УДК 539.26+546.798.21

НИТРАТНЫЕ КОМПЛЕКСЫ НЕПТУНИЯ(V) С ОРГАНИЧЕСКИМИ ОДНОЗАРЯДНЫМИ КАТИОНАМИ ВО ВНЕШНЕЙ СФЕРЕ

© 2020 г. И. А. Чарушникова*, М. С. Григорьев, А. М. Федосеев

Институт физической химии и электрохимии им. А. Н. Фрумкина РАН, 119071, Москва, Ленинский просп., д. 31, корп. 4 *e-mail: charushnikovai@ipc.rssi.ru

Получена 05.03.2019, после доработки 15.04.2019, принята к публикации 23.04.2019

Выделены в кристаллическом виде и исследованы методом рентгеноструктурного анализа нитратные комплексы пятивалентного нептуния с однозарядными органическими катионами во внешней сфере состава $[H_3O][C(NH_2)_3]_2[NpO_2(NO_3)_2]_3$ (I), $[N(CH_3)_4][NpO_2(NO_3)_2(H_2O)_2]$ (II), $[HIm][NpO_2(Im)_5](NO_3)_2$ (III), где Im – имидазол, $C_3H_4N_2$. В комплексе с гуанидинием (I) осуществляется катион-катионное (КК) взаимодействие ионов NpO_2^+ , приводящее к образованию тригонально-гексагональных катионных сеток. В соединениях II и III КК взаимодействие отсутствует.

Ключевые слова: нептуний(V), синтез, кристаллическая структура, катион-катионное взаимодействие **DOI:** 10.31857/S0033831120030028

В работе [1] был описан синтез, строение и некоторые свойства нитратных комплексов нептуния(V) со щелочными катионами Li^+ , Na^+ , Rb^+ и Cs⁺ во внешней сфере. Оказалось, что для этих комплексов характерно образование катион-катионных (КК) связей между диоксокатионами NpO₂⁺, приводящее к образованию в структуре квадратных (соединения $Li[NpO_2(NO_3)_2]\cdot 2H_2O$ и Na[NpO₂(NO₃)₂]·2H₂O) или тригонально-гексагональных (соединения $Cs_3[NpO_2(NO_3)_2]\cdot H_2O$ и NaRb₅[NpO₂(NO₃)₂]₆·4H₂O) катионных сеток.

В продолжение исследования нитратных комплексов Np(V) выделены кристаллы нитратов Np(V) с органическими однозарядными катионами гуанидиния $C(NH_2)_3^+$, тетраметиламмония N(CH₃)₄⁺ и имидазолия HIm⁺ (Im – C₃H₄N₂) во внешней сфере. Были получены соединения состава [H₃O][C(NH₂)₃]₂[NpO₂(NO₃)₂]₃ (I), [N(CH₃)₄]. [NpO₂(NO₃)₂(H₂O)₂] (II), [HIm][NpO₂(Im)₅](NO₃)₂ (III).

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Соединения I, II были синтезированы по методике, описанной в работе [1]: к раствору ~0.05 моль/л NpO₂NO₃ прибавляли нитрат соответствующего катиона до концентрации послед-

него ~0.5-1.0 моль/л и оставляли при комнатной температуре для медленной кристаллизации. Цвет образовавшихся кристаллов можно описать как зеленоватый с желтым оттенком (I) и светлозеленый (II). В случае комплекса с имидазолом III водный раствор ~1 моль/л имидазола нейтрализовали 1 моль/л HNO₃ до рН полученного раствора не выше 6.5–7.0. В результате медленной кристаллизации при комнатной температуре образовались кристаллы ярко-зеленого цвета.

Рентгенодифракционные эксперименты проведены на автоматическом четырехкружном дифрактометре с двумерным детектором Bruker Kappa Арех II (излучение MoK_{α}) при 100 К. Измерены интенсивности рефлексов в полусфере обратного пространства. Параметры элементарных ячеек уточнены по всему массиву данных. В экспериментальные интенсивности введены поправки на поглощение с помощью программы SADABS [2]. Структуры расшифрованы прямым методом (SHELXS97 [3]) и уточнены полноматричным методом наименьших квадратов (SHELXL-2014 [4]) по F^2 по всем данным в анизотропном приближении для всех неводородных атомов. Структура III уточнялась как рацемический двойник с вкладом

ЧАРУШНИКОВА и др.

