УДК 621.039.7+546.185

РАДИАЦИОННАЯ И ХИМИЧЕСКАЯ УСТОЙЧИВОСТЬ МАГНИЙФОСФАТНОЙ МАТРИЦЫ ДЛЯ ИММОБИЛИЗАЦИИ ¹⁴С

© 2020 г. А. А. Лизин^{*a*,*}, Д. М. Яндаев^{*a*}, А. Ю. Шадрин^{*б*,**}, М. Ю. Калёнова^{*в*,***}, А. В. Дмитриева^{*a*}, С. В. Томилин^{*a*}, И. С. Голубенко^{*a*}, М. И. Хамдеев^{*a*}, В. Н. Момотов^{*a*}, Д. Е. Тихонова^{*a*}, О. С. Дмитриева^{*a*}, А. А. Колобова^{*a*}, С. С. Погляд^{*a*}, М. В. Додонова^{*a*}, С. Е. Винокуров^{*c*,***}, Б. Ф. Мясоедов^{*c*}

^а Научно-исследовательский институт атомных реакторов, 433510, Димитровград Ульяновской обл., Западное шоссе, д. 9

⁶ Высокотехнологический научно-исследовательский институт неорганических материалов им. акад. А. А. Бочвара, 123098, Москва, ул. Рогова, д. 5а

^в Ведущий научно-исследовательский институт химической технологии, 115409, Москва, Каширское шоссе, д. 33

^г Институт геохимии и аналитической химии им. В. И. Вернадского РАН, 119991, Москва, ул. Косыгина, д. 19 *e-mail: lizin@niiar.ru **e-mail: ashadrin9@yandex.ru *** e-mail: vgot@vniiht.ru **** e-mail: vinokurov@geokhi.ru

Получена 14.01.2019, после доработки 22.01.2019, принята к публкации 29.01.2019

Представлены результаты изготовления, изучения радиационной и гидролитической устойчивости магний-калийфосфатной (МКФ) матрицы, которая разрабатывается для целей иммобилизации 14 С – продукта переработки смешанного нитридного уран-плутониевого топлива. Образцы МКФ матрицы, содержащие в своем составе 20 и 40 мас% карбоната кальция как формы отходов, фиксирующей 14 С, были подвергнуты облучению ускоренными электронами с энергией до 2.5 МэВ до доз 10⁶, 10⁷ и 10⁸ Гр. Установлено, что деструкция целевых фаз начинается при дозе 10⁷ Гр вплоть до полного их разложения после накопления дозы 10⁸ Гр. Не установлено значительного увеличения значений скоростей выщелачивания для всех исследуемых катионов из радиационно-поврежденных образцов после накопления дозы 10⁸ Гр, оценена продолжительность геологического хранения матрицы до полного разложения основных фиксирующих ¹⁴С фаз.

Ключевые слова: магнийфосфатная матрица, иммобилизация ¹⁴С, радиационная устойчивость, химическая устойчивость

DOI: 10.31857/S0033831120010116

ВВЕДЕНИЕ

В рамках реализуемого Госкорпорацией «Росатом» проекта «Прорыв» и создания опытнодемонстрационного реактора БРЕСТ-ОД-300 с пристанционной переработкой СНУП ядерного топлива разрабатываются процессы и аппараты для обращения с радиоактивными отходами (РАО) [1]. Все РАО с целью их длительного долговременного хранения необходимо переводить в твёрдые, устойчивые, труднорастворимые материалы с высокими показателями качества, прежде всего по радиационной и гидролитической стойкости [2].

Существенным отличием ядерного топливного цикла (ЯТЦ) и схем переработки отработавшего СНУП ядерного топлива (СНУП ОЯТ) является накопление изотопа ¹⁴С в результате захвата нейтронов в ядерном реакторе: ¹⁴7N(*n*,*p*)¹⁴6С. При переработке СНУП ОЯТ практически весь ¹⁴С выделяется в газовую фазу на предварительной

ЛИЗИН и др.

