Сорбция ⁹⁰Sr оксидами марганца, полученными в водно-этанольной среде

© А. И. Иванец^{*}^a, В. В. Милютин⁶, В. Г. Прозорович^a, Т. Ф. Кузнецова^a, А. О. Петровская^a, Н. А. Некрасова⁶

^а Институт общей и неорганической химии НАН Беларуси, 220072, Минск, ул. Сурганова, д. 9/1; *e-mail: andreiivanets@yandex.ru

> ⁶ Институт физической химии и электрохимии им. А. Н. Фрумкина РАН, 119071,. Москва, Ленинский пр., д. 31, корп .4

Получена 29.10.2018, после доработки 18.04.2019, принята к публикации 29.04.2019 УДК 541.83+544.58

Сорбенты на основе оксидов марганца получены восстановлением KMnO₄ в водно-этанольной среде. Изучено влияние условий их получения (температура и продолжительность золь–гель-синтеза, природа структурообразующих катионов и температура прокаливания) на пористую структуру и сорбционно-селективные свойства по отношению к ⁹⁰Sr. Установлено, что полученные сорбенты имеют мезопористую структуру, удельную поверхность 180–220 м²/г и средний размер пор 10–20 нм. Наиболее высокими сорбционно-селективными свойствами по отношению к ⁹⁰Sr (коэффициент распределения $K_d = 1.04 \cdot 10^4$ см³/г и коэффициент разделения пары Sr–Ca $D_{Sr/Ca} = 99$) характеризуется оксид марганца с канальной структурой в Na⁺-форме, полученный при 25°C в течение 5 ч и термообработанный при 350°C. Увеличение концентрации ионов Ca²⁺ приводит к снижению эффективности сорбции ⁹⁰Sr. Наиболее высокие сорбционно-селективные характеристики синтезированные сорбенты проявляют в нейтральной и щелочной среде.

Ключевые слова: оксиды марганца, синтез, водно-этанольные среды, сорбция, стронций, жидкие радиоактивные отходы

DOI: 10.1134/S0033831119060108

Объекты, связанные с эксплуатацией ядерных энергетических установок, в настоящее время представляют большую потенциальную опасность для населения и окружающей среды. В результате деятельности атомных электростанций, транспортных ядерных энергетических установок образуется и накапливается большое количество жидких радиоактивных отходов (ЖРО), требующих утилизации (извлечения радионуклидов и их надежного захоронения). ⁹⁰Sr является одним из наиболее опасных радионуклидов, который имеет относительно долгий период полураспада – 28.5 лет [1–3].

Для удаления радионуклидов из водных сред предложены различные физико-химические методы: химическое или электрохимическое осаждение, ионный обмен, мембранное разделение, адсорбция и т.д. [4–6]. Адсорбция продолжает оставаться широко используемым и эффективным методом очистки благодаря простоте и доступности процесса. Разработка высокоселективных ионообменных материалов для удаления радионуклидов из жидких радиоактивных отходов является сложной задачей, поскольку радионуклиды обычно находятся в следовых концентрациях в присутствии высоких концентраций сопутствующих ионов металлов, которые конкурируют в сорбционных процессах с радионуклидами [7].

Пористые неорганические материалы особенно интересны благодаря своим специфическим свойствам и разнообразию структур [8]. Оксиды марганца смешанной валентности с туннельными и слоистыми структурами образуют большой класс пористых материалов с размером пор от микропор до мезопор. Поскольку данные оксиды демонстрируют высокие катионообменные свойства, их можно использовать в качестве ионно-молекулярных сит [9, 10]. Структуры оксидов марганца построены из октаэдров MnO₆. При соединении октаэдров МпО₆ гранями формируется слоистая структура, например, бирнессита (межслоевое расстояние в зависимости от структурообразующих катионов или молекул находится в диапазоне 7.4–8.0 Å) [11]. В канальных структурах присутствует соединение октаэдров MnO₆ по граням и по углам. При этом имеется различие в размерах каналов. Например, в структуре криптомелана присутствуют каналы 2 × 2 (4.6 Å) [12, 13], а для структуры тодорокита характерны каналы размером 3 × 3 (6.9 Å), в которых располагаются ионы Mg²⁺ [14].

