УДК 621.039 + 621.039.72

КАТАЛИТИЧЕСКОЕ РАЗЛОЖЕНИЕ N₂O В ВОЗДУШНОМ ПОТОКЕ СИСТЕМ ГАЗООЧИСТКИ РАДИОХИМИЧЕСКИХ ПРОИЗВОДСТВ

© 2020 г. С. А. Кулюхин*, И. А. Румер, М. П. Горбачева, А. А. Бессонов

Институт физической химии и электрохимии им. А. Н. Фрумкина РАН 119071, Москва, Ленинский пр., 31, корп. 4 *e-mail: kulyukhin@ipc.rssi.ru

Получена 05.03.2019, после доработки 28.06.2019, принята к публикации 29.06.2019

Исследовано каталитическое разложение N_2O в воздушном потоке при температуре от ~420 K до ~755 K в присутствии катализаторов на основе γ -Al₂O₃. Установлено, что степень разложения N_2O в присутствии катализаторов, содержащих Mg, Ni, Co и Fe, не превышает ~25% при температуре композита ~735 K и времени контакта газового потока с ним 5–6 с. Показано, что композит Al₂O₃–2RuO₂–400 позволяет осуществить практически полное разложение N_2O в воздушном потоке при температуре 738–753 K и времени контакта 7–15 с.

Ключевые слова: закись азота, каталитическое разложение, система газоочистки радиохимических производств

DOI: 10.31857/S0033831120020057

Проблема обезвреживания N2O актуальна и важна для радиохимических операций, таких как гидрометаллургическая переработка нитридного топлива [1, 2], денитрация кубовых остатков и кубового раствора, образующихся при упаривании высокоактивных отходов от переработки ОЯТ различных реакторов [3, 4]. В данных процессах образуются различные оксиды азота (N_2O , NO и NO_2), от которых необходимо очистить газовую фазу [1, 4]. При этом установлено, что в процессах денитрации оксиды азота преимущественно находятся в виде N₂O, который не подлежит регенерации. Действительно, использование различных жидких ловушек позволяет практически количественно очистить газовый поток от NO и NO₂ [5, 6]. В то же время N₂O (парниковый газ), который является несолеобразующим оксидом и практически не взаимодействует ни со щелочами, ни с кислотами, представляет главную проблему при локализации окислов азота [4].

При очистке газовых потоков от N₂O в радиохимических производствах преимуществом обладают методы, основанные либо на высокотемпературном каталитическом разложении N_2O , либо на сорбции с использованием различных сорбционных материалов [7–10].

Использование адсорбционных методов не всегда эффективно, поскольку требует дальнейшей регенерации отработанных сорбентов.

Несмотря на то, что каталитические методы очистки газовых выбросов от N_2O являются предпочтительными, практически все катализаторы, независимо от состава, начинают эффективно разлагать N_2O только при температурах выше 773 К, в основном, в инертной среде с низким содержанием кислорода и паров воды [7–9].

Одним из неорганических материалов, часто используемым в качестве носителя для катализаторов, является γ -Al₂O₃. Возможность направленного регулирования пористой структуры при синтезе позволяет считать, что в настоящее время γ -Al₂O₃ является наиболее подходящим материалом для создания эффективных катализаторов разложения N₂O. При этом наиболее активными

Металл	Условия синтеза	Обозначение
Cu(II)	2 моль/л NH ₄ OH, 2.5 ч; 563 К, 10 ч	Al ₂ O ₃ -7Cu-2Амк
	24 моль/л NH ₄ OH, 24 ч; 563 К, 10 ч; 873 К, 5 ч	Al ₂ O ₃ -7Cu-24Амк
Ni(II)	2 моль/л NH ₄ OH, 2.5 ч; 563 К, 10 ч	Al ₂ O ₃ -7Ni-2Амк
	24 моль/л NH ₄ OH, 24 ч; 563 К, 10 ч; 873 К, 5 ч	Al ₂ O ₃ -7Ni-24Амк
Fe(III)	2 моль/л NH ₄ OH, 2.5 ч; 563 К, 10 ч	Al ₂ O ₃ -7Fe-2Амк
	24 моль/л NH ₄ OH, 24 ч; 563 К, 10 ч; 873 К, 5 ч	Al ₂ O ₃ –7Fe–24Амк

Таблица 1. Условия синтеза и обозначения композитов на основе γ-Al₂O₃, содержащих Cu, Ni и Fe

в процессах каталитического разложения N_2O являются благородные металлы (Pt, Rh, Ru, Au). Учитывая широкое использование в составе катализаторов *d*-элементов (Cu, Co, Ni, Fe, Mn и др.), представляло интерес исследовать эффективность различных композиционных материалов на основе γ -Al₂O₃ для низкотемпературного разложения N_2O в воздушном потоке. Это и составило цель работы.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Для получения композитов в качестве матриц был использован гранулированный γ-Al₂O₃ с размерами гранул 3.0–8.0 мм (ТУ-2163-004-81279372-11).

Водные нитраты Cu, Ni, Co и Fe, трихлорид рутения, а также все кислоты, щелочи и гидразин гидрат, используемые в работе, были марки х.ч.

Синтез прекурсоров композитов $Al_2O_3-M-nAmk$ (M = Cu, Ni, Fe; n = 2 или 24) проводили путем пропитки γ - Al_2O_3 7%-ными водными растворами нитратов соответствующих металлов с последующим высушиванием при 423 К на воздухе. Синтез композитов осуществляли путем обработки прекурсоров водными растворами 2 и 24 моль/л аммиака, выдерживанием в течение 2.5 и 24 ч соответственно и кондиционированием на воздухе в течение 5 или 10 ч в зависимости от температуры. Использование растворов 2 и 24 моль/л аммиака позволяло получать в составе прекурсоров различные по составу аммиачные комплексы *d*-элементов.

В табл. 1 приведены условия синтеза и обозначения композитов на основе γ -Al₂O₃, содержащих Cu, Ni и Fe.

В работе также исследовали другие материалы на основе γ-Al₂O₃:

(1) Al_2O_3 –7Fe–2Амк-ГГ, полученный в результате обработки Al_2O_3 –7Fe–2Амк гидразингидратом с последующей высушиванием на воздухе при температуре 563 К.

РАДИОХИМИЯ том 62 № 2 2020

(2) Al_2O_3 -7Cu-2Амк-1050, полученный в результате прокаливания Al_2O_3 -7Cu-2Амк на воздухе при температуре 1323 К в течение 5 ч.

(3) Al_2O_3 -*n*Ni⁰ (*n* = 7 или 10), содержащий 7 или 10 мас% Ni⁰, полученный восстановлением Ni²⁺ до металла в токе водорода при температуре 873 К. В качестве прекурсора использовали материал на основе γ-Al₂O₃, содержащий рассчитанное количество Ni(NO₃)₂.