	T 1 1		
Параметр	l	11	111
Формула	C ₂ H ₁₅ N ₁₂ O ₂₅ Np ₃	$C_4H_{16}N_3O_{10}Np$	$C_{18}H_{25}N_{14}O_8Np$
M	1318.26	503.20	802.52
Сингония	Гексагональная	Моноклинная	Ромбическая
Пространственная группа	$P6_3/m$	P2/c	$Pna2_1$
<i>a</i> , Å	8.2179(2)	10.9081(7)	33.650(3)
b, Å	8.2179(2)	5.6601(4)	7.2445(6)
<i>c</i> , Å	21.3408(12)	11.6195(7)	11.6471(10)
β, град	90	113.622(1)	90
<i>V</i> , Å ³ ; <i>Z</i>	1248.14(9); 2	657.29(7); 2	2839.3(4); 4
ρ _{выч} , г/см ³	3.518	2.543	1.877
$\mu(MoK_{\alpha}), $ мм $^{-1}$	8.149	5.159	3.727
Количество измеренных/независимых	20513/1812	11024/2915	33162/8184
отражений			
Количество независимых отражений с	1336	2217	6224
$I > 2\sigma(I)$			
Количество уточняемых параметров	73	108	371
$R(F); wR(F^2) [I > 2\sigma(I)]$	0.0492; 0.1223	0.0130; 0.0268	0.0341; 0.0518
$R(F); wR(F^2)$ [весь массив]	0.0741; 0.1388	0.0221; 0.0296	0.0560; 0.0578
GOOF	1.067	1.0290	1.011
$\Delta \rho_{\rm max}$ и $\Delta \rho_{\rm min}$, $e \cdot {\rm \AA}^{-3}$	10.783; -5.497	0.399; -0.903	0.863; -1.250

Таблица 1. Кристаллографические данные и характеристики рентгеноструктурного эксперимента

второго домена 0.24(2). Атомы Н катиона оксония (I) и молекул воды (II) локализованы из разностного Фурье-синтеза и уточнены с $U_{\rm H} = 1.5U_{\rm 3KB}$ (O) и ограничением расстояний О–Н и углов Н–О–Н. Атомы Н органических катионов гуанидиния $C(\rm NH_2)_3^+$ (I), тетраметиламмония $N(\rm CH_3)_4^+$ (II), имидазолия $C_3\rm H_5\rm N_2^+$ и молекулярного лиганда имидазола (III) введены на геометрически рассчитанные позиции с $U_{\rm H} = 1.5U_{\rm 3KB}$ (C) для II и $U_{\rm H} = 1.2U_{\rm 3KB}(\rm N,C)$ для I, III.

Основные кристаллографические данные и характеристики рентгеноструктурного эксперимента приведены в табл. 1. Длины связей и валентные углы в структурах **I–III** приведены в табл. 2, 3. Координаты атомов депонированы в Кембриджский центр кристаллографических данных, депозиты ССDС 1896401–1896403.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Структура I состоит из комплексных анионов $[NpO_2(NO_3)_2]^-$ и однозарядных катионов H_3O^+ и $C(NH_2)_3^+$ (рис. 1а). Катионы NpO_2^+ связываются в плоские тригонально-гексагональные сетки (рис. 1а), подобные найденным в структурах $Cs_3[NpO_2(NO_3)_2]_3$ · H_2O и $NaRb_5[NpO_2(NO_3)_2]_6$ · $4H_2O$ [1] или La(NpO_2)₃(NO_3)₆· nH_2O [5].

В структуре I атом Np¹ катиона NpO₂⁺ локализуется на плоскости *m* в позиции 6*h*. Координационное окружение атома Np¹ – гексагональная бипирамида, и длины связей внутри координационного полиэдра (КП) (табл. 2) такие же, как в структурах со щелочными катионами. Максимальное отклонение атомов кислорода от среднеквадратичной экваториальной плоскости бипирамиды не превышает ±0.071(8) Å. Бидентатно-циклические нитрат-ионы располагаются по обе стороны тригонально-гексагональной катионной сетки, образуя слои состава [NpO₂(NO₃)₂]^{*n*-}, перпендикулярные направлению [001] в кристалле, между ними располагаются катионы оксония и гуанидиния.

Катион оксония в структуре I (атом кислорода O^{1w}) локализуется на инверсионной оси третьего порядка, позиция 2b. Три атома водорода у катиона оксония разупорядочены по двум позициям и образуют шесть коротких контактов [$O^{w...}O$ 2.701(16) Å] с концевыми атомами O^5 нитратанионов соседних слоев, которые можно отнести к сравнительно прочным водородным связям.