Сорбенты на основе оксидов марганца чаще всего получают путем восстановления ионов $MnO_4^$ в водных либо органических средах [15–18]. Ранее золь–гель-методом (восстановлением KMnO₄ поливиниловым спиртом) были получены мезопористые оксиды марганца, которые показали высокую эффективность при сорбции стабильных ионов стронция и радионуклида ⁸⁵Sr из водных растворов. При этом было выявлено, что образцы содержат значительные количества углеродсодержащих продуктов пиролиза поливинилового спирта, что негативно сказывается на сорбционно-селективных свойствах получаемых сорбентов [19].

Целью настоящей работы является получение сорбентов на основе оксида марганца восстановлением $KMnO_4$ в водно-этанольной среде и изучение их сорбционно-селективных свойств по отношению к ⁹⁰Sr. Использование этанола в качестве восстановителя позволяет осуществить контролируемое восстановление $KMnO_4$ в мягких условиях, а также полностью удалить органические продукты его окисления на стадии отмывки гидрогеля.

Экспериментальная часть

Гидрогели оксидов марганца получали зольгель-методом, что обусловлено возможностью контроля состава и структуры получаемых оксидов путем изменения условий золе- и гелеобразования. К раствору 1.0 мас% КМпО₄ добавляли 96%-ный этанол (массовое соотношение $KMnO_4$: EtOH 1 : 10). Синтез проводили в роторном испарителе при температуре 25°С в течение 5 ч (1-я серия), а также при температуре 80°С в течение 48 ч (2-я серия). Полученный гидрогель отфильтровывали и промывали дистиллированной водой для удаления избытка электролитов до нейтрального значения рН. Далее часть гидрогеля обрабатывали при температуре 150°С в течение 5 ч. Предварительно выдержанный (24 ч) гидрогель в водных растворах, содержащих 0.1 моль/л К⁺, Na⁺, Mg²⁺ и Ca²⁺, обрабатывали в течение 5 ч при температуре 350°С. Исходные растворы готовили с использованием дистиллированной воды и реактивов квалификации х.ч.: КМпО₄, KCl, MgCl₂·6H₂O, NaCl, CaCl₂·6H₂O (компания «5 океанов», Беларусь).

Рентгенофазовый анализ образцов проводили на дифрактометре ДРОН-3 в монохроматизированном излучении Cu K_{α} при углах отражения 20 от 20 до 80°. Структуру поверхности и морфологию полученных материалов, а также их элементный состав исследовали на сканирующем электронном микроскопе JSM-5610 LV с системой точечного химического анализа EDX JED-2201 JEOL (Япония) с предварительным вакуумным напылением золота на поверхность исследуемых образцов.

Адсорбционные свойства и текстуру образцов оценивали из изотерм низкотемпературной

(-196°С) физической адсорбции–десорбции азота, измеренных объемным методом на анализаторе площади поверхности и пористости ASAP 2020 MP (Місготегітісs, США). Удельную поверхность определяли методом БЭТ (A_{BET}). Методом одной точки рассчитывали адсорбционный объем пор ($V_{sp,ads}$, $V_{sp,des}$) и адсорбционный средний диаметр пор ($D_{sp,ads}$, $D_{sp,des}$). Перед анализом образцы вакуумировали в течение 1 ч при температуре 150°С и остаточном давлении 133·10⁻³ Па.

