Влияние облучения на нижний температурный предел распространения пламени экстракционный смеси на основе TODGA

© И. В. Скворцов^{а, б}, Е. В. Белова*^а, А. В. Родин^{а, б}, Б. Ф. Мясоедов^а

 ^а Институт физической химии и электрохимии им. А. Н. Фрумкина РАН, 119071, Москва, Ленинский пр., д. 31, корп. 4; * e-mail: bl174@bk.ru
^б Научно-технический центр по ядерной и радиационной безопасности, 107140, Москва, ул. Малая Красносельская, д. 2/8, корп. 5

Получена 21.06.2019, после доработки 25.07.2019, принята к публикации 29.08.2019

УДК 541.11:542.61

Исследовано влияние ускоренных электронов на нижний температурный предел распространения пламени смесей, содержащих N,N,N',N'-тетра-*н*-октилдигликольамид и *н*-спирт (*н*-деканол и *н*-нонанол) различной концентрации в Изопаре-М. Установлено, что для облученных до дозы 0.5 МГр экстракционных смесей нижний температурный предел распространения пламени ($T_{\rm H}$) снижается незначительно, для смесей с содержанием 20% *н*-спирта – на 2–3°С и с 6% *н*-спирта – на 6–11°С. Значения $T_{\rm H}$ исследуемых экстракционных смесей, в том числе облученных, составляют 64°С и выше.

Ключевые слова: экстракционная смесь, облучение, радиационная стойкость, пожаровзрывобезопасность, нижний температурный предел распространения пламени.

DOI: 10.1134/S0033831119060066

В соответствии с требованиями нормативных документов [1, 2] для объектов ядерного топливного цикла (ЯТЦ) по переработке отработавшего ядерного топлива (ОЯТ), на которых возможны аварии, должны быть установлены пределы безопасной эксплуатации (ПБЭ).

ПБЭ объектов ЯТЦ в значительной степени определяются природой используемых технологических сред. Для предотвращения воспламенения паров горючих жидкостей, которыми являются экстракционные смеси, содержащие углеводородные разбавители и другие органические жидкости, значение ПБЭ в соответствии с рекомендациями [3] следует принимать на 10°С ниже нижнего температурного предела распространения пламени.

Нижний температурный предел распространения пламени ($T_{\rm H}$) является минимальной температурой, при которой над зеркалом жидкости в условиях специального испытания образуется паровоздушная смесь, способная к воспламенению от искры, пламени или нагретых предметов. Воздействие ионизирующего излучения в процессе эксплуатации экстракционных смесей приводит к существенному изменению их состава и, как следствие, к изменению $T_{\rm H}$ [4]. Влияние ионизирующего излучения на $T_{\rm H}$ следует определять экспериментально. Только после проведения подобных исследований могут быть выданы рекомендации для установления ПБЭ относительно воспламеняемости паровоздушных смесей.

Использование для извлечения и разделения ТПЭ и РЗЭ растворов *N,N,N',N*-тетра-*н*-октилдигликольамида (TODGA) во фторированных разбавителях [5] имеет существенный недостаток, обусловленный высокой растворимостью фторзамещенных растворителей в растворах HNO₃ и связанным с этим их радиационно-химическим разложением. Это приводит к накоплению фторид-иона, который вызывает серьезную опасность коррозии оборудования при упаривании рафинатов от переработки ОЯТ АЭС, особенно в схемах с замкнутым кислото-водооборотом. Избавиться от этого недостатка позволяет использование в качестве разбавителя смеси *н*-нонанола или *н*-деканола в Изопаре-М, разработанной в Радиевом институте им. В. Г. Хлопина [6].

В настоящей работе впервые для растворов TODGA в смесях *н*-нонанола или *н*-деканола в Изопаре-М изучена пожаровзрывоопасность в условиях фракционирования ВАО.

Экспериментальная часть

Растворы 0.15 и 0.2 моль/л ТОДСА готовили с использованием в качестве разбавителя смеси *н*-спирта с Изопаром-М (объемное соотношение 6 : 94 и 20 : 80 соответственно). В качестве *н*-спирта использовали 1-нонанол и 1-деканол марки х.ч. Характеристики компонентов экстракционной смеси представлены в табл. 1.

Предварительное насыщение образцов экстракционных смесей 8 моль/л HNO₃ проводили по следующей методике. Экстрагент в разбавителе приводили в контакт с раствором 8 моль/л HNO₃ три раза по 20 мин при соотношении объемов органической и водной фаз 1 : 1, каждый раз используя свежий раствор HNO₃. Содержание HNO₃ в органической фазе определяли методом потенциометрического титрования на автоматическом титраторе Аквилон АТП-02 (НПО «Аквилон») со стеклянным и каломельным электродами. Образец органической фазы растворяли в смеси спирт–ацетон с соотношением 1 : 3 и титровали спиртовым раствором 0.1 моль/л NaOH.