Содержание СаСО ₃ в образцах, мас%	Массовая доля элементов в образцах, %							
	0	Н	Р	Mg	K	Ca	С	В
20	57.07	3.49	8.88	6.98	11.17	9.38	2.79	0.23
40	55.22	2.79	7.08	5.58	8.97	15.45	4.68	0.23

Таблица 1. Химический состав полученных образцов МКФ матрицы, содержащих СаСО3

стадии окисления (волоксидации) топлива и отделения его от оболочек твэлов. Образующийся углекислый газ, содержащий ¹⁴C, направляют в абсорбционную колонну, которая орошается водным раствором гидроксида натрия в циркуляционном режиме [3]. Для регенерации раствора гидроксида натрия используют гидроксид кальция, который концентрирует ¹⁴C и является отходной формой.

Карбонат кальция является термически неустойчивой формой и при температурах выше 900°С разлагается. В связи с этим для иммобилизации ¹⁴С может быть использованы только матрицы, получение которых исключает технологические операции термообработки при высоких температурах. К таким материалам можно отнести, прежде всего, МКФ матрицу состава MgKPO₄·6H₂O [4-7] - синтетический аналог природного минерала К-струвит [8]. Ранее в работе [9] было показано, что МКФ матрица позволяет надежно иммобилизовать карбонат кальция в количестве до 50 мас%.

Цель настоящей работы заключалась в изучении радиационной и гидролитической устойчивости образцов МКФ матрицы, содержащих CaCO₃, и оценке влияния внешнего облучения ускоренными электронами на характеристики матрицы.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Образцы МКФ матрицы синтезировали по методике, описанной в работе [4]. Для изготовления образцов матрицы в водный раствор добавляли KH_2PO_4 , перемешивали в течение 10–15 мин, затем вносили H_3BO_3 , перемешивали, далее при перемешивании добавляли MgO, смесь гомогенизировали в течение 5 мин, но не до схватывания. Заключительной стадией было добавление карбоната кальция. После внесения CaCO₃ визуально наблюдалось незначительное выделение CO₂ (как ранее показано в работе [9] – не более 3%), а время

затвердевания полученной смеси составило 15– 20 мин после внесения оксида магния. Образцы выдерживали во фторопластовых формах в течение 15 сут для набора прочности. Полученные компаунды имели форму плоского прямоугольного параллелепипеда с боковым ребром 3 мм и сторонами основания около 20 мм. Всего было изготовлено по 12 образцов двух составов: с 20 и 40 мас% карбоната кальция (химический состав образцов приведен в табл. 1). При этом по три образца каждого состава использовались для накопления одинаковой поглощенной дозы (10⁶, 10⁷ и 10⁸ Гр), а также в качестве необлученных образов сравнения.

Облучение образцов проводили на импульсном линейном ускорителе электронов ИЛУ-6 с энергией до 2.5 МэВ. Время экспозиции для достижения заданных доз определяли по калибровке пленочных дозиметров СО ПД(Ф)Р-5/50 (ГСО 7865-2000), расположенных на различном расстоянии от центра пучка. Мощность поглощенной дозы составляла $(1.1-2.5)\times10^3$ Гр/с в зависимости от расположения образца на ускорителе от центра пучка электронов. Величину поглощённой дозы рассчитывали из спектров поглощения при длине волны 513 нм облученной пленки дозиметра, полученных с использованием сканирующего спектрофотометра СФ-56. В качестве образца сравнения использовали необлученные образцы пленки.

Фазовый состав образцов МКФ матрицы изучали рентгеновским дифракционным методом (ДРОН-7). Для идентификации фазового состава использовали картотеки рентгеновских дифракционных данных JCPDS [10] и комплекс программ RENTGEN. Индицирование и расчет параметров целевой фазы образцов матрицы (MgKPO₄·6H₂O) проводили методом наименьших квадратов по программе CHEKCELL.

Гидролитическую устойчивость образцов (характеристики образцов приведены в табл. 2) определяли в соответствии с ГОСТ 52126-2003 [11]

Таблица 2. Характеристика образцов МКФ матрицы, использованных для определения гидролитической устойчивости

Содержание СаСО ₃ в образцах, мас%	Поглощенная доза, Гр	Площадь поверхности, см ²	Плотность образца, г/см ³	Масса образца, г
20	0a	11.4	1.75	2.34
	106	11.9	1.68	2.17
	107	11.1	1.32	1.70
	108	10.9	1.32	1.49
40	()a	10.3	1.67	1.93
	106	10.2	1.67	1.78
	107	10.2	1.56	1.60
	108	10.5	1.49	1.40

^а Необлученные образцы сравнения.