Катион $C(NH_2)_3^+$ в структуре I локализуется в позиции 4*f*. При этом атомы C^1 и N^2 располагаются на оси 3, а атомы N^3 и N^4 разупорядочены относительно этой оси. Аминогруппы гуаниди-

Рис. 1. Фрагмент структуры $[H_3O][C(NH_2)_3]_2[NpO_2(NO_3)_2]_3$ (I) (а) и тригонально-гексагональная катионная сетка в кристалле I (б). Эллипсоиды температурных смещений показаны с 30% вероятностью (разупорядоченность катионов H_3O^+ и $C(NH_2)_3^+$ не показана). Операции симметрии: а – (*x*, *y*, 1/2–*z*); b – (1–*y*, 1+*x*–*y*, *z*); с – (2–*y*, 1+*x*–*y*, *z*).

ния участвуют в водородном взаимодействии типа $N-H\cdots O$, объединяющем слои $[NpO_2(NO_3)_2]_n^{n-}$. Акцепторами протонов выступают атомы кис-

лорода нитрат-ионов, причем концевой атом O^5 задействован по крайней мере в четырех сравнительно прочных связях (табл. 4). Контакты N···O

Рис. 2. Фрагмент структуры [N(CH₃)₄][NpO₂(NO₃)₂(H₂O)₂] (II). Эллипсоиды температурных смещений даны с 50% вероятностью. Операции симметрии: a - (-x, 1-y, 1-z); b - (-x-1, y, -z+1/2).

РАДИОХИМИЯ том 62 № 3 2020

Ι			II				
Связь	d	Связь	d	Связь	d	Связь	d
Np ¹ =O ¹	1.864(7)	N^1-O^4	1.264(17)	Np ¹ =O ¹	1.8227(12).2	Np ¹ –O ⁴	1.2283(18)
Np ¹ =O ²	1.829(7)	N^1-O^5	1.22(2)	Np ¹ =O ²	2.6318(12).2	$N^2 - C^1$	1.490(2) · 2
Np ¹ –O ^{1a}	2.422(6)	C^1-N^2	1.33(3)	Np^1-O^3	2.6033(12).2	N^2-C^2	1.499(2).2
Np ¹ –O ^{2b}	2.424(7)	$C^{1}-N^{3}$	1.34(4)	Np ¹ –O ^{1w}	2.4734(13) 2	Np ¹ …Np ^{1c}	5.8097
Np ¹ –O ³	2.535(8).2	C^1-N^4	1.29(3)	Np ¹ –O ²	1.2647(18)	Np ¹ …Np ^{1d}	5.6601
Np ¹ –O ⁴	2.568(9) 2	Np ¹ …Np ^{1c}	4.1107	Np^1-O^3	1.2725(19)		
N^1-O^3	1.218(15)	Np ¹ …Np ^{1d}	4.1072				
Угол	ω	Угол	ω	Угол	ω	Угол	ω
O ¹ Np ¹ O ²	178.5(3)	O ⁴ N ¹ O ⁵	119.6(14)	O ¹ Np ¹ O ^{1a}	180.0	$O^2N^1O^4$	122.25(15)
$O^{1a}Np^1O^3$	64.7(2).2	$N^2C^1N^3$	119.9(18)	$O^2Np^1O^{1w}$	65.76(4) 2	$O^3N^1O^4$	121.75(14)
$O^{2b}Np^1O^4$	66.5(3) 2	$N^2C^1N^4$	121(2)	$O^{3a}Np^1O^{1w}$	66.45(4) 2	$C^1N^2C^{1b}$	110.26(19)
$O^3Np^1O^4$	49.0(3) 2	$N^3C^1N^4$	119(3)	$O^2Np^1O^3$	48.53(4) 2	$C^1N^2C^2$	109.41(10)
$O^3 N^1 O^4$	116.9(14)	Np ¹ O ¹ Np ^{1c}	146.9(4)	$O^2 N^1 O^3$	115.98(13)	$C^1N^2C^{2b}$	109.34(10)
O ³ N ¹ O ⁵	123.3(16)	Np ¹ O ¹ Np ^{1d}	149.6(4)				

Таблица 2. Длины связей (d, Å) и валентные углы (ω , град) в структурах [H₃O][C(NH₂)₃]₂[NpO₂(NO₃)₂]₃ (**I**) и [N(CH₃)₄] [NpO₂(NO₃)₂(H₂O)₂] (**II**)*

^a Операции симметрии: I: a – (1 – y, 1 + x – y, z); b – (2 – y, 1 + x – y, z); c – (–x + y, 1 – x, z); d – (1 – x + y, 2 – x, z); II: a – (–x, 1 – y, 1 – z); b – (–x – 1, y, –z + 1/2); c – (x, –y + 1, z – 1/2); d – (–x + 1, –y, 1 – z).