Исследование сорбционных характеристик полученных оксидов марганца проведено в лаборатории хроматографии радиоактивных элементов ИФХЭ РАН. Перед использованием образцы измельчали в ступке до получения фракции менее 0.2 мм и высушивали на воздухе до постоянной массы при 80°С. Сорбционные характеристики образцов определяли на примере сорбции макроколичеств ионов Ca²⁺ и микроколичеств ⁹⁰Sr. Эксперименты проводили в статических условиях путем перемешивания навески воздушно-сухого сорбента массой 0.1 г с 0.02 дм³ раствора в течение 48 ч. В качестве жидкой фазы использовали модельный раствор CaCl₂ с концентрацией 0.01 моль/дм³, рН 6.0, в который перед началом экспериментов вносили индикаторные количества ⁹⁰Sr (около 10⁵ Бк/дм³). Затем смесь фильтровали и определяли в фильтрате концентрацию ионов Ca²⁺ и удельную активность ⁹⁰Sr. По результатам анализов рассчитывали значения статической обменной емкости (СОЕ) по Ca^{2+} , коэффициента распределения (K_d) 90 Sr и коэффициента разделения пары Sr/Ca ($D_{\rm Sr/Ca}$) по формулам (1)-(3) соответственно:

$$\text{COE} = (C_0 - C_p) V_p / m_c, \qquad (1)$$

$$K_{\rm d} = (A_0 - A_{\rm p}) V_{\rm p} / (A_{\rm p} m_{\rm c}),$$
 (2)

$$D_{\rm Sr/Ca} = K_{\rm d}C_{\rm p}/\rm{COE}, \qquad (3)$$

где C_0 , C_p – соответственно концентрация ионов Ca²⁺ в исходном растворе и в фильтрате, моль/дм³; A_0 , A_p – соответственно удельная активность ⁹⁰Sr в исходном растворе и в фильтрате, Бк/дм³; V_p – объем жидкой фазы, см³; m_c – масса сорбента, г.

При определении зависимости K_d ⁹⁰Sr от pH жидкой фазы в раствор 0.1 моль/дм³ NaNO₃ добавляли растворы 1 моль/дм³ HNO₃ или NaOH. Равновесные значения pH определяли с использованием иономера «Экотест 2000».

Для получения сравнительных характеристик полученных образцов в аналогичных условиях испытывали следующие сорбенты:

1) МДМ - сорбент на основе модифицированно-

го диоксида марганца, ТУ 2641-001-51255813-2007, опытно-промышленная партия, производитель – ИФХЭ РАН;

 Термоксид-3К – сферогранулированный сорбент на основе гидратированных диоксидов титана и циркония, ТУ 2641-014-12342266-04, промышленная партия, производитель – НПФ «Термоксид»;

 3) NaA – синтетический цеолит типа A, TУ 2163-003-15285215-2006, промышленная партия, производитель – Ишимбайский спецхимзавод катализаторов (Башкортостан);

 S-N 103 – синтетический титаносиликат, аналог природного минерала иванюкита, лабораторный образец, синтезирован в Центре наноматериаловедения Кольского научного центра РАН (Апатиты);

5) КЛ – природный клиноптилолит Шивертуйского месторождения (Читинская обл.);

6) КУ-2×8 – сильнокислотный сульфокатионит, промышленная партия, производитель – НПО «То-кем», Кемерово.

Удельную активность ⁹⁰Sr в растворах определяли прямым радиометрическим методом с использованием спектрометрического комплекса СКС-50М («Грин стар технолоджиз», Россия) после выдержки проб в течение не менее 10 сут. Концентрацию Ca²⁺ ионов в растворах определяли объемным комплексонометрическим методом.

Результаты и обсуждение

Результаты рентгенофазового анализа показали, что все образцы имеют аморфную структуру, поэтому их фазовый состав невозможно идентифицировать данным методом. В связи с этим был выполнен ИК-спектроскопический анализ образцов (рис. 1).