при контакте с бидистиллированной водой при комнатной температуре (около 25°С). Образцы на платиновой проволоке помещали в центре фторопластовых стаканов, отбор проб проводили через 1, 3, 7, 10, 14, 21 и 28 сут. При этом полученный раствор после выщелачивания в полном объеме изымали для анализа после каждого периода выщелачивания и заливали новую порцию бидистиллированной воды.

Определение содержания калия, магния, кальция и фосфора (с пересчетом на РОд-ион) в растворах проводили методом дуговой атомно-эмиссионной спектрометрии на установке, включающей спектрометры СТЭ-1 с фотодиодной линейкой МАЭС № М10052 и PGS-2 с фотодиодной линейкой МАЭС № М08077 с программным обеспечением «Атом-3.3» и генератором «Везувий-3». Для построения градуировочных графиков и определения концентрации элементов в пробах использовали образцы сравнения (ОС). Аликвоты проб и ОС объемом 0.05 см³ наносили на торец угольного электрода, высушивали под ИК лампой и анализировали атомно-эмиссионным методом в дуге переменного тока силой 12 А и времени экспозиции 20 с. Градуировочные зависимости строили в программе Атом 3.3 в логарифмических координатах.

Определение карбонат-ионов проводили методом титрования с использованием двух индикаторов – фенолфталеина и метилового оранжевого [12, 13]. При титровании смеси ионов ОН⁻ и CO₂⁻

РАДИОХИМИЯ том 62 № 1 2020

исходили из того, что с фенолфталеином гидроксид-ион и карбонат-ион оттитровываются до H_2O и до гидрокарбонат-иона соответственно, а с метиловым оранжевым – до H_2O и до H_2CO_3 соответственно. Разница в объемах соляной кислоты при титровании с двумя индикаторами соответствует титрованию HCO_3^- до H_2CO_3 . Поэтому сначала раствор титровали с фенолфталеином до обесцвечивания (V_1), а затем добавляли метиловый оранжевый и продолжали титровать до появления оранжевого цвета (V_2). Содержание карбонат-ионов рассчитывали в соответствии с формулой (1):

$$c(\mathrm{CO}_{3}^{2-}) = \frac{c(\mathrm{HCl}) \cdot 2V_{2}}{V_{\mathrm{n-na}}},$$
 (1)

где $c(\text{CO}_{3}^{2-})$ – концентрация карбонат иона, моль/л; c(HCl) – концентрация соляной кислоты, моль/л; $V_{\text{p-pa}}$ – объем аликвоты, взятой для титрования, мл.

Раствор 0.01 н. НСІ для титрования готовили растворением стандарт-титра 0.1 н. НСІ в 1000 мл дистиллированной воды с последующим 10-кратным разбавлением. Для титрования использовали бюретки объемом 25 мл второго класса точности, изготовленные по ГОСТ 29251-91. Конечную точку титрования определяли визуально. Для учета количества карбонат-ионов, накопившихся за счет поглощения СО₂ из воздуха за время проведения эксперимента, каждый раз титровали бидистилированную воду, которая выдерживалась в том же помещении и в течение того же времени, что

Рис. 1. Вид рентгенограмм необлученного (а) и облученных электронами до доз 10⁶ (б), 10⁷ (в) и 10⁸ Гр (г) образцов МКФ, содержащей 20% CaCO₃. Отнесение рефлексов к фазам: k – MgKPO₄·6H₂O, 1 – CaCO₃, m – MgO, h – K₆P₆O₁₈·3H₂O, p – MgCO₃, n – CaO, r – Mg₂P₂O₇, c – алмаз. То же на рис. 2.

и контактная вода с образцами МКФ матрицы. Концентрация карбонат-ионов в бидистилированной воде находилось на уровне 10% от их содержания в растворах после выщелачивания.

Дополнительно содержание карбонат-ионов в растворах после выщелачивания образцов магнийфосфатной матрицы определяли с использованием карбонатселективного электрода XC-CO₃-001.