Таблица 3. Длины связей (d, Å) и валентные углы (ω, град) в структуре [HIm][NpO₂(Im)₅](NO₃)₂ (III)

Связь	d	Связь	d	Угол	ω	Угол	ω
Np ¹ =O ¹	1.842(5)	C^4-C^5	1.350(10)	O ¹ =Np ¹ =O ²	179.4(2)	$C^7 N^7 C^9$	105.2(7)
Np ¹ =O ²	1.829(5)	N ⁷ –C ⁷	1.374(9)	$N^3Np^1N^5$	71.6(4)	$C^{8}N^{8}C^{9}$	107.5(8)
Np ¹ –N ³	2.548(7)	N ⁷ –C ⁹	1.317(11)	$N^3Np^1N^{11}$	73.0(2)	$C^{8}C^{7}N^{7}$	110.0(9)
Np ¹ –N ⁵	2.540(4)	N ⁸ -C ⁸	1.355(12)	$N^5Np^1N^7$	74.5(4)	$C^7 C^8 N^8$	106.4(8)
Np ¹ –N ⁷	2.542(7)	N ⁸ -C ⁹	1.347(11)	$N^7Np^1N^9$	71.7(2)	$N^7C^9N^8$	110.9(7)
Np ¹ –N ⁹	2.583(6)	$C^{7}-C^{8}$	1.341(13)	$N^9Np^1N^{11}$	70.19(17)	$C^{10}N^9C^{12}$	104.5(7)
Np ¹ –N ¹¹	2.580(7)	N ⁹ -C ¹⁰	1.360(10)	$O^3N^1O^4$	118.5(7)	C ¹¹ N ¹⁰ C ¹²	106.2(7)
N^1-O^3	1.248(8)	N ⁹ -C ¹²	1.307(11)	$O^3N^1O^5$	120.8(7)	N ⁹ C ¹⁰ C ¹¹	109.7(9)
N^1-O^4	1.271(7)	N ¹⁰ -C ¹¹	1.344(11)	$O^4 N^1 O^5$	120.6(7)	N ¹⁰ C ¹¹ C ¹⁰	106.4(8)
N^1-O^5	1.235(8)	N ¹⁰ -C ¹²	1.346(10)	$O^6 N^2 O^7$	122.0(7)	N ⁹ C ¹² N ¹⁰	113.2(8)
N^2-O^6	1.230(8)	C ¹⁰ –C ¹¹	1.379(12)	$O^6 N^2 O^8$	119.2(7)	C ¹³ N ¹¹ C ¹⁵	104.2(7)
N^2-O^7	1.240(8)	N ¹¹ -C ¹³	1.385(11)	$O^7 N^2 O^8$	118.8(7)	C ¹⁴ N ¹² C ¹⁵	107.9(8)
N^2-O^8	1.278(8)	N ¹¹ -C ¹⁵	1.307(11)	$C^1N^3C^3$	104.4(7)	C ¹⁴ C ¹³ N ¹¹	110.2(10)
$N^{3}-C^{1}$	1.381(10)	N ¹² -C ¹⁴	1.356(11)	$C^2N^4C^3$	108.0(7)	C ¹³ C ¹⁴ N ¹²	105.5(8)
$N^{3}-C^{3}$	1.310(9)	N ¹² -C ¹⁵	1.329(10)	$C^2C^1N^3$	110.7(7)	N ¹¹ C ¹⁵ N ¹²	112.0(8)
$N^{4}-C^{2}$	1.353(11)	C ¹³ –C ¹⁴	1.343(13)	$C^1C^2N^4$	105.4(8)	C ¹⁶ N ¹³ C ¹⁸	107.8(7)
$N^{4}-C^{3}$	1.343(11)	N ¹³ -C ¹⁶	1.365(10)	$N^3C^3N^4$	111.5(8)	C ¹⁷ N ¹⁴ C ¹⁸	107.8(7)
$C^{1}-C^{2}$	1.347(11)	N ¹³ -C ¹⁸	1.302(10)	$C^4N^5C^6$	105.4(6)	C ¹⁷ C ¹⁶ N ¹³	106.8(8)
$N^{5}-C^{4}$	1.376(10)	N ¹⁴ -C ¹⁷	1.351(10)	$C^5N^6C^6$	107.0(6)	C ¹⁶ C ¹⁷ N ¹⁴	107.6(7)
$N^{5}-C^{6}$	1.317(11)	N ¹⁴ -C ¹⁸	1.311(10)	$C^5C^4N^5$	109.2(7)	N ¹³ C ¹⁸ N ¹⁴	110.0(8)
$N^{6}-C^{5}$	1.353(10)	C ¹⁶ –C ¹⁷	1.336(12)	$C^4C^5N^6$	107.1(6)		
N ⁶ -C ⁶	1.346(9)			$N^5C^6N^6$	111.3(7)		