Компонент	Формула	М, г/моль	<i>Т</i> _{кип} , °С	Т _н , °С	$T_{\rm BCII}, {}^{\circ}{\rm C}$		
TODGA	C ₃₆ H ₇₂ N ₂ O ₃	432	—	-	—		
Изопар-М [7]	Смесь изопарафинов	_	_	75	84		
<i>н</i> -Нонанол [8]	C ₉ H ₂₀ O	144	213.5	91	96		
<i>н</i> -Деканол [8]	$C_{10}H_{22}O$	158.3	231	103	110		

Таблица 1. Основные характеристики компонентов экстракционной смеси: температура кипения ($T_{\text{кип}}$), нижний температурный предел распространения пламени ($T_{\text{н}}$), температура вспышки ($T_{\text{всп}}$)

В качестве источника ионизирующего излучения использовали электронный ускоритель УЭЛВ-10-10-С-70 (энергия 8 МэВ, длительность импульса 6 мкс, частота повторения импульсов 300 Гц, средний ток пучка 700 мкА, частота вертикальной развертки 1 Гц, ширина развертки 245 мм). Облучение экстракционных смесей проводили в цилиндрическом стеклянном реакторе, снабженном гидрозатвором, вращающемся на карусельном столе со скоростью 16 см/с, до дозы 0.5 МГр. Для дозиметрии использовали пластинки из сополимера с феназиновым красителем производства ВНИИФТРИ. Дозы определяли по разнице оптической плотности облученной и необлученной пластинок, измеренной на спектрофотометре при $\lambda = 512$ нм, с помощью калибровочной таблицы.

Для анализа продуктов деградации при облучении экстракционных смесей использовали метод ИК спектрометрии. ИК спектры записывали с использованием прибора IR Prestige-21 с преобразованием Фурье фирмы Shimadzu. В качестве источника использовали гелий-неоновый лазер мощностью 0.5 мВт производства JDU Uniphase с длиной волны Сw 632.8 нм. Схема записи спектров однолучевая. Для записи спектров использовали стекла CaF₂ и кювету со свинцовой прокладкой толщиной 0.129 мм. При проведении количественного анализа использовали стандартную процедуру построения калибровочных зависимостей светопоглощения от навески стандартов (область соблюдения закона Ламберта-Бера).

Для облученных проб, ненасыщенных HNO₃, картина ИК спектров меняется незначительно по сравнению с данными до облучения. В области волновых чисел 1700–1765 см⁻¹ имеется широкая полоса, связанная с карбонильными соединениями. Присутствие кетонов, карбоновых кислот и сложных эфиров доказано совпадением полос поглощения при добавлении соответствующих стандартов к облученным пробам.

Определение $T_{\rm H}$ проводили на установке, описанной в работе [9], разработанной в соответствии с ГОСТ [10]. Изучали органическую фазу, как не содержащую HNO₃, так и предварительно насыщенную HNO₃, что имитирует экстракционный процесс фракционирования BAO и приводит к связыванию продуктов радиолиза органической фазы с образованием нитросоединений [11]. В реакционный со-

суд из термостойкого стекла, герметично закрытый фторопластовым фланцем со встроенным предохранительным клапаном, помещали исследуемый образец горючей жидкости. Объем исследуемого образца составлял 10 мл. В сосуде размещали два датчика в корпусах из нержавеющей стали, контролирующие температуру жидкости и газовой фазы. Реакционный сосуд размещали в воздушном термостате, поддерживающем температуру с точностью 0.1°С, и выдерживали при заданной температуре 30 мин до выравнивания температуры внутри образца и в газовой фазе (разница температур составляла менее 1°С). После термостатирования образца включали источник зажигания (нихромовая спираль с температурой накала 1000–1200°С). Результат воспламенения оценивали визуально, принимая за воспламенение распространение пламени по паровоздушной смеси от источника зажигания до верхней части реакционного сосуда. Точность определения Т_н составляет 1°С.

Для расчета *T*_н смесей горючих жидкостей в ГОСТ [10] использовали рекомендованную формулу, включающую температуры кипения и мольные доли компонентов смеси.