Предварительно проводили калибровку ионоселективного электрода с использованием стандартных растворов гидрокарбоната натрия с концентрацией 10⁻⁶–10⁻² моль/л. Исходный раствор концентрации 0.01 моль/л готовили растворением навески кристаллического NaHCO₃ марки х.ч. в 100 мл дистиллированной воды, остальные растворы – последовательным десятикратным разбавлением исходного раствора дистиллированной водой. В качестве электрода сравнения использовали хлорсеребряный электрод ЭСР10101.

В приготовленных стандартных растворах определяли потенциал карбонат-селективного электрода. По полученным данным строили график зависимости потенциала электрода от отрицательного логарифма концентрации карбонат-ионов в растворе.

Затем измеряли потенциал электрода в анализируемых пробах. Сравнивая полученное значение потенциала с калибровочным графиком, определяли концентрацию карбонат-ионов в анализируемой пробе.

Погрешность в определении ионов K⁺, Mg²⁺, Ca²⁺, $c(CO_3^{2-})$, ионов бора и фосфора в исходной дистиллированной воде и в растворах после выщелачивания не превышала 20–25%.

Интегральную скорость выщелачивания компонентов рассчитывали по формуле (2)

$$R_i = \frac{m_i}{f_i \cdot S \cdot t_n}, \qquad (2)$$

где R_i — скорость выщелачивания, г/(см²·сут); m_i — масса *i*-го элемента в растворе после выщелачивания, г; f_i — массовая доля элемента в образце; S — открытая «геометрическая» поверхность образца, см²; t_n — продолжительность *n*-го периода выщелачивания, сут.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Рентгендифракционные картины изученных образцов МКФ матрицы, содержащих 20 и 40 мас% CaCO₃, приведены на рис. 1 и 2 соответственно. Показано, что образцы состоят из двух основных фаз – тригонального CaCO₃ и орторомбического MgKPO₄·6H₂O.

Фазовый состав матриц после облучения до дозы 10⁶ Гр отличается присутствием дополнительной фазы MgO (которая также присутствует в виде продукта деструкции при увеличении поглощенной дозы) и снижением интенсивностей рефлексов основных фаз. Фазовый состав образцов с 20 и 40 мас% CaCO₃ после их облучения до доз не более 10^7 Гр идентичен. После облучения материалов до доз выше 10^7 и 10^8 Гр наблюдается существенное изменение фазового состава. Так, при достижении дозы 10^7 Гр интенсивности рефлексов фазы MgKPO₄·6H₂O существенно снижаются (до уровня минорной примесной фазы), и кроме фаз со структурами CaCO₃ и MgO присутствуют фазы K₆P₆O₁₈·3H₂O и CaO.

При достижении дозы 108 Гр дифракционные рефлексы фазы MgKPO₄·6H₂O не регистрируются для обоих составов. Образцы с 20% CaCO₃ образованы фазами орторомбического К₆Р₆О₁₈. 3H₂O, тригонального CaCO₃, тригонального MgCO₃ минорной фазой MgO, и, возможно, кубической фазой K₂O. В то же время образцы с 40% СаСО₃ сложены из фаз тригонального СаСО₃, кубического MgO, моноклинного пирофосфата магния $Mg_2P_2O_7$ и минорной фазы $K_6P_6O_{18}$ ·3H₂O. Такое изменение фазового состава, вероятно, связано с полной радиационной деструкцией целевых фаз и их разложением на более простые и термодинамически более устойчивые кристаллические структуры за счет разрыва химических связей и кристаллизацией новых фаз под действием ускоренных электронов.

По результатам индицирования полученных рентгенограмм были рассчитаны параметры кристаллической решетки орторомбической фазы МgКРО₄·6H₂O (табл. 3). Изменение параметров кристаллической решетки и ее объема после облучения до доз не более 107 Гр незначительно. Отсутствие существенных изменений в значениях параметров элементарной ячейки целевой фазы $MgKPO_4 \cdot 6H_2O_1$ которая будет фиксировать изотоп ¹⁴С, очевидно, связано с незначительной способностью ускоренных электронов с энергией до 2.5 МэВ к смещению ядер атомов в кристаллической решетки из своих позиций. Этот факт крайне важен при длительном хранении матрицы с включением долгоживущего изотопа ¹⁴С (период полураспада 5730 лет), испытывающего В--превращение, так как материал матрицы при этом не будет подвержен существенному радиационному распуханию.