с атомом N^2 гуанидиния превышают 3.4 Å. Большие температурные смещения атома O^5 , вероятно, обусловлены влиянием водородного связывания с разупорядоченными катионами оксония и гуанидиния.

Соединения II и III с соотношением NpO_2^+ : $NO_3^- = 1$: 2 отличаются от других исследованных нами нитратных комплексов с однозарядными катионами во внешней сфере тем, что в их кристаллической структуре нет КК взаимодействия.

D–H…A	D–H, Å	H A, Å	D…A, Å	D–Н […] А, град	Операция симметрии для А		
$[H_3O][C(NH_2)_3]_2[NpO_2(NO_3)_2]_3$ (I)							
N^3 – H^3 ···O^3	0.88	1.99	2.85(4)	165.2	x, y - 1, z		
N^3 – H^3 ···O ⁵	0.88	2.37	2.98(4)	125.8	x, y - 1, z		
N^3 – H^4 ···O ⁵	0.88	2.37	3.03(4)	131.4	y, -x + y, -z		
N^4 – H^5 ···O ⁵	0.88	2.05	2.75(4)	135.4	1 + x - y, x, -z		
N^4 – H^6 ···O ⁴	0.88	2.25	2.86(4)	126.0			
N^4 – H^6 ···O ⁵	0.88	2.36	3.12(4)	144.9			
$[N(CH_3)_4][NpO_2(NO_3)_2(H_2O)_2]$ (II)							
O^{1w} – H^1 ··· O^1	0.88(2)	1.83(2)	2.7094(18)	173(3)	1 - x, -y, 1 - z		
O^{1w} – H^2 ··· O^3	0.80(2)	2.00(2)	2.7730(17)	164(2)	x, 1-y, z-1/2		
[HIm][NpO ₂ (Im) ₅](NO ₃) ₂ (III)							
N^4 – H^1 ···O ⁴	0.88	2.00	2.848(8)	161.6	x, y + 1, z + 1		
N^6 – H^2 ···O ⁸	0.88	1.98	2.835(8)	162.5			
N^8 – H^3 ···O ⁴	0.88	2.02	2.889(10)	170.5			
N^{10} – H^4 ···O ¹	0.88	1.91	2.785(9)	170.8	1-x, 1-y, z-1/2		
N^{12} – H^5 ··· O^2	0.88	1.90	2.777(9)	173.9	1-x, 2-y, z+1/2		
N^{13} – H^6 ···O ⁸	0.88	1.89	2.771(8)	175.3	-x + 3/2, y + 1/2, z - 1/2		
N^{14} – H^7 ···O^3	0.88	1.95	2.818(8)	167.0	-x + 3/2, y - 1/2, z + 1/2		

Таблица 4. Водородные связи в структурах I-III

Структура II является островной и состоит из комплексных анионов $[NpO_2(NO_3)_2(H_2O)_2]^-$ и катионов $N(CH_3)_4^+$.

Атом Np^1 находится в центре инверсии в позиции 2b и имеет координационное окружение в виде гексагональной бипирамиды с двумя бидентатно-циклическими анионами NO₃ и двумя молекулами воды в экваториальной плоскости. В результате образуется центросимметричный анион [NpO₂(NO₃)₂(H₂O)₂][−] (рис. 2). Длины связей и валентные углы в КП атома Np¹ приведены в табл. 2, максимальное отклонение атомов кислорода от экваториальной плоскости бипирамиды составляет 0.1325(7) Å. В гексагональной бипирамиде атома Np¹ структуры II связи с анионами NO₃ заметно длиннее, чем в КП атомов нептуния структуры I и в структурах нитратных комплексов с щелочными катионами во внешней сфере с квадратными (комплексы Li[NpO₂(NO₃)₂]·2H₂O и Na[NpO₂(NO₃)₂]·2H₂O) или тригонально-гексагональными (комплексы Cs₃[NpO₂(NO₃)₂]