной плоскости Np-полиэдра [атом O(7) молекулы воды] находится на расстоянии 2.48(1) Å от Np и значительно удалена от K⁺, Rb⁺ и Cs⁺ (на 2.98, 3.12, 3.32 Å соответственно). Молекула воды является нейтральным донорным лигандом и выполняет структурообразующую функцию, объединяя через водородные связи O(7)-H(1)…O(6) и O(7)-H(2)…O(6) цепочечные фрагменты структуры в каркас. Атомы щелочных металлов M^+ (K^+ , Rb^+ , Cs^+) располагаются в полостях каркаса, образованных пересекающимися каналами вдоль направлений [001] и [100]. Расстояния между ближайшими атомами Np^V возрастают с увеличением ионного радиуса щелочного металла (Np–Np: 4.148(1) Å в 1, 4.176(1) Å в 2, 4.228(1) Å в **3**). Углы Np–O(2)–Np составляют 154.8° в **1**, 159.7° в **2**, 156.7° в **3**.

Как и в соединении NpO₂ClO₄(H₂O)₄ [10], в структурах синтезированных селенатов нептуноилионы NpO₂⁺ объединены в зигзагообразные цепочки посредством катион-катионного взаимодействия (рис. 2, *a*), при котором каждый катион NpO₂⁺ выступает в качестве монодентатного лиганда для соседнего нептуноил-иона и одновременно является координирующим центром для пяти атомов О экваториальной плоскости [11].

Щелочные катионы располагаются в крупных КП из атомов О с КЧ 6–8. Расстояния до ближайших шести атомов О составляют 2.7–3.97 Å для K⁺, 2.81–3.12 Å для Rb⁺, 2.93–3.34 Å для Cs. Наиболее отдаленные от катионов M⁺ атом O(7) молекулы воды и неподеленная кислородная вершина O(6) тетраэдра Se–O находятся на расстоянии 3.16 и 3.37 Å от K, 3.28–3.34 Å от Rb и 3.51 Å от Cs.

Синтезированные соединения **1–3** не изоструктурны селенатам и сульфатам Na: Na(NpO₂)(SeO₄)(H₂O) [a = 18.661(3), b = 5.6987(8), c = 24.167(3) Å; $\beta = 102.999(2)^{\circ}$] [2, 4] и Na(NpO₂)(SO₄)(H₂O) $[a = 102.999(2)^{\circ}]$ [2, 4] и Na(NpO₂)(SO₄)(H₂O) [2, 4] и Na(NpO₂)(Na(NpO₂)

Рис. 2. Катион-катионное взаимодействие нептуноил-ионов NpO₂⁺: a - в зигзагообразной цепочке из пентагональных бипирамид Np в соединениях M[(NpO₂)(SeO₄)(H₂O)] (M = K, Rb, Cs); $\delta - в$ ленточном структурном фрагменте из сдвоенных зигзагообразных цепочек в структуре Na[(NpO₂)(SeO₄)(H₂O)] (пространственная группа C12/c1, a = 18.66, b = 5.70, c = 24.17 Å) [4].

18.3638(13), b = 5.6424(4), c = 23.5512(17) Å; $\beta =$ 103.366(2)°] [5], которые кристаллизуются в моноклинной пространственной группе C12/c1 с двумя удвоенными параметрами элементарной ячейки. В структурах Na-аналогов зигзагообразные цепочки из пентагональных пирамид Np^V объединены попарно с образованием лент, вытянутых вдоль оси с (рис. 2, б). Такие структуры образуются за счет другого типа катион-катионного взаимодействия, при котором каждый Np(1)O₂⁺ является координирующим центром для одного $Np(2)O_2^+$ и монодентатным лигандом для одного иона $Np(2)O_2^+$, а каждый $Np(2)O_2^+$ является координирующим катионом для двух ионов Np(1)O₂⁺ и Np(2)O₂⁺ и одновременно бидентатным лагандом для двух ионов $Np(1)O_2^+$ и $Np(2)O_{2}^{+}$.

Работа выполнена с использованием оборудования ЦКП ФНИЦ «Кристаллография и фотоника» РАН при поддержке Минобрнауки России (проект RFMEFI62119X0035).

Список литературы

- [1] Бессонов А. А., Буданцева Н. А., Федосеев А. М. и др. // Радиохимия. 1990. Т. 32, N 5. С. 24–31.
- [2] Jin G. B., Skanthakumar S., Soderholm L. // Inorg. Chem. 2011. Vol. 50, N 11. P. 5203–5214.
- [3] Jin G. B., Skanthakumar S., Soderholm L. // Inorg. Chem. 2012. Vol. 51, N 5. C. 3220–3230.
- [4] Григорьев М. С., Плотникова Т. Э., Буданцева Н. А. и др. // Радиохимия. 1992. Т. 34, N 5. С. 1–6.
- [5] Forbes T. Z., Burns P. C., Soderholm L., Skanthakumar S. // Chem. Mater. 2006. Vol. 18, N 6. P. 1643–1649.
- [6] CrysAlisPro Software System. Version 1.171.39.46. Oxford (UK): Rigaku, 2018.
- [7] Clark R. C., Reid J. S. // Acta Crystallogr., Sect. A. 1995. Vol. 51, N 6. P. 887–897.
- [8] Palatinus L., Chapuis G. // J. Appl. Crystallogr. 2007. Vol. 40, N 4. P. 786–790.
- [9] Petříček V., Dušek M., Palatinus L. // Z. Kristallogr. Cryst. Mater. 2014. Vol. 229, N 5. P. 345–352.
- [10] Григорьев М. С., Батурин Н. А., Бессонов А. А., Крот Н. Н. // Радиохимия. 1995. Т. 37, N 1. С. 44.
- [11] Крот Н. Н., Григорьев М. С. // Успехи химии. 2004. Т. 73, N 1. C. 94–106.