Разница в полученных результатах количественного анализа и значениях концентраций карбонат-

РАДИОХИМИЯ том 62 № 1 2020

Рис. 2. Вид рентгенограмм необлученного (а) и облученных электронами до доз 10^6 (б), 10^7 (в) и 10^8 Гр (г) образцов МКФ, содержащей 40% CaCO₃.

ионов в растворах после выщелачивания (для двух независимых методов – титриметрического и потенциометрического) не превышала 5% для одних и тех же проб.

Данные о скоростях выщелачивания компонентов как облученных, так и необлученных образцов МКФ матрицы, содержащих 20 и 40 мас% CaCO₃, приведены в табл. 4 и 5 соответственно. Из сравнения этих данных видно, что скорость выщелачивания компонентов существенно не зависит ни от наполнения по CaCO₃, ни от поглощенной дозы.

ЛИЗИН и др.

	Поглощенная доза, Гр	Параметры кристаллической решетки						
Содержание СаСО ₃ в образцах, мас%		<i>a</i> , Å	b, Å	<i>c</i> , Å	<i>V</i> , Å ³			
20	0	6.874±0.015	6.149±0.006	11.060±0.020	467.5±1.5			
	106	6.873±0.012	6.170±0.010	11.060±0.020	$470.8\pm\!\!1.5$			
	107	6.875±0.022	6.140±0.010	11.166±0.028	471.6±2.4			
40	0	6.870±0.010	6.143±0.008	11.064±0.018	467.6 ±1.7			
	106	6.898±0.014	6.158±0.008	11.063±0.019	469.9 ± 1.6			
	107	6.840±0.026	6.180±0.020	11.164±0.030	472.0 ± 3.0			

Таблица 3. Параметры орторомбической фазы MgKPO4·6H2O необлученных и облученных образцов МФМ

Таблица 4. Скорость выщелачивания образцов МКФ матрицы, содержащих 20 мас% CaCO₃, облученных ускоренными электронами

ΠΓ.	Π	Скорость выщелачивания компонентов, г/(см ² ·сут)					
поплощенная доза, гр	Период, сут	K	Mg	Ca	PO ₄ ^{3–}	CO3-	
0	1	3.5×10 ⁻²	2.2×10-3	1.4×10-4	5.2×10 ⁻³	5.0×10 ⁻²	
	3	1.7×10 ⁻²	1.2×10-3	1.0×10 ⁻⁴	2.5×10-3	2.4×10 ⁻²	
	7	8.8×10-3	7.5×10-4	4.4×10 ⁻⁵	1.4×10-3	1.2×10-2	
	10	6.5×10-3	6.5×10-4	3.0×10-5	1.0×10-3	9.0×10-3	
	14	4.7×10 ⁻³	5.6×10-4	2.2×10 ⁻⁵	7.8×10-4	7.2×10 ⁻³	
	21	3.3×10 ⁻³	4.8×10 ⁻⁴	2.0×10 ⁻⁵	5.8×10-4	5.0×10 ⁻³	
	28	2.5×10-3	4.6×10-4	1.9×10-5	4.8×10-4	4.0×10 ⁻³	
108	1	3.4×10 ⁻²	2.7×10-3	1.0×10-4	4.2×10 ⁻³	5.0×10 ⁻²	
	3	1.7×10^{-2}	1.3×10 ⁻³	7.0×10 ⁻⁵	2.0×10-3	2.2×10 ⁻²	
	7	9.5×10 ⁻³	7.3×10-4	4.5×10 ⁻⁵	1.1×10 ⁻³	1.2×10 ⁻²	
	10	7.4×10-3	6.0×10-4	4.2×10-5	8.5×10-4	9.5×10-3	
	14	5.3×10 ⁻³	5.6×10-4	3.8×10 ⁻⁵	6.8×10 ⁻⁴	8.3×10 ⁻³	
	21	3.6×10 ⁻³	4.7×10 ⁻⁴	3.3×10 ⁻⁵	5.0×10 ⁻⁴	6.6×10 ⁻³	
	28	2.7×10 ⁻³	4.1×10-4	3.3×10 ⁻⁵	4.0×10 ⁻⁴	5.5×10 ⁻³	