Согласно рис. 1, на всех ИК спектрах присутствуют пики при 1580–1585 см⁻¹, характерные для валентных колебаний ОН-групп, связанных с атомами Mn кристаллической решетки. Интенсивность пиков в данной области существенно не зависит от условий синтеза. Полосы в области 400-800 см⁻¹ могут быть отнесены к характеристическим колебаниям связей Mn⁴⁺-О в оксидах марганца. Полоса поглощения в области 770-760 см⁻¹ является характеристической для оксидов марганца с туннельной структурой и присутствует в ИК спектрах всех образцов [20]. Положение и интенсивность полос поглощения существенно отличаются для образцов 1-4, что свидетельствует о различных типах связей Mn-O в зависимости от условий синтеза. При этом интенсивность характеристической полосы поглощения туннельной структуры оксидов марганца (770 см⁻¹) для этих образцов практи-

Рис. 1. ИК спектры оксидов марганца, полученных при различных условиях синтеза. Образцы: a - 1-4, $\delta - 5-8$. Нумерация соответствует образцам в табл. 1.

чески не изменяется. С увеличением времени синтеза при постоянной температуре 25°С ИК спектры существенно не изменяются (образцы 1 и 3, рис. 1, *a*). В то же время для образцов 3 и 4 увеличение температуры синтеза при длительности 48 ч приводит к увеличению интенсивности пиков в области 400–650 см⁻¹, что сопровождается смещением наиболее интенсивных пиков при 490–630 см⁻¹ в более узкий интервал 520–590 см⁻¹.

На основе предварительных исследований образец 4 был выбран в качестве исходного для получения сорбентов на основе оксидов марганца. При рассмотрении ИК спектров образцов 5 и 6 (рис. 1, б), полученных путем введения однозарядных ионов К и Na⁺ в структуру оксидов марганца, интенсивность и положение характерных пиков сохраняются. При этом введение ионов Na⁺ (образец 6) приводит к увеличению интенсивности полос поглощения связей Мп-О без их смещения. При введении ионов Mg²⁺ (образец 7, рис. 1, б) интенсивность пиков в области 400-650 см⁻¹ незначительно возрастает. Также в этом случае один из характерных пиков при 765 см⁻¹ имеет плечо при 731 см⁻¹, что, по-видимому, связано со структурными преобразованиями. В случае введения ионов Ca²⁺ в структуру оксида марганца (образец 8, рис. 1, б) образец имеет ИК спектр, схожий со спектром Na-содержащего образца (образец 6, рис. 1, б), что свидетельствует об одинаковом строении данных образцов.

Образец	Условия синтеза/ионная форма	$A_{\rm BET}$, м ² /г	$V_{\rm sp.ads}, {\rm cm}^3/{\rm r}$	$V_{\rm sp.des}, {\rm cm}^3/{\rm r}$	$D_{ m sp.ads}$, нм	$D_{\rm sp.des}$, нм
1	5 ч, 25°С	208	0.484	0.523	10	11
2	5 ч, 80°С	188	0.466	0.503	10	11
3	48 ч, 25°С	275	0.431	0.415	7	6
4	48 ч, 80°С	284	0.623	0.621	9	9
5 ^a	K^+	231	1.01	1.10	19	20
6 ^a	Na^+	293	1.14	1.25	17	18
7^{a}	Mg^{2+}	213	0.843	0.970	16	19
8 ^a	Ca^{2+}	222	1.03	1.08	19	20

Таблица 1. Адсорбционные свойств образцов оксидов марганца

^а Образцы, полученные из образца 4.

Согласно данным низкотемпературной адсорбции-десорбции азота, по адсорбционным свойствам (табл. 1) образцы 1–4 и 5–8 оксидов марганца имеют различную структуру. Так, для образцов 1–4 наиболее заметные изменения адсорбционных свойств происходят с увеличением температуры синтеза от 25 до 80°С и временем синтеза от 5 до 48 ч. По сравнению с образцом 1 для образца 4 удельная поверхность увеличивается в 1.4 раза, а объем пор – в 1.2–1.3 раза. Основные различия между образцами 1–4 и 5–8 состоят в объединении мезопор и в увеличении объема пор с гораздо менее выраженным изменением удельной поверхности.