(4) $Al_2O_3-10MO_x-700$ (M = Mg, Ni, Co, Fe), содержащий 10 мас% оксидов металлов, полученный путем прокаливания прекурсоров на воздухе при температуре 973 К в течение 5 ч. В качестве прекурсора использовали материал на основе γ - Al_2O_3 , содержащий нитраты соответствующего металла.

(5) $Al_2O_3-10MO_x-1050$ (M = Mg, Ni, Cu, Co), содержащий 10 мас% оксидов металлов, полученный в результате прокаливания прекурсоров на воздухе при температуре 1323 К в течение 5 ч. В качестве прекурсора использовали материал на основе γ -Al₂O₃, содержащий нитраты соответствующего металла.

(6) $Al_2O_3-10MO_x-10Co_3O_4-700$ (M = Ni, Fe), содержащий по 10 мас% оксидов металлов, полученный в результате прокаливания прекурсоров на воздухе при температуре 973 К в течение 5 ч. В качестве прекурсора использовали материал на основе γ - Al_2O_3 , содержащий нитраты соответствующих металлов.

(7) $Al_2O_3-10MO_x-10Co_3O_4-10MgO-700$ (M = Ni, Fe), содержащий по 10 мас% оксидов металлов, полученный в результате прокаливания прекурсоров на воздухе при температуре 973 К в течение 5 ч. В качестве прекурсора использовали материал на основе γ -Al₂O₃, содержащий нитраты соответствующих металлов.

(8) Al_2O_3 -*n*RuO₂ (*n* = 1 или 4), полученные в результате сорбции газообразного RuO_4 на матрице γ -Al₂O₃ в процессе отгонки Ru из азотнокисло-

Рис. 1. Схема лабораторной установки для изучения разложения N_2O в воздушном потоке (1 – ротаметр, 2 – гидрозатвор с глицерином, 3 – реакционная камера с N_2O , 4 – реактор с исследуемым композитом, помещенный в шахтную печь, 5 – накопительная емкость для сбора газообразных продуктов реакций с участием N_2O).

го раствора. Композиты содержали 1 или 4 мас% RuO₂ и представляли собой круглые гранулы черного цвета.

(9) Al₂O₃-2RuO₂-400 - композит на основе ү-Аl₂О₃, содержащий 2 мас% RuO₂, полученный путем пропитки и термостатирования по следующей методике. В термостойкий стеклянный стакан емкостью 2.0 л помещали рассчитанное количество RuCl₃ и добавляли определенное количество 1 моль/л HCl (V/m =20). Проводили растворение при постепенном подъеметемпературы от комнатной (298–303 К) до 343-353 К. В первый момент при комнатной температуре раствор имел темно-зеленый-болотный цвет, и взятая навеска RuCl₃ полностью не растворялась. При повышении температуры раствор начинал приобретать красно-коричневый цвет («иодный»), и вся навеска RuCl₃ полностью растворялась с образованием раствора H₃RuCl₆. Конденсат, образующийся в верхней части стакана и на закрывающем его часовом стекле, имел рН 5-6, т.е. конденсат не содержал паров кислоты. После полного растворения RuCl₃ в стакан добавляли при перемешивании рассчитанную навеску γ -Al₂O₃. Количество раствора H₃RuCl₆, необходимого для пропитки γ-Al₂O₃, составляло 25% от объема, занимаемого требуемой навеской чистого γ-Al₂O₃. Объем, занимаемый требуемой навеской исходного у-Al₂O₃, рассчитывали на основании данных о его насыпной массе. В паспорте на коммерческий у-Al₂O₃ указано, что насыпная масса у-Al₂O₃ составляет 0.78 г/см³. Количество RuCl₂ рассчитывали на основании данных о требуемой концентрации импрегната (RuO₂) в катализаторе. В результате весь раствор практически полностью впитывался в гранулы у-Al₂O₃. Гранулы приобретали коричневый цвет. Со временем цвет гранул изменялся с коричневого на черный. Гранулы на 24 ч оставляли в контакте с небольшим количеством раствора, которое не впиталось в них, при периодическом перемешивании. Гранулы были окрашены более или менее равномерно. Через 24 ч гранулы с остатком раствора перегружали в кристаллизатор, который помещали в сушильный шкаф. Высушивание катализатора проводили в две стадии. Сначала прекурсор катализатора γ -Al₂O₃-H₃RuCl₆ сушили при температуре 383 К на воздухе до воздушно-сухого состояния. Затем гранулы прокаливали на воздухе при температуре 673 К в течение 5 ч.

Все композиты на основе γ -Al₂O₃ представляют собой сферические частицы правильной формы. Физические адсорбционные исследования синтезированных композитов и исходного γ -Al₂O₃ проводили на анализаторе Nova 2200 фирмы Quantachrome Instruments (США) по методике, представленной в работе [11].

Для изучения процессов разложения N₂O с использованием синтезированных композитов была использована лабораторная установка, схема которой приведена на рис. 1.

Установка состоит из ротаметра (1), гидрозатвора с глицерином (2), реакционной камеры с $N_2O(3)$, реактора с исследуемым композитом, помещенным в шахтную печь (4), накопительной емкости для сбора газообразных продуктов реакций с участием $N_2O(5)$.

Эксперимент проводили следующим образом. В предварительно вакуумированную реакционную камеру (3) объемом 125 см³ вводили определенное количество N₂O и доводили воздухом давление внутри камеры до атмосферного. В реактор

РАДИОХИМИЯ том 62 № 2 2020

№ эксп.	Материал	$S_{\rm VZ}$, м ² /г	$V_{\text{пор}}, \text{см}^3/\Gamma$	$d_{\text{пор}}$, нм ^а
1	Al ₂ O ₃	278.2	0.35	5.1
2	Al ₂ O ₃ –7Cu–2Амк	230.3	0.44	7.2
3	Al ₂ O ₃ -7Cu-2Амк-1050	42.0	0.16	6.5
4	Al ₂ O ₃ -7Cu-24Амк	263.2	0.33	3.6
5	Al ₂ O ₃ -7Ni-2Амк	254.9	0.45	6.6
6	Al ₂ O ₃ -7Ni-24Амк	204.4	0.27	4.0
7	Al ₂ O ₃ -7Fe-2Амк	236.4	0.41	5.0
8	Al ₂ O ₃ -7Fe-24Амк	199.8	0.27	3.6
9	$Al_2O_3-10Ni^0$	238.3	0.44	3.3
10	Al ₂ O ₃ -10MgO-700	176.6	0.37	3.3
11	Al ₂ O ₃ -10MgO-1050	49.1	0.15	6.5
12	Al ₂ O ₃ -10Co ₃ O ₄ -700	183.5	0.37	3.3
13	Al ₂ O ₃ -10CoO-1050	28.3	0.11	6.5
14	Al ₂ O ₃ -4CuO-700	205.8	0.42	3.9
15	Al ₂ O ₃ -4Cu ₂ O-1050	4.9	0.01	2.0
16	Al ₂ O ₃ -3NiO-700	177.7	0.38	3.3
17	Al ₂ O ₃ -3NiO-1050	62.2	0.21	5.6
18	Al ₂ O ₃ -10NiO-700	228.0	0.44	2.9
19	Al ₂ O ₃ -10Fe ₂ O ₃ -700	195.4	0.40	3.3
20	Al ₂ O ₃ -10NiO-10Co ₃ O ₄ -700	195.0	0.38	3.3
21	Al ₂ O ₃ -10NiO-10Co ₃ O ₄ -10MgO-700	195.3	0.38	3.3
22	Al ₂ O ₃ -10Fe ₂ O ₃ -10Co ₃ O ₄ -700	198.3	0.40	3.2
23	Al ₂ O ₃ -10Fe ₂ O ₃ -10Co ₃ O ₄ -10MgO-700	200.0	0.39	3.3
22	$A1_{2}O_{2}-2RuO_{-}-400$	204.5	0.27	2.0