С течением времени скорость выщелачивания компонентов закономерно уменьшается. Это объясняется основной кинетической стадией коррозии матрицы – начальной скоростью выщелачивания. Относительно высокие скорости выщелачивания объясняются механизмом ионного обмена и диффузией контактного раствора за счет компенсации заряда поверхности матрицы молекулами воды, и, как следствие, гидролизом компонентов матрицы. В целом можно отметить, что скорости выщелачивания находятся на допустимом уровне и несколько превышают его для отдельных компонентов МФМ. Значения скоростей выщелачивания в соответствии с

Поглощенная доза, Гр	Π	Скорость выщелачивания компонентов, г/(см ² ·сут)					
	Период, сут	K	Mg	Ca	PO ₄ ³⁻	CO ₃ ^{2–}	
0	1	4.7×10-2	3.0×10-3	9.7×10-5	2.0×10-2	3.5×10-2	
	3	2.2×10-2	1.7×10-3	6.0×10 ⁻⁵	9.2×10-3	1.5×10-2	
	7	1.1×10 ⁻²	8.8×10-4	2.6×10 ⁻⁵	4.7×10 ⁻³	8.0×10 ⁻³	
	10	8.2×10 ⁻³	7.6×10-4	1.8×10 ⁻⁵	3.4×10 ⁻³	6.0×10 ⁻³	
	14	6.0×10-3	6.6×10-4	1.3×10-5	2.5×10-3	4.7×10-3	
	21	4.2×10 ⁻³	6.2×10-4	1.3×10 ⁻⁵	1.8×10 ⁻³	3.3×10 ⁻³	
	28	3.3×10 ⁻³	5.7×10-4	1.0×10 ⁻⁵	1.4×10 ⁻³	2.8×10-3	
108	1	4.0×10 ⁻²	3.0×10 ⁻³	6.5×10 ⁻⁵	4.6×10 ⁻³	4.0×10 ⁻²	
	3	2.0×10-2	1.6×10-3	4.3×10 ⁻⁵	2.4×10-3	1.7×10-2	
	7	1.1×10 ⁻²	1.0×10 ⁻³	2.8×10 ⁻⁵	1.3×10 ⁻³	9.8×10 ⁻³	
	10	8.8×10 ⁻³	9.0×10 ⁻⁴	2.6×10 ⁻⁵	1.0×10 ⁻³	8.0×10 ⁻³	
	14	6.3×10 ⁻³	8.1×10-4	2.3×10 ⁻⁵	8.1×10-4	6.7×10 ⁻³	
	21	4.3×10-3	6.8×10-4	2.0×10-5	6.2×10-4	5.1×10-3	
	28	3.3×10-3	5.9×10-4	1.9×10 ⁻⁵	5.0×10-4	4.3×10-3	

Таблица 5. Скорость выщелачивания образцов МКФ матрицы, содержащих 40 мас% CaCO₃, облученных ускоренными электронами

действующими нормативами для цементных компаундов регламентируются только для радионуклидов ¹³⁷Cs и ⁹⁰Sr [14, 15] и не должны превышать значения 10^{-3} г/(см²·сут).

Результаты настоящих исследований позволяют оценить время хранения МФМ матрицы вплоть до ее полной деструкции. Так, например, возьмем для примера образец с загрузкой 20 мас% по СаСО₃ При переработке ОЯТ, по данным расчетов, на операциях волоксидации нитридного ОЯТ образуется 1.28 кг ¹⁴С в год с общей активностью 6.9·10¹⁴ Бк. После улавливания ¹⁴С и отверждения образуется около 682 кг СаСО3 из абсорбционной колонны и, соответственно, МКФ матрица массой 3410 кг с содержанием СаСО₃ 20 мас%. Удельная активность матрицы составит 6.9×10¹⁴/3410 = 2.02×10¹¹ Бк/кг. При дозе 10⁸ Гр материал будет полностью подвергнут деструкции, т.е. получит энергию 10⁸ Дж на 1 кг. Так как для ¹⁴С $T_{1/2}$ = 5730 лет, а энергия одного β-распада¹⁴С составляет 156.47 кэВ, то по закону радиоактивного распада МФМ с содержанием СаСО₃ 20% накопит дозу 108 Гр приблизительно за 2300 лет при условии того, что вся энергия, выделившаяся при β-распаде ¹⁴С будет поглощена веществом. Для более точной оценки сроков хранения матриц с целью окончательного обоснования сроков и условий геологического хранения ¹⁴С, окончательного выбора МКФ матрицы для иммобилизации ¹⁴С в составе карбоната кальция и выбора оптимальной загрузки необходимо проведение ядерно-физических расчетов.