Сравнение образцов 5–8 с образцом 4 показало, что в случае введения ионов K^+ (образец 5) значения $V_{sp,ads}$, $V_{sp,des}$, и $D_{sp,ads}$, $D_{sp,des}$ увеличиваются в 1.6–1.8 и 2.0–2.2 раза соответственно. Аналогичная зависимость наблюдается и при введении ионов Na⁺ (образец 6), Mg²⁺ (образец 7) и Ca²⁺ (образец 8). При этом значения удельной поверхности не изменяются (для образца 6) или уменьшаются незначительно (в 1.2–1.3 раза для других образцов). Введение одно- и двухзарядных ионов, которые выполняют структурообразующую роль, способствует образованию структур с заданным типом упорядочения для синтезированных оксидов марганца.

Слоистые оксиды марганца (образцы 1–4) имеют схожую морфологию. Типичные СЭМ- и ПЭМснимки на примере образца, полученного при 25°С в течение 5 ч и термообработанного при 150°С, представлены на рис. 2. Образцы имеют выраженную глобулярную структуру с размером сферических частиц 100–200 нм (рис. 2, *a*). Данные ПЭМ (рис. 2, δ) свидетельствуют о том, что глобулы являются агломератами более мелких частиц размером 5–10 нм.

Данные энергодисперсионного рентгеновского анализа (EDX), представленные в табл. 2, позволяют оценить содержание основных элементов в полученных образцах оксидов марганца. Вне зависимости от условий синтеза все образцы содержат примерно одинаковое количество $Mn - 65 \pm 5$ ат%. Обращает на себя внимание значительное содержа-

ние ионов K^+ в образцах 1 и 4. Данные ионы находятся в межслоевом пространстве и каналах марганцевооксидных структур и являются доступными для ионного обмена в процессе сорбции многовалентных ионов металлов. Согласно данным EDX-анализа, с увеличением времени синтеза и температуры содержание ионов K⁺ в образцах уменьшается, что должно оказывать влияние на ионообменную емкость данных образцов. Важно отметить, что при переводе К-формы оксидов марганца в другие М^{*n*+}-формы все образцы характеризуются остаточным содержанием ионов К⁺ около 2-4 ат%, что свидетельствует о наличии данных катионов в различных формах, имеющих различную подвижность, часть из которых не задействована в ионном обмене.

Сравнение сорбционно-селективных свойств полученных оксидов марганца и других неоргани-

Таблица 2. Данные EDX анализа образцов оксидов марганца

05	Условия синтеза/	Содержание элемента, ат.%				
Ооразец	ионная форма	Mn	0	Κ	вводимый металл	
1	5 ч, 25°С	58.6	32.3	9.1	-	
4	48 ч, 80°С	66.3	27.2	6.5	-	
5	K^+	61.1	32.5	6.4	-	
6	Mg^{2+}	68.8	27.2	1.4	2.6	
7	Na ⁺	63.0	33.9	2.1	1.0	
8	Ca ²⁺	64.0	31.0	1.8	3.2	

Рис. 2. СЭМ- (a) и ПЭМ-изображения (δ) оксида марганца, полученного при 25°С в течение 5 ч с термообработкой при 150°С.

Таблица 3. Значения статической обменной емкости (СОЕ) по Ca²⁺, коэффициента распределения (K_d) ⁹⁰Sr и коэффициента разделения пары Sr/Ca ($D_{Sr/Ca}$) на образцах оксидов марганца (раствор 0.01 моль/дм³ CaCl₂, pH 6.0, T : $\mathcal{K} = 1 : 200$)