Таблица 2. Некоторые физические адсорбционные характеристики исследованных композитных материалов и исходного γ-Al₂O₃

^а Приведено среднее значение размера пор.

(4) помещали исследуемый материал и устанавливали его в шахтную печь. Подсоединяли реакционную камеру к гидрозатвору с глицерином (2) и к реактору с исследуемым материалом (4), а затем к накопительной емкости для сбора газообразных продуктов с участием N_2O объемом 1400 см³ (5). Накопительную емкость предварительно вакуумировали с помощью форвакуумного насоса. Включали нагрев шахтной печи и устанавливали требуемую температуру композита.

После монтажа всей лабораторной установки и нагрева композита на установке открывали все краны и начинали отбор N₂O из реакционной камеры в накопительную емкость для сбора газообразных продуктов с участием N₂O. Проводили отбор газовой фазы из накопительной емкости в кюветы для измерения ИК спектров. Газовые кюветы для ИК спектроскопии с окнами из KBr имели объем 125 см³ и длину поглощающего слоя 100 мм. Помимо отбора проб из накопительной емкости после окончания эксперимента также проводили отбор проб газовой фазы в кюветы для ИК спектроскопии из газового пространства системы [реакционная камера с $N_2O(3)$, реактор с исследуемым композитом (4), соединительные шланги]. Перед измерением ИК спектров газовой фазы из накопительной емкости и системы проводили измерение фоновых ИК спектров используемых кювет.

Измерение ИК спектров проводили на спектрометре Specord M80. Перед измерением ИК спектров давление в газовых кюветах доводили до атмосферного с помощью газообразного азота. Количественную оценку содержания N₂O проводили по градуировочным кривым для полос n = 2240 и 1300 см⁻¹ [12, 13]. Точность измерения $\pm 10\%$.

Исходное количество N₂O находилось в интервале от ~0.8 до ~3.4 ммоль/л. Скорость воздуха (*v*) составляла 0.1–0.2 л/мин, время контакта газовой

Рис. 2. Температурная зависимость степени разложения N₂O.

фазы с материалом внутри реактора (τ) находилось в диапазоне от ~1.5 до ~13.5 с. Температура материала внутри реактора изменялась от ~423 до ~743 К. Точность измерения температуры ±3°С.

Термогравиметрический анализ композитов проводили с использованием дериватографа марки Q-1500 системы Paulik–Paulik–Erdey (МОМ, Будапешт, Венгрия). Образцы нагревали в Pt-тиглях в атмосфере воздуха со скоростью 10°С/мин.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

В табл. 2 представлены физические адсорбционные характеристики некоторых исследованных композитных материалов и исходного γ-Al₂O₃.

Как видно из табл. 2, синтезированные композиты, за исключением материалов, прокаленных при 1323 К, имеют хорошо развитую поверхность (170–260 м²/г) и относительно большой размер пор (2–7 нм). В результате термической обработки материалов при 1323 К удельная поверхность композитных материалов снижается более чем в 5 раз. Исходя из данных табл. 2, можно предположить, что химическая обработка исходного γ -Al₂O₃ незначительно влияет на физические адсорбционные свойства материалов. Основное изменение данных характеристик композитов происходит в процессе их высокотемпературной обработки.

Прежде, чем приступить к исследованиям каталитического разложения N₂O, мы провели предварительные исследования по его термическому раз-

Рис. 3. Зависимость степени разложения N_2O на композите Al_2O_3 -7Cu-2Aмк от температуры.

ложению в отсутствие композитов. В работе [14] отмечено, что в отсутствие катализатора термическое разложение при 673–803 К незначительно (0.22–0.23%). С другой стороны, в работе [15] отмечено, что при температуре выше 773 К происходит полное разложение N_2O на N_2 и O_2 . Поскольку цель нашей работы заключалась в создании материалов для разложения N_2O в газовых потоках при температурах не выше 773 К, нами предварительно был изучено термическое разложение N_2O в диапазоне температур от 298 до 723 К в динамических условиях.

На рис. 2 приведена зависимость степени разложения 2.9 ммоль/л N_2O от температуры. Воздушный поток, содержащий N_2O , находился в зоне нагрева в течение 5–6 с.

Как видно из рис. 2, степень разложения N_2O при 723 К составляет ~2.75%, что заметно отличается от данных, приведенных в работе [14]. При температуре 523, 623 и 723 К степень разложения N_2O составляет ~0.2, ~1.3 и ~2.75% соответственно, т.е. при изменении температуры от 523 К до 723 К разлагается от 0.004 до 0.054 ммоль/л N_2O . При 423 К термического разложения N_2O не про-исходит.

В табл. 3 приведены данные по разложению N_2O в процессе пропускания воздушного потока через слой различных композитов на основе γ -Al₂O₃, нагретых до температуры от ~423 до ~743 K.