По аналогии с концентрационными пределами распространения пламени смесей горючих газов и паров величины $T_{\rm H}$ смесей горючих жидкостей считали аддитивными величинами, т.е.

$$T_{\rm H,CM} = \sum T_{\rm H,i} x_{i,\rm III} \phi, \qquad (1)$$

где $T_{\text{н},i}$ – нижний температурный предел распространения пламени *i*-го компонента смеси, $x_{i,n\phi}$ -мольная доля *i*-го компонента смеси в парах.

Для проведения расчетов $T_{\rm H}$ смесей горючих жидкостей использовали формулу (1), где для каждого компонента смеси внесен коэффициент f, зависящий от мольной доли компонента x_i в жидкой фазе, $T_{\rm H}$ компонента и суммы $T_{\rm H}$ всех компонентов смеси [8]

$$f = T_{\mathrm{H},i}^{-0.01b} x_{i,\mathrm{xc}\phi}(b/T_{\mathrm{H},i})^{1.7} / \sum T_{\mathrm{H},i}^{-0.01b} x_{i,\mathrm{xc}\phi}(b/T_{\mathrm{H},i})^{1.7}$$
(2)

при $b = \sum T_{\mathrm{H},i}$.

В целом эмпирическая формула для расчета $T_{\rm H}$ смесей горючих жидкостей (в кельвинах) имеет следующий вид:

Таблица 2. Значения *T*_н для экстракционной смеси на основе TODGA в Изопаре-М от концентрации *н*-спирта и облучения

	Доза облучения		
Экстракционная смесь		0.5 МГр	
0.15 моль/л ТОДБА-6% н-нонанола в Изопаре-М	75	68	
0.2 моль/л ТОДБА-20% н-нонанола в Изопаре-М	79	78	
0.15 моль/л ТОДБА-6% н-деканола в Изопаре-М	76	64	
0.2 моль/л ТОДБА-20% н-деканола в Изопаре-М	81	79	

$$T_{\rm H,CM} = \sum T_{\rm H,i} f_i. \tag{3}$$

Так как для парафинов существует связь между *T*_н и молекулярной массой

$$M = 1.57 \cdot 10^{-3} T_{\rm H}^{1.98} + 2 \tag{4}$$

и известны $T_{\rm H}$ смесей парафинов (разбавителей), то по формуле (4) оценили условную молекулярную массу и далее расчет мольных долей компонентов в жидкой фазе проводили, как для индивидуальных веществ.

Средняя квадратичная погрешность расчета $T_{\rm H}$ по формуле (3) для исследованных смесей составляет 5°С [10].

Результаты и обсуждение

ТОDGA – продукт с высокой температурой кипения, сведения о его пожароопасных характеристиках отсутствуют. Исследование смесей ТБФ в парафиновых разбавителях показало [7], что пожароопасные характеристики подобных горючих смесей определяются более летучим компонентом с меньшей температурой вспышки и $T_{\rm H}$, т.е. разбавителем. Значения $T_{\rm H}$ для данной экстракционной смеси и смеси спиртов с Изопаром-М будут близкими, поэтому расчет $T_{\rm H}$ стандартным способом проводили для смесей спиртов и Изопар-М (см. ниже). Результаты проведенного расчета показали, что значения $T_{\rm H}$ слабо зависят от соотношения между спиртом и Изопар-М.

Расчетные значения *Т*_н для смесей Изопар-М с *н*-деканолом и *н*-нонанолом

Смесь	Т _н , °С
6% н-нонанола с Изопаром-М	77
20% н-нонанола с Изопаром-М	79
6% н-деканола с Изопаром-М	78
20% н-деканола с Изопаром-М	82

Нижние температурные пределы распространения пламени определены экспериментально для четырех экстракционных смесей до и после облучения до дозы 0.5 МГр (табл. 2). Они оказались близки к рассчитанным значениям.

В необлученных растворах при увеличении доли спирта в смеси с 6 до 20% $T_{\rm H}$ возрастает на 4– 5°С (табл. 2). При этом экспериментально определенная разница несколько выше, чем расчетная (на 1–2°С).

Сравнительный анализ влияния спирта показывает (табл. 2), что для смесей с более высококипящим спиртом – *н*-деканолом – $T_{\rm H}$ выше, чем для смесей с

Таблица 3. Значения $T_{\rm H}$ экстракционных смесей на основе TODGA в Изопаре-М, облученых до дозы 0.5 МГр, без насыщения и предварительно насыщенных 8 моль/л HNO₃

Dwampakuua anaa	Доля <i>н</i> -спирта, %				
Экстракционная смесь	6	20			
Без насыщения					
ТОDGА- <i>н</i> -нонанол в Изопаре-М	68	78			
ТОDGА-н-деканол в Изопаре-М	64	79			
С насыщением					
ТОDGА- <i>н</i> -нонанол в Изопаре-М	64	79			
ТОDGА-н-деканол в Изопаре-М	64	81			

н-нонанолом, на 1–2°С, что коррелирует с проведенными расчетами и литературными данными по $T_{\rm H}$ для *н*-деканола и *н*-нонанола, которые составляют 103 и 91°С соответственно.