Образец	<i>t</i> , ч	$T_{30ль-гель}/T_{терм}$, °С	Ионная форма	СОЕ по Ca^{2+} , ммоль/г	$K_{\rm d}(^{90}{\rm Sr})\cdot 10^{-3},{\rm cm}^{3}/{\rm r}$	$D_{\rm Sr/Ca}$
1		25/150	K^+	0.85	0.75	5.6
2	5	25/350	Na^+	0.74	10.6	99
3			Ca ²⁺	< 0.01	5.77	-
4		80/150	K^+	0.24	1.23	48
5	48	80/350	Na ⁺	0.44	3.83	66
6			Ca ²⁺	_	2.89	67
МДМ	_	_	Na^+, K^+	0.96	8.59	56
Термоксид-3К	-	_	Na^+	0.23	0.22	8.9
NaA			Na^+	1.65	4.40	5.7
S-N 103			Na ⁺	1.20	23.0	92
КЛ			Na^+	0.34	0.31	4.6
КУ-2×8			Na ⁺	1.80	0.22	1.4

ческих сорбентов показывает, что наилучшими характеристиками по отношению к 90 Sr обладают сорбенты на основе оксидов марганца в K⁺-форме с туннельной структурой, сорбенты МДМ и S-N 103 (табл. 3). При этом образцы с канальной структурой (1, 4) проявляют более высокие сорбционно-селективные свойства по сравнению со слоистыми образцами (2, 3, 5, 6).

Следует отметить, что прямой взаимосвязи между СОЕ и K_d не наблюдается. Это обусловлено тем, что обменная емкость определяется при макроконцентрациях катионов Ca²⁺, в то время как коэффициент распределения характеризует сродство сорбента к ⁹⁰Sr при микроконцентрациях. Анализ значений K_d и $D_{Sr/Ca}$ для канальных оксидов марганца показывает, что природа вводимого катиона существенно не влияет на их сорбционно-селективные характеристики.

В реальных жидких радиоактивных отходах зачастую наблюдается повышенное содержание ионов Ca²⁺ и Mg²⁺. В связи с этим определение влияния ионов жесткости на сорбционные характеристики полученных сорбентов представляет значительный практический интерес. Так, с ростом концентрации Ca²⁺ наблюдается существенное снижение K_d как для образца 6 (табл. 1), так и для сорбента сравнения МДМ. Наиболее выраженное падение сорбционно-селективных характеристик происходит уже на фоне 0.02 моль/л Ca²⁺, что обусловлено конкурентной сорбцией ионов Ca²⁺ вследствие близости химических свойств со Sr²⁺ (рис. 3).

Влияние pH на значения K_d носит более сложный характер. На рис. 4 для сорбентов МДМ и образца 6 наблюдается три выраженных участка изменения K_d от pH. Невысокие сорбционноселективные характеристики в области pH < 2.0 обусловлены конкурентной сорбцией ионов H⁺ и

 Sr^{2+} , а также частичным растворением сорбентов на основе оксидов марганца в сильнокислых средах. Значительный рост K_d при pH 5–6 происходит из-за перемены знака заряда поверхности сорбентов с положительного на отрицательный в точке нулевого заряда – pH_{т.н.з.} 5.6–5.8 [21]. В щелочной области кривая зависимости K_d от pH выходит на плато, что обусловлено началом гидролиза ионов

Рис. 3. Зависимость коэффициента распределения $(K_d)^{90}$ Sr от концентрации ионов Ca²⁺ для образца 6 из табл. 1 (*I*) и МДМ (2).

Рис. 4. Зависимость коэффициента распределения (K_d) ⁹⁰Sr от равновесного pH жидкой фазы для образца 6 из табл. 1 (*1*) и МДМ (*2*).

Sr²⁺ и снижением электростатического взаимодействия сорбента с образующимися гидроксокомплексами SrOH⁺.