N⁰	VONHODUT		h ou	T 0	<i>т</i> (N ₂ O), мМ		a %
эксп.	Композит	1 _{комп} , к	п, см	1,0	исходная	конечная	ū, 70
1 ⁶	Al ₂ O ₃ -7Cu-2Амк	526	4.6	4.9	0.85	0.79	~7.1
2 ⁶	Al ₂ O ₃ -7Cu-2Амк	426	4.9	6.7	3.04	2.86	~5.9
3 ⁶	Al ₂ O ₃ -7Cu-2Амк	527	2.7	1.7	3.04	2.90	~4.6
4 ⁶	Al ₂ O ₃ -7Cu-2Амк	528	4.8	8.0	3.21	2.92	~9.0
5 ⁶	Al ₂ O ₃ -7Cu-2Амк	525	9.0	19.8	3.30	2.97	~10.0
6б	Al ₂ O ₃ -7Cu-2Амк	625	4.8	6.2	3.21	3.20	~0.3
7б	Al ₂ O ₃ -7Cu-2Амк	727	4.9	7.2	3.08	3.08	< 0.01
8 ⁶	Al ₂ O ₃ -7Cu-2Амк-1050	527	7.4	6.4	3.13	3.07	~1.9
9б	Al ₂ O ₃ -7Cu-2Амк-1050	731	7.4	6.3	3.35	3.06	~8.7
10б	Al ₂ O ₃ -7Cu-24Амк	525	4.1	4.5	0.80	0.72	~10.0
11 ⁶	Al ₂ O ₃ –7Cu–24Амк	528	4.3	6.5	2.95	2.68	~9.2
12 ⁶	Al ₂ O ₃ -7Cu-24Амк	726	4.5	5.8	3.35	3.17	~5.4
13б	Al ₂ O ₃ –7Ni–2Амк	526	4.8	7.2	3.21	3.16	~1.6
14 ⁶	Al ₂ O ₃ -7Ni-2Амк	733	4.8	6.5	2.99	2.98	~0.3
15 ^б	Al ₂ O ₃ -7Ni-24Амк	526	4.4	6.2	3.04	2.86	~5.9
16 ⁶	Al ₂ O ₃ -7Ni-24Амк	726	4.2	6.0	3.21	3.08	~4.0
17 ⁶	Al ₂ O ₃ -7Fe-2Амк	525	4.8	7.9	3.04	2.95	~3.0
18 ⁶	Al ₂ O ₃ -7Fe-2Амк	727	4.5	9.3	3.13	3.13	< 0.01
19 ⁶	Al ₂ O ₃ -7Fe-2Амк-ГГ	524	4.6	2.6	1.07	1.05	~1.9
20 ⁶	Al ₂ O ₃ -7Fe-24Амк	523	4.0	4.2	0.76	0.70	~7.9
21 ⁶	Al ₂ O ₃ -7Fe-24Амк	526	4.4	6.3	3.04	2.76	~9.2
22 ⁶	Al ₂ O ₃ -7Fe-24Амк	728	4.5	6.9	3.17	2.83	~10.7
23 ⁶	$Al_2O_3-7Ni^0$	426	4.5	6.0	3.13	2.99	~4.5
24 ⁶	$Al_2O_3-7Ni^0$	527	4.5	6.1	2.95	2.76	~6.4
25 ⁶	$Al_2O_3-10Ni^0$	527	4.5	4.6	0.89	0.84	~5.6
26 ⁶	$Al_2O_3-10Ni^0$	426	7.2	5.6	3.35	2.98	~11.0
27 ^б	$Al_2O_3-10Ni^0$	526	7.2	7.2	3.26	2.73	~16.3
28	Al ₂ O ₃ -10MgO-700	528	5.8	3.4	1.61	1.61	~0.2
29	Al ₂ O ₃ -10MgO-700	628	5.7	4.4	1.61	1.61	~0.2
30	Al ₂ O ₃ -10MgO-700	723	5.3	3.5	1.38	1.15	~16.5
31	Al ₂ O ₃ -10MgO-1050	526	5.6	3.0	1.70	1.67	~1.5
32	Al ₂ O ₃ -10MgO-1050	625	5.7	4.2	1.70	1.69	~0.3
33	Al ₂ O ₃ -10MgO-1050	723	5.0	3.7	1.33	1.24	~6.7
34	Al ₂ O ₃ -10Co ₃ O ₄ -700	526	5.4	3.4	1.88	1.88	~0.2
35	Al ₂ O ₃ -10Co ₃ O ₄ -700	625	5.4	3.5	1.52	1.51	~0.4
36	Al ₂ O ₃ -10Co ₃ O ₄ -700	733	5.0	4.1	1.43	1.34	~6.4
37	Al ₂ O ₃ -10CoO-1050	530	5.5	4.4	1.70	1.69	~0.3
38	Al ₂ O ₃ -10CoO-1050	626	5.3	4.2	1.65	1.62	~1.7
39	Al ₂ O ₃ -10CoO-1050	723	5.0	3.7	1.33	1.24	~6.7
40	Al ₂ O ₃ -4CuO-700	525	5.6	3.5	1.61	1.59	~1.1
41	Al ₂ O ₃ -4CuO-700	624	5.5	3.4	1.21	1.12	~7.4
42	Al ₂ O ₃ -4Cu ₂ O-1050	525	5.6	3.0	1.52	1.45	~4.6
43	Al ₂ O ₃ -4Cu ₂ O-1050	626	5.4	3.4	1.83	1.79	~2.0
44	Al ₂ O ₃ -3NiO-700	529	5.7	3.2	1.79	1.75	~2.5
45	Al ₂ O ₂ -3NiO-700	625	5.8	3.4	1.61	1.58	~1.7

Таблица 3. Данные по разложению N₂O в воздушном потоке в присутствии композитов на основе γ -Al₂O₃ ($v_{rasa} = 0.1-0.2$ л/мин, содержание влаги в воздухе = 3–4 об.%, $S_{peakropa} = 2.85$ см²)^a

N⁰	Композит	<i>Т</i> _{комп} , К	<i>h</i> , см	τ, c	<i>т</i> (N ₂ O), мМ		a. 0/
эксп.	NOMITO SET				исходная	конечная	u, 70
46	Al ₂ O ₃ -10NiO-700	527	6.0	4.0	1.34	1.28	~4.7
47	Al ₂ O ₃ -10NiO-700	729	5.5	4.4	1.34	1.20	~10.5
48	Al ₂ O ₃ -3NiO-1050	528	5.8	3.7	1.70	1.68	~1.1
49	Al ₂ O ₃ -3NiO-1050	626	5.8	3.3	1.43	1.37	~4.1
50	Al ₂ O ₃ -10Fe ₂ O ₃ -700	523	6.0	4.6	1.47	1.45	~1.5
51	Al ₂ O ₃ -10Fe ₂ O ₃ -700	729	5.8	4.4	1.43	1.27	~11.4
52	Al ₂ O ₃ -10NiO-10Co ₃ O ₄ -700	527	6.0	3.7	1.29	1.29	< 0.001
53	Al ₂ O ₃ -10NiO-10Co ₃ O ₄ -700	740	5.4	4.4	1.29	1.08	~16.9
54	Al ₂ O ₃ -10NiO-10Co ₃ O ₄ -10MgO-700	525	5.8	3.6	1.52	1.49	~2.1
55	Al ₂ O ₃ -10NiO-10Co ₃ O ₄ -10MgO-700	742	5.4	4.2	1.47	1.41	~4.1
56	Al ₂ O ₃ -10Fe ₂ O ₃ -10Co ₃ O ₄ -700	524	5.9	3.9	1.47	1.47	< 0.001
57	Al ₂ O ₃ -10Fe ₂ O ₃ -10Co ₃ O ₄ -700	735	5.7	5.3	1.43	1.07	~24.8
58	Al ₂ O ₃ -10Fe ₂ O ₃ -10Co ₃ O ₄ -10MgO-700	524	5.8	3.3	1.56	1.54	~1.4
59	Al ₂ O ₃ -10Fe ₂ O ₃ -10Co ₃ O ₄ -10MgO-700	737	5.5	4.3	1.43	1.40	~2.2
60 ⁶	Al_2O_3 -4Ru O_2	423	6.8	6.4	0.31	0.29	~6.5
61 ⁶	Al ₂ O ₃ –4RuO ₂	424	6.5	6.0	0.98	0.80	~18.4
62 ⁶	Al ₂ O ₃ –RuO ₂	384	5.5	8.5	3.04	2.85	~6.3
63 ⁶	Al ₂ O ₃ –RuO ₂	525	3.9	5.1	3.26	2.95	~9.5
64 ⁶	Al_2O_3 -4Ru O_2	425	6.8	6.4	3.13	2.58	~17.6
65в	$Al_2O_3-nRuO_2$	626	21.7	13.1	0.98	0.57	~42.3
66	Al_2O_3 -2Ru O_2 -400	525	5.9	3.4	1.12	1.12	< 0.001
67	Al_2O_3 -2Ru O_2 -400	625	5.7	3.9	1.21	1.20	~1.9
68	Al ₂ O ₃ –2RuO ₂ –400	726	5.9	3.3	1.43	0.85	~40.3