При увеличении доли спирта и TODGA в облученной до дозы 0.5 МГр смеси с 6% и 0.15 моль/л до 20% и 0.2 моль/л соответственно падение $T_{\rm H}$ происходит в меньшей степени. Так, для первой системы снижение достигает 7 и 12°С для *н*-нонанола и *н*-деканола соответственно, а при повышенном содержании спирта и TODGA снижение составляет 1–2°С. В аналогичных условиях для облученных до дозы 0.5 МГр растворов 30 об% ТБФ в разбавителе Изопар-М наблюдали снижение $T_{\rm H}$ приблизительно на 15°С [7], что указывает на образование меньшего количества низкокипящих продуктов при радиолизе экстракционной смеси с TODGA. Аналогичный эффект был отмечен и в экстракционной смеси с экстрагированной HNO₃.

В штатном режиме эксплуатации при фракционировании ВАО экстракционная смесь контактирует с растворами HNO₃, поэтому было оценено влияние предварительного (до облучения) насыщения исследуемых смесей 8 моль/л HNO₃ на $T_{\rm H}$ облученных смесей (табл. 3).

Значения $T_{\rm H}$ для необлученных растворов, насыщенных 8 моль/л HNO₃, в пределах экспериментальной погрешности не отличались от значений $T_{\rm H}$ ненасыщенных смесей. Природа *н*-спирта не влияет на $T_{\rm H}$ облученных смесей.

Как видно из табл. 3, влияние экстрагированной HNO₃ при малом содержания спирта и TODGA в облученных экстракционных смесях на значение $T_{\rm H}$ минимально в отличие от смесей 30 об% ТБФ в Изопаре-М, насыщенных 8 моль/л HNO₃ [7], для которых присутствие экстрагированной HNO₃ снижает $T_{\rm H}$ на 10°C. Такое поведение экстракционных смесей на

насыщения и предварительно насыщенных 8 моль/л Н	NO ₃	
Curar	Без насыщения	Насыщенные 8 моль/л HNO ₃
Смесь	DCOOL DCOD DCOOD	DCOOLI DCODI DCOODI DNO

Таблица 4. Продукты радиолиза (концентрация, моль/л) облученных до дозы 0.5 МГр экстракционных смесей, без

Смесь		Des nachingennn			Theobildening of month, it in (03			
		RCOR ¹	RCOOR ¹	RCOOH	RCOR ¹	RCOOR ¹	RNO ₂	
0.15 моль/л TODGA-6% н-нонанола в Изопаре-М	0.006	0.006	0.005	0.050	0.017	0.018	0.065	
0.2 моль/л ТОДБА-20% н-нонанола в Изопаре-М	0.011	0.004	0.007	0.162	0.013	0.151	0.061	
0.15 моль/л TODGA-6% н-деканола в Изопаре-М	0.005	0.008	0.004	0.056	0.015	0.014	0.068	
0.2 моль/л ТОДБА-20% н-деканола в Изопаре-М	0.007	0.003	0.014	0.113	0.010	0.139	0.072	

основе TODGA с экстрагированной HNO₃ может быть связанно со значительно меньшей ее концентрацией в органической фазе в отличие от смесей с ТБФ {0.4 моль/л для раствора 0.15 моль/л TODGA в смеси 5% октанола с разветвленным разбавителем ТРН (оценка по данным работы [12]) и 1.4 моль/л в смеси 30 об% ТБФ с Изопаром-М [13]}.

При содержании спирта и TODGA 20% и 0.2 моль/л соответственно не наблюдали снижения $T_{\rm H}$ при облучении. При этом концентрация HNO₃ в органической фазе после насыщения составила 0.65 и 0.75 моль/л для смесей с *н*-нонанолом и *н*-деканолом соответственно. Отмеченные концентрации HNO₃ в органической фазе несколько выше, чем экстраполированные данные для растворов с 0.2 моль/л TODGA (0.5 моль/л) [12].