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют об отсутствии конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

 Шадрин А.Ю., Двоеглазов К.Н., Масленников А.Г., Кащеев В.А., Третьякова С.Г., Шмидт О.В., Виданов В.Л., Устинов О.А., Волк В.И., Веселов С.Н., Ишунин В.С. // Радиохимия. 2016. Т. 58, № 3. С. 234. (Shadrin A.Yu., Dvoeglazov K.N., Maslennikov A.G., Kashcheev V.A., Tret'yakova S.G., Shmidt O.V., Vidanov V.L., Ustinov O.A., Volk V.I., Veselov S.N., Ishunin V.S. // Radiochemistry. 2016. Vol. 58, N 3. P. 271. doi 10.1134/S1066362216030085)

- Федеральный закон №190 ФЗ « Об обращении с радиоактивными отходами и о внесении изменений в отдельные законодательные акты Российской Федерации» // Рос. газета. Федеральный выпуск № 5529 от 15 июля 2011 г.
- Якунин С.А., Устинов О.А., Шадрин А.Ю., Шудегова О.В. // Атом. энергия, 2016. Т. 120, №3. С. 176. (Yakunin S.A., Ustinov O.A., Shadrin А.Yu., Shudegova O.V. // At. Energy. 2016. Vol. 120, N 3. Р. 229. doi 10.1007/s10512-016-0122-y)
- Винокуров С.Е., Куликова С.А., Крупская В.В., Мясоедов Б.Ф. // Радиохимия. 2018. Т. 60, № 1. С. 66. (Vinokurov S.E., Kulikova S.A., Krupskaya V.V., Myasoedov B.F. // Radiochemistry. 2018. Vol. 60, N 1. P. 70. doi 10.1134/S1066362218010125).
- Vinokurov S.E., Kulikova S.A., Myasoedov B.F. // Materials. 2018. Vol. 11. P. 976. doi 10.3390/ ma11060976.
- Vinokurov S.E., Kulikova S.A., Krupskaya V.V. et al. // J. Radioanal. Nucl. Chem. 2018. Vol. 315, N 3. P. 481. doi 10.1007/s10967-018-5698-3.
- 7. *Wagh A.S.* Chemically Bonded Phosphate Ceramics: Twenty-First Century Materials with Diverse Applications. Amsterdam: Elsevier, 2016. 2nd ed. 422 p.
- Graeser S., Postl W., Bojar H.-P. et al. // Eur. J. Mineral. 2008. Vol. 20, N 4. P. 629. doi 10.1127/0935-1221/2008/0020-1810.

- Дмитриева А.В., Каленова М.Ю., Куликова С.А. и др.// ЖПХ. 2018. Т. 91, № 4. С. 572. (Dmitrieva A.V., Kalenova M.Yu., Kulikova S.A. et al. // Russ. J. Appl. Chem. 2018. Vol. 91, N 4. P. 641. doi 10.1134/ S107042721804016X).
- Powder Diffraction File. International Center for Diffraction Data. Swarthmore, Pennsylvania (USA), 1999.
- ГОСТ 52126-2003: Отходы радиоактивные. Определение химической устойчивости отвержденных высокоактивных отходов методом длительного выщелачивания: Национальный стандарт Российской Федерации. М.: Изд-во стандартов, 2003.
- Булатов А.В., Зеймаль А.Е. и др. Методические указания к практикуму «Химические методы анализа»: Учеб. пособие. СПб.: BBM, 2010. 54 с.
- Крешков А.П. Основы аналитической химии. Т. 2: Теоретические основы. Количественный анализ. М.: Химия, 1971. 456 с.
- 14. НП-019-15: Федеральные нормы и правила в области использования атомной энергии «Сбор, переработка, хранение и кондиционирование жидких радиоактивных отходов. Требования безопасности».
- ГОСТ Р 51883-2002: Отходы радиоактивные цементированные. Общие технические требования. М.: Изд-во стандартов, 2002. 3 с.