Таблица 3. (продолжение)

 ^a Примечание: h – высота слоя композита в реакторе; τ – время контакта газовой фазы с композитом в реакторе; α – степень разложения N₂O

⁶ Результаты получены в ходе выполнения договора № 60–13 от 15 октября 2013 г. на тему: «Физико-химические исследования фазового состава газовых сред, образующихся в технологических операциях растворения нитридного топлива и газоочистки» в рамках проекта «Прорыв»

^в Опыт проводили на двух последовательно соединенных колонках, содержащих по два слоя материалов. 1-я колонка – Al_2O_3 – $4RuO_2$ (m = 15.5 г, h = 6.0 см) (нижний слой) и Al_2O_3 – $4RuO_2$, использованный в эксп. 7 данной таблицы (m = 15.1 г, h = 7.0 см) (верхний слой). 2-я колонка – Al_2O_3 – $4RuO_2$ с диаметром частиц менее 1 мм (m = 4.1 г, h = 2.7 см) (нижний слой) и Al_2O_3 – RuO_2 (m = 10.9 г, h = 6.0 см) (верхний слой). Газ поступал в колонки снизу вверх.

Как видно из табл. 3, в процессе пропускания газового потока, содержащего различные количества N_2O , через слой композита на основе γ -Al₂O₃, имеющего различную температуру, разлагается от 0.02 до 0.55 ммоль/л N_2O . При этом степень разложения во всех случаях не превышает 20%.

Исследование зависимости степени разложения N_2O от температуры композита типа $Al_2O_3-7M^{II}-2A$ мк показало, что в первый момент при увеличении температуры до 523 К степень разложения N_2O возрастает, однако при дальнейшем увеличении температуры до 723 К степень разложения резко уменьшается (эксп. 2, 4, 6 и 7 в табл. 3).

На рис. 3 приведена зависимость изменения степени разложения N_2O (2.9–3.2 ммоль/л) от температуры для композита Al_2O_3 –7Cu–2Aмк.

Аналогичное падение эффективности разложения также наблюдается для композитов Al_2O_3 -7Ni-2Aмк и Al_2O_3 -7Fe-2Aмк (эксп. 13, 14, 17 и 18 в табл. 3).

Наблюдаемое явление можно объяснить тем фактом, что в системе с композитами Al_2O_3 -7M-2Aмк (M = Cu^{II}, Ni^{II}, Fe^{III}) при температуре выше 573 К одновременно протекает 2 независимых процесса – каталитическое разложение N₂O и образование N₂O в результате деструкции композита. Согласно работе [16] образование N₂O при термическом разложении нитратов *d*-элементов может быть представлено следующими реакциями:

$$M(NO_3)_n \cdot mH_2O \to M_xO_y$$

+ (HNO₃, NO, NO₂, O₂, H₂O), (1)

РАДИОХИМИЯ том 62 № 2 2020

$$2NO \rightarrow N_2O_2, \tag{2}$$

$$N_2O_2 + NO = N_2O + NO_2.$$
 (3)

Именно из-за протекания реакций образования N_2O при термическом разложении нитратов *d*-элементов, входящих в состав композитов, нами не обнаружено снижения количества N_2O в воздухе.

Как видно из табл. 3, кондиционирование композитов типа $Al_2O_3-7M^{II}-24Amk$ (M = Cu, Ni) при 873 К в течение 5 ч также, по-видимому, не приводит к заметному разложению нитратов *d*-элементов в составе композитов. В результате нами наблюдалось некоторое снижение степени разложения N₂O в газовом потоке при росте температуры композита в реакторе (эксп. 11, 12, 15 и 16 в табл. 3).

В случае композита Al₂O₃–7Fe–24Амк кондиционирование способствовало повышению его каталитической эффективности в процессе разложения N₂O (эксп. 21 и 22 в табл. 3).

Дальнейшее кондиционирование композита Al_2O_3 -7Cu-2Aмк при температуре 1323 К приводит к полному разложению нитрата меди в составе материала. Для полученных материалов увеличение их температуры в процессе разложения N_2O приводит к заметному повышению их каталитической активности, направленной на разложение N_2O (эксп. 8 и 9 в табл. 3). Однако эффективность разложения N_2O остается относительно низкой и не превышает ~10%.

Модифицирование композита путем обработки гидразингидратом также не оказывает положительного эффекта на разложение N_2O (эксп. 19 в табл. 3).

Помимо условий приготовления композитов на степень разложения N₂O заметно влияет время контакта газового потока и твердой фазы. Чем больше время контакта, тем выше степень разложения N₂O. На примере Al₂O₃-7Cu-2Aмк нами исследована зависимость степени разложения N₂O от времени контакта газовой фазы и композита. Как видно из эксп. 3–5 в табл. 3, при одинаковой скорости газового потока с ростом высоты слоя композита в реакторе и, следовательно, увеличением времени контакта возрастает степень разложения N₂O. Однако, если для слоев толщиной 2.7 и 4.8 см степень разложения изменяется в 2 раза, то дальнейшее увеличение высоты слоя до 9.0 см приводит лишь к незначительному росту степени разложения N₂O.

РАДИОХИМИЯ том 62 № 2 2020

Важно отметить, что снижение концентрации N_2O в воздушном потоке не приводит к уменьшению степени разложения N_2O , которая сохраняется на уровне 7–10% (эксп. 1 и 5 в табл. 3).

В работе [17] для разложения N₂O в инертной атмосфере использован катализатор Ni⁰/а-Al₂O₃. Установлено, что при разложении N₂O на Ni-катализаторе вся поверхность металлического никеля покрывается адсорбированными атомами кислорода, образующимися при разложении N2O. Именно по этой причине на поверхности катализатора не происходит сорбции N₂ и N₂O. В процессе контакта каждая молекула N2O, сорбированная на катализаторе, подвергается разложению с образованием газообразного N2 и хемосорбированной молекулы кислорода. При температуре до 338 К N₂O не разлагается на катализаторе. Учитывая результаты данной работы, мы провели эксперименты по каталитическому разложению N2O в воздушном потоке в присутствии композитов на основе γ -Al₂O₃, содержащих 7 и 10 мас% Ni⁰.