Влияние HNO₃ на $T_{\rm H}$ может быть связано с ее взаимодействием с продуктами радиолиза экстракционной смеси и образованием более высококипящих продуктов. Обнаружено, что в присутствии HNO₃ в экстракционных смесях в больших количествах образуются карбоновые кислоты (v_{max} = 1730 см⁻¹), органические нитраты (область 1646–1625 см⁻¹), кетоны (1720 см⁻¹), сложные эфиры (1740 см⁻¹) и нитросоединения (1569–1539 см⁻¹) (табл. 4), что согласуется с литературными данными по радиолизу экстракционных смесей с углеводородными разбавителями [14]. Присутствие в деградированных экстракционных смесях более высококипящих по сравнению с углеводородами карбонильных и нитросоединений, образующихся при радиолизе [15, 16], повышает $T_{\rm H}$.

Таким образом, нами экспериментально определен нижний температурный предел распространения пламени в растворе 0.15 моль/л ТОДСА в смеси 6% н-спирта с Изопаром-М и растворе 0.2 моль/л ТОДСА в смеси 20% н-спирта в Изопаре-М составляющие для смесей с *н*-нонанолом 75 и 79°С, для смесей с н-деканолом 76 и 81°С соответственно. Облучение до дозы 0.5 МГр экстракционных смесей 0.2 моль/л TODGA в разбавителе, содержащем 20% *н*-спирта в Изопаре-М, снижает $T_{\rm H}$ не более чем на 3°С, что существенно не влияет на пожаровзрывобезопасность данных систем. Однако облучение экстракционных смесей 0.15 моль/л ТОДСА в разбавителе, содержащем 6% н-нонанола или н-деканола в Изопаре-М, до дозы 0.5 МГр может снижать $T_{\rm H}$ на 12°С, что следует учитывать при установлении пределов безопасной эксплуатации экстракционной установки. Облучение насыщенных 8 моль/л HNO₃ экстракционных смесей 0.2 моль/л TODGA в разбавителе, содержащем 20% *н*-спирта в Изопаре-М, не приводит к снижению $T_{\rm H}$.

Таким образом, использование *н*-спирта в Изопаре-М в качестве разбавителя TODGA в технологии фракционирования BAO возможно в плане предотвращения воспламенения паров горючей жидкости при условии соблюдения рекомендаций по температурным режимам [4].

Авторы благодарят М. И. Кадыко за помощь в проведении опытов и ИК спектрометрического анализа образцов.

Работа выполнена при финансовой поддержке РНФ (проект 16-19-00191).

Список литературы

- [1] *НП-016-05*: Общие положения обеспечения безопасности объектов ядерного топливного цикла. 2005.
- [2] *НП-013-99*: Установки по переработке отработавшего ядерного топлива. Требования безопасности. 1999.
- [3] РБ-060-10: Положение об оценке пожаровзрывобезопасности технологических процессов радиохимических производств от 14.06.2010.
- [4] Назин Е. Р., Зачиняев Г. М. Пожаровзрывобезопасность технологических процессов радиохимических производств. М.: НТЦ ЯРБ, 2009. 189 с.
- [5] Alyapyshev M., Babain V., Eliseev I., Tkachenko L. // Proc. Int. Conf. «Global 2011» (Japan, Makuhari Messe, Dec. 11– 16, 2011). JAEA, 2011. Paper no. 357771.
- [6] Патент RU 2623943. Опубл. 29.06.2017 // БИ. 2017. N 19.
- [7] Родин А. В., Назин Е. Р., Зачиняев Г. М. и др. // VIII Рос. конф. по радиохимии «Радиохимия 2015»: Тез. докл. Железногорск, 2015. С. 206.
- [8] Пожаровзрывоопасность веществ и материалов и средства их тушения: Справочник. М.: Химия, 1990.
- [9] *Родин А. В., Назин Е. Р., Зачиняев Г. М. и др. //* Вопр. радиац. безопасности. 2011. N 3. С. 45–50.
- [10] ГОСТ 12.1.044–89: Пожаровзрывоопасность веществ и материалов. Номенклатура показателей и методы их определения.
- [11] Егоров Г. Ф. Радиационная химия экстракционных систем. М.: Энергоатомиздат, 1986. 208 с.
- [12] Bell K., Geist A., McLachlan F. et al. // Procedia Chem. 2012. Vol. 7. P. 152–159.
- [13] Belova E. V., Dzhivanova Z. V., Smirnov A. V. et al. // MRS Adv. 2017. Vol. 2, N 11. P. 627–633.
- [14] Tahraoui A., Morris J. H. // Sep. Sci. Technol. 1995. Vol. 30, N 13. P. 2603–2630.
- [15] Адамов В. М., Андреев В. И., Беляев Б. Н. и др. // Радиохимия. 1987. Т. 29, N 6. С. 822–829.
- [16] Адамов В. М., Андреев В. И., Беляев Б. Н. и др. // Радиохимия. 1992. Т. 34, N 1. С. 189.