Таким образом, сорбенты ⁹⁰Sr на основе мезопористых оксилов марганца с развитой удельной поверхностью 180-290 м²/г получены золь-гельметодом путем восстановления KMnO₄ в водноэтанольной среде. Образцы, полученные при 25°С в течение 5 ч, характеризуются более высокой ионообменной емкостью по Ca²⁺ по сравнению с сорбентами, полученными при 80°С в течение 48 ч. Полученные материалы эффективно сорбируют ⁹⁰Sr из водных растворов (коэффициент распределения достигает $4.89 \cdot 10^4$ см³/г. коэффициент разделения пары Sr/Ca – 99). Выявлено негативное влияние ионов Ca^{2+} на сорбцию ⁹⁰Sr вне зависимости от условий получения оксидов марганца. Сорбенты наиболее эффективны в нейтральных и щелочных Сравнительный анализ сорбционносредах. селективных свойств полученных оксидов марганца и ряда коммерчески доступных сорбентов показал перспективность их использования для очистки жидких радиоактивных отходов от ⁹⁰Sr.

Список литературы

- [1] Vellingiri K., Kim K.-H., Pournara A. et al. // Prog. Mater Sci. 2018. Vol. 94. P. 1–67.
- [2] Маркитанова Л. И. // Науч. журн. НИУ ИТМО. Сер.: Экономика и экол. менеджмент». 2015. N 1. С. 140–146.
- [3] Объединенный институт энергетических и ядерных исследований – Сосны: Информ. бюлл. Сер.: Атом. энергетика.

2010. N 10-11 (16-17). C. 1-8.

- [4] Fang X., Xu Zh., Luo Ya. et al. // Procedia Environ. Sci. 2016. Vol. 31. P. 375–381.
- [5] Федорова В. М., Кобец С. А., Пузырная Л. Н. и др. // Радиохимия. 2017. Т. 59, N 5. С. 434–438.
- [6] Chu Zh., Liu J., Han Ch. // Chin. J. Chem. Eng. 2015. Vol. 23, N 10. P. 1620–1626.
- [7] Милютин В. В., Некрасова Н. А., Яничева Н. Ю. и др. // Радиохимия. 2017. Т. 59, N 1. С. 59–62.
- [8] Alby D., Charnay C., Heran M. et al. // J. Hazard. Mater. 2018. Vol. 344. P. 511–530.
- [9] Wu M. H., Shi J., Deng H. P. // Arab. J. Chem. 2018. Vol. 11. P. 924–934.
- [10] Dharmarathna S., King'ondu C. K., Suib S. L. et al. // Appl. Catal. B. 2014. Vol. 147. P. 124–131.
- [11] Wu Y., Feng R., Song Ch. et al. // Catal. Today. 2017. Vol. 281, part 3. P. 500–506.
- [12] Ling F. T., Post J. E., Heaney P. J. // Chem. Geol. 2018. Vol. 479. P. 216–227.
- [13] Selvaraj A. R., Rajendiran R., Chinnadurai D. et al. // Electrochim. Acta. 2018. Vol. 283. P. 1679–1688.
- [14] Lee J., Ju J. B., Cho W. I. et al. // Electrochim. Acta. 2013. Vol. 112. P. 138–143.
- [15] Иванец А. И., Кузнецова Т. Ф., Прозорович В. Г. // ЖФХ. 2015. Т. 89, N 3. С. 480–485.
- [16] Ivanets A. I., Prozorovich V. G., Kouznetsova T. F. et al. // Environ. Nanotechnol. Monit. Manag. 2016. Vol. 6. P. 261– 269.
- [17] Иванец А. И., Прозорович В. Г., Кривошапкина Е. Ф. и др. // ЖФХ. 2017. Т. 91, N 8. С. 1337–1343.
- [18] Egorin A., Sokolnitskaya T., Azarova Yu. et al. // J. Radioanal. Nucl. Chem. 2018. Vol. 317, N 1. P. 243–251.
- [19] Иванец А. И., Кацошвили Л. Л., Кривошапкин П. В. и др. // Радиохимия. 2017. Т. 59, N 3. С. 230–236.
- [20] Kang L., Zhang M., Liu Z.-H. et al. // Spectrochim. Acta, Part A. 2007. Vol. 67. P. 864–869.
- [21] Ivanets A. I., Prozorovich V. G., Kouznetsova T. F. et al. // J. Radioanal. Nucl. Chem. 2018. Vol. 316. P. 673–683.