Как видно из табл. 3, исследованные композиты Al_2O_3 -*n*Ni⁰ (*n* = 7, 10) обладают достаточно высокой эффективностью разложения N₂O. Уже при 426 К использование данных композитов позволяет обезвреживать от ~0.15 до ~0.4 ммоль/л N₂O при его исходном количестве около ~3.1 ммоль/л (эксп. 23 и 26 в табл. 3). Увеличение температуры композита приводит к росту степени разложения N₂O. Так, например, для обоих композитов увеличение температуры до 526-527 К приводит к повышению степени разложения N₂O в ~1.5 раза (эксп. 23, 24, 26 и 27 в табл. 3). Снижение концентрации N₂O в воздушном потоке приводит к уменьшению не только количества разложенного N₂O, но и степени разложения с ~16 до ~5% (эксп. 25 и 27 в табл. 3). Это связано, по-видимому, с возрастанием конкурирующего действия кислорода воздуха при уменьшении концентрации N₂O в газовом потоке.

В работах [18–21] приведены данные по поведению оксидов металлов (NiO, Co₃O₄, CoO, CuO, MgO), смешанных оксидов металлов (твердые растворы и шпинели), а также благородных металлов (Pt, Au, Ru, Rh) в процессах разложения N₂O. Установлено, что каталитическая активность в процессе разложения N₂O в присутствии кислорода изменяется в ряду: NiO > Co₃O₄ > CuO > MnO₂ ~ MgO > Fe₃O₄ > Al₂O₃. Исследование каталитической активности MgO, CaO, и SrO показало, что полная конверсия N₂O достигается при T >673 K [22]. В работе [23] приведены температуры 50%-ного разложения N₂O, которые равны 573 K для NiO, 655 K для Co₃O₄, 638 K для CuO, 773 K для MgO, 773 K для Fe₃O₄, >773 K для Al₂O₃. При этом в технологических процессах исследованы в основном катализаторы на инертных носителях, в том числе на Al₂O₃ (CuO/Al₂O₃ и CuAl₂O₄/Al₂O₃ (BASF), CuO/Al₂O₃ (Asahi Chemical) [24], γ -Al₂O₃-Fe₂O₃ [25]).

В связи с этим представляло интерес исследовать возможность разложения N_2O в воздушном потоке в присутствии катализаторов на основе γ -Al₂O₃, содержащего оксиды Mg, Cu, Ni, Co и Fe. Причем, как показано в работе [26], прокаливание γ -Al₂O₃, содержащего оксиды Ni, Co и Cu, приводит к образованию шпинели MAl₂O₄ на поверхности гранул γ -Al₂O₃.

В результате исследований установлено, что все композиты состава $Al_2O_3-10MO_x$ (M = Mg, Ni, Co, Fe), независимо от температуры кондиционирования прекурсоров, обладают низкой эффективностью разложения N₂O в воздушном потоке при температуре ~(523–723) К (эксп. 28–51 в табл. 3). Степень разложения N₂O в воздушном потоке не превышает ~17.0%.

Известно, что одним из катализаторов, имеющим высокую каталитическую активность в исследованных условиях, является шпинель кобальта [27]. Ее модифицирование путем замещения кобальта другими переходными металлами (Zn, Ni, Cu, Mn, Al) или ионами ЩЗЭ (Mg, Ca, Sr) приводит к увеличению каталитической активности Со₃О₄. В работах [28, 29] установлено, что частичная замена Co²⁺ в Co₃O₄ на Ni²⁺, Zn²⁺ или Mg²⁺ заметно улучшает каталитические свойства шпинели кобальта. В связи с этим представляло интерес исследовать эффективность разложения N₂O в воздушном потоке в присутствии композитов, содержащих одновременно различные оксиды металлов. С целью проверки данного явления нами исследованы композиты состава Al₂O₃-10MO_x-10Co₃O₄-700 и Al₂O₃-10MO_x-10Co₃O₄-10MgO-700 (M = Ni, Fe).

Установлено, что все исследованные композиты состава $Al_2O_3-10MO_x-10Co_3O_4-700$ и $Al_2O_3-10MO_x-10Co_3O_4-10MgO-700$ (M = Ni, Fe) обладают относительно низкой эффективностью разложения N_2O в воздушном потоке при температуре ~(523–743) К (эксп. 52–59 в табл. 3). Степень разложения N_2O в воздушном потоке не превышает ~25.0%. Следует отметить, что максимальное значение, равное ~24.8%, получено при использовании композита Al_2O_3 -10Fe₂O₃-10Co₃O₄-10MgO-700, имеющего температуру ~733 К.

Таким образом, использование композитов на основе γ -Al₂O₃, содержащих оксиды Mg, Ni, Co и Fe, не позволяет достигнуть максимальных степеней разложения N₂O в диапазоне температур до \sim 743 K.

Как показано в работах [30, 31], эффективными катализаторами разложения N₂O являются материалы, содержащие Ru. В работе [31] описан синтез катализатора на основе у-Al₂O₃, содержащего 0.4-1.0 мас% Ru в виде нанометровых частиц Ru⁰. Металлические частицы были синтезированы путем восстановления Ru этиленгликолем (ЭГ). Восстановление ЭГ позволяет получать практически сферические частицы металлического Ru с размером 1-3 нм и дисперсией 70-35%. Для данного катализатора 100%-ная конверсия N2O достигается при 748 К. Отмечено, что увеличение количества Ru с 0.38 мас% до 0.98 мас% незначительно увеличивает каталитическую активность материала. В составе катализатора на основе γ -Al₂O₂ Ru может находиться в других химических формах, например RuO₂. Данные о каталитических свойствах композитов состава Al₂O₃-nRuO₂ в процессах разложения N₂O крайне ограничены. В связи с этим представляло интерес исследовать каталитические свойства композитов состава Al₂O₃-nRuO₂ в процессах обезвреживания N₂O.

Как видно из табл. 3, композиты $Al_2O_3-nRuO_2$ (n = 1, 4) способны участвовать в процессе локализации N_2O из воздушного потока. Так, при пропускании газового потока, содержащего 3.1– 3.3 ммоль/л N_2O , через слой композита, имеющего температуру 383–423 К, степень разложения N_2O составляет ~(6–17)%, т.е. в условиях эксперимента происходит разложение от ~0.2 до ~0.6 ммоль/л N_2O (эксп. 60–62, 64 в табл. 3). При увеличении температуры композита до ~523 К количество разложившегося N_2O возрастает в ~1.5 раза (эксп. 63 в табл. 3), однако в этих условиях наблюдается заметный унос Ru с катализатора. Это связано с превращением малолетучего RuO_2 в хорошо летучий RuO_4 под действием кислорода воздуха. В связи с этим оптимальная температура для применения данного композита составляет 423 К.

На рис. 4 представлены данные термогравиметрического анализа композита Al₂O₃-4RuO₂.

Как видно из рис. 4, на кривой DTA отсутствуют как эндо-, так и экзоэффекты. При нагревании образцов Al₂O₃-4RuO₂ до температуры 1073 К происходит постепенная потеря массы, связанная с протеканием различных процессов, плавно переходящих друг в друга. Общая потеря массы составляет 24 мас%. Можно предположить, что в интервале температур 343-423 К уменьшение массы связано с потерей адсорбированной воды. В интервале температур 423-593 К происходит как потеря адсорбированной воды, так и частичная возгонка Ru в виде RuO₄. Выше температуры 593 К, по-видимому, потеря массы связана только с возгонкой Ru в виде RuO₄. Основная потеря массы композита (около 22 мас%) наблюдается при нагревании образца до 813 К.

Следует отметить, что снижение концентрации N_2O в воздушном потоке с ~3.1 до ~1.0 ммоль/л при одинаковых экспериментальных условиях практически не вызывает снижения степени разложения N_2O (~17–19%), хотя абсолютное количество разложившегося N_2O уменьшается с ~0.6 до ~0.2 ммоль/л (эксп. 61 и 64 в табл. 3). Дальнейшее снижение количества N_2O в воздушном потоке приводит к уменьшению не только абсолютного количества разложившегося N_2O с ~0.2 до ~0.02 ммоль/л, но и степени разложения N_2O с ~18 до ~6% (эксп. 60 и 61 в табл. 3).

Учитывая относительно высокие каталитически свойства Al_2O_3 - $nRuO_2$ (n = 1, 4), мы провели эксперимент при повышенной температуре и увеличенном времени контакта газового потока с катализатором (эксп. 65 в табл. 3). Для этой цели были использованы две последовательно соединенные колонки, содержащие по 2 слоя композита. В первой колонке нижний слой состоял из свежего Al_2O_3 - $4RuO_2$ (m = 15.5 г, h = 6.0 см), а в верхнем слое применяли Al_2O_3 - $4RuO_2$, который ранее использовали в экспериментах по разложению N_2O (m = 15.1 г, h = 7.0 см). Во второй колонке использовали свежие сорбенты. При этом нижний слой состоял из Al_2O_3 - $4RuO_2$ с диаметром частиц ме-

РАДИОХИМИЯ том 62 № 2 2020

Рис. 4. Данные термогравиметрического анализа композита Al₂O₃-4RuO₂ (навеска 269.0 мг).

нее 1 мм (m = 4.1 г, h = 2.7 см), а верхний – из Al_2O_3 –RuO₂ (m = 10.9 г, h = 6.0 см) (верхний слой). В результате общая высота композита в двух колонках составила 21.7 см. Газ в колонки поступал снизу вверх со скоростью 0.24 л/мин. Время контакта газовой фазы с композитом в пересчете на две колонки составило ~13.1 с. Температура композита равнялась 629±7 К.

Одновременное повышение температуры композита и времени контакта с ним газовой фазы позита увеличить степень разложения N_2O . Так, в экспериментах с одинаковым количеством N_2O увеличение температуры с ~423 до ~628 К и времени контакта с ~6.0 до ~13.1 с приводит к увеличению степени разложения N_2O с ~18 до ~42% (эксп. 61 и 65 в табл. 3).

Как следует из эксп. 65 в табл. 3, одним из факторов, влияющих на степень разложения N_2O в воздушном потоке, является температура композита. Действительно, как следует из эксп. 66–68 в табл. 3, даже при времени контакта газового потока с композитом 3–4 с увеличение температуры композита Al_2O_3 -2RuO₂-400 с ~523 до ~728 К приводит к возрастанию степени разложения N_2O в воздушном потоке с <0.001 до ~40.3%.

Анализируя данные табл. 3, можно сделать вывод о том, что для разложения N_2O в воздушном потоке наиболее подходящими являются композитные материалы на основе γ -Al₂O₃, содержащие RuO₂.

Учитывая результаты эксп. 65 в табл. 3, с целью достижения более высокой степени разложения N_2O в воздушном потоке были проведены эксперименты с увеличенным количеством компо-

сто						
№ эксп.	Общее время эксперимента, сут	<i>Т</i> _{комп} , К	τ, c	<i>m</i> (N ₂ O), мМ		~ 0/
				исходная	конечная	α, 70
1	0	698	11.5	1.21	0.65	~45.9
2	4	700	8.8	1.29	0.53	~59.0
3	6	716	14.7	1.07	0.28	~73.8
4	12	710	7.2	1.12	0.44	~60.4
5	17	715	9.6	1.16	0.23	~80.0
6	19	733	12.6	1.21	0.11	~91.3
7	24	720	10.7	1.25	0.14	~88.8
8	26	710	11.8	0.54	0.08	~85.9
9	28	722	12.3	0.49	0.05	~89.5
10	32	741	12.6	2.68	0.20	~92.6
11	34	722	13.1	2.63	0.46	~82.5
12	68	744	11.5	1.21	0.10	~92.0
13	73	743	11.8	1.21	0.15	~87.7
14	76	739	12.9	2.41	0.15	~93.9
15	80	738	14.5	2.46	0.17	~92.9
16	82	740	13.7	0.71	< 0.001	~99.9
17	89	731	14.2	0.71	0.06	~90.9
18	95	536	14.2	1.25	1.24	~1.1
19	97	628	13.9	1.43	1.33	~7.0
20	102	753	13.4	1.29	0.01	~99.0

Таблица 4. Данные по разложению N₂O в воздушном потоке в присутствии композита $Al_2O_3-2RuO_2-400 (v_{rasa} = 0.4-0.6 \text{ л/мин, содержание влаги в воздухе = 3-4 об.%, <math>h_{слоя \text{ композита}} = 15.0 \text{ см}, S_{\text{реактора}} = 5.00 \text{ см}^2)$

зита Al₂O₃-2RuO₂-400. В экспериментах навеска композита составляла 60 г, высота слоя композита в реакторе с площадью поперечного сечения 5.0 см² равнялась 15.0 см. Скорость газового потока составляла 0.4-0.6 л/мин, время контакта газовая фаза-композит изменялось в диапазоне от 7 до 15 с. Все эксперименты проводили на одной и той же загрузке, т.е. композит между экспериментами не меняли, а только продували воздухом для удаления следов N2O, оставшихся в системе от предыдущего эксперимента. Таким образом, в процессе эксперимента композит подвергался периодическому циклу нагревание-остывание. Весь эксперимент продолжался в течение 102 сут. При этом в процессе эксперимента меняли как количество N₂O в воздушном потоке, так и температуру композита.

В табл. 4 представлены данные по разложению N_2O в воздушном потоке в присутствии композита Al_2O_3 –2RuO₂–400.

Как видно из табл. 4, при температуре композита выше 708 К степень разложения N_2O превышает ~60%. При этом с уменьшением количества N_2O в газовом потоке степень его разложения при одинаковой температуре возрастает. Так, при температуре композита ~710 К при уменьшении количества N_2O в воздушном потоке с ~1.12 до ~0.54 ммоль/л степень разложения N_2O возрастает с ~60 до ~86% (эксп. 4 и 8 в табл. 4). Следует отметить, что в диапазоне температур композита от ~713 до ~753 К степень разложения ~(0.5–2.7) ммоль/л N_2O превышает ~80% (эксп. 5–17 и 20 в табл. 4). При этом, несмотря на то, что композит постоянно испытывает чередующиеся процессы нагревания до заданной температуры и остывания до комнатной температуры, он сохраняет свои каталитические свойства в отношении N_2O .

Как следует из эксп. 18 в табл. 4, при температуре композита ~433 К разложения N_2O практически не происходит. Как отмечалось ранее, увеличение температуры композита приводит к повышению степени разложения N_2O . Действительно, при температуре композита ~628 К степень разложения N_2O увеличивается, но незначительно (всего до ~7%) (эксп. 19 в табл. 4). Однако дальнейшее повышение температуры композита до ~753 К приводит к резкому возрастанию его каталитической активности. Степень разложения N_2O в этих условиях увеличивается до ~99% (эксп. 20 в табл. 4).

В заключение можно отметить, что в отличие от коммерчески доступных катализаторов, которые, независимо от состава, начинают эффективно разлагать N₂O только в основном в инертной среде с низким содержанием кислорода и паров воды при температурах выше 773 К, композит Al₂O₃-2RuO₂-400 при практически одинаковой температуре (738-753 К) позволяет осуществить практически полное разложение N₂O в воздушном потоке. При этом время контакта воздушного потока составляет всего 7-15 с. Данный композит может найти применение в системах газоочистки установок денитрации высокоактивного рафината и кубового раствора, образовавшихся при упаривании САО переработки высоковыгоревшего нитридного ОЯТ реактора на быстрых нейтронах.

ФОНДОВАЯ ПОДДЕРЖКА

Работа выполнена при частичном финансировании Министерством науки и высшего образования Российской Федерации (тема № АААА-A18-118021990023-6)».

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют об отсутствии конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- 1. Устинов О.А, Кулюхин С.А., Воскресенская Ю.А. и др. // Атом. энергия. 2014. Т. 117, № 6. С. 329.
- Kulyukhin S.A., Shadrin A.Yu., Voskresenskaya Yu.A. et al. // J. Radioanal. Nucl. Chem. 2015. Vol. 304, N 1. P. 425.
- Kosonen H., Heinonen M., Mikola A. et al. // Environ. Sci. Technol. 2016. Vol. 50, N 11. P. 5547.
- 4. Зильберман Б.Я., Рябков Д.В., Мишина Н.Е. и др. Способ концентрирования радиоактивных отходов // Патент РФ № 2596816. Заяв. 30.06.2015. Опубл. 10.09.2016. Бюлл. № 25.
- 5. Устинов О.А., Шадрин А.Ю., Баташов М.В. и др. // Атом. энергия. 2018. Т. 124, № 2. С. 86.
- 6. Устинов О.А., Якунин С.А. // Атом. энергия. 2016. Т. 120, № 2. С. 112.
- Konsolakis M. // ACS Catalysis. 2015. Vol. 5, N 11. P. 6397.
- 8. Cornelissen G., Rutherford D.W., Arp H.P.H. et al. // Environ. Sci. Technol. 2013. Vol. 47, N 14. P. 7704.

- 9. Kaczmarczyk J., Zasada F., Janas J. et al. // ACS Catalysis. 2016. Vol. 6, N 2. P. 1235.
- 10. Ivanova Yu.A., Sutormina E.F., Isupova I.A., Vovk E.I. // Kinet. Catal. 2017. Vol. 58, N. 6. P. 793.
- 11. Селиверстов А.Ф., Лагунова Ю.О., Кулюхин С.А., Ершов Б.Г. // ЖПХ. 2017. Т. 90, № 3. С. 332.
- База данных ИК спектров. IR-Spektrensammlung der ANSYCO GmbH // http://www.ansyco.de. Дата посещения: 10.02.2019 г.
- 13. База данных NIST Standard Reference Database Number 69 // http://webbook.nist.gov/chemistry/. Дата посещения: 10.02.2019.
- Леонтьев А.В., Фомичева О.А., Проскурнина М.В., Зефиров Н.С. // Успехи химии. 2001. Т. 70, № 2. С. 107.
- Энциклопедия знаний Pandia.ru. Азота окислы // http://www.pandia.ru/135128. Дата посещения: 10.02.2019 г.
- Mateski A., Mateski B. // Thermochim. Acta. 2006. Vol. 446. P. 113.
- 17. *Tada S., Yokoyama M., Kikuchi R. et al.* // J. Phys. Chem. C. 2013. Vol. 117, N 28. P. 14652.
- Yan L., Ren T., Wang X. et al. // Appl. Catal. B. 2003. Vol. 45. P. 85.
- Yan L., Zhang X., Ren T. et al. // Chem. Commun. 2002. P. 860.
- Dacquin J.P., Lancelot C., Dujardin C. et al. // Appl. Catal. B: Environmental. 2009. Vol. 91, N 3–4. P. 596.
- Wu Y., Dujardin C., Granger P. et al. // J. Phys. Chem. C. 2013. Vol. 117, N 27. P. 13989.
- 22. Piskorz W., Zasada F., Stelmachowski P. et al. // J. Phys. Chem. C. 2013. Vol. 117, N 36. P. 18488.
- 23. Ohnishi C., Asano K., Iwamoto S. et al. // Catal. Today. 2007. Vol. 120. P. 145.
- Shimizu A., Tanaka K., Fujimori M. // Chemosphere. 2000. Vol. 2. P. 425.
- Giecko G., Borowiecki T., Gac W., Kruk J. // Catal. Today. 2008. Vol. 137. P. 403.
- Gonçalves A.A.S., Costa M.J.F., Zhang L. et al. // Chem. Mater. 2018. Vol. 30, N 2. P. 436.
- Zasada F., Stelmachowski P., Maniak G. et al. // Catal. Lett. 2009. Vol. 127, N 1–2. P. 126.
- Chellam U., Xu Z.P., Zeng H.C. // Chem. Mater. 2000. Vol. 12. P. 650.
- Yan L., Ren T., Wang X. et al. // Catal. Comm. 2003. Vol. 4. P. 505.
- 30. Спецов Е.А. // ЖПХ. 2015. Т. 88, № 9. С. 1233.
- 31. Komvokisa V.G., Martic M., Delimitis A. et al. // Appl. Catal. B: Environmental. 2011. Vol. 103, N 1–2. P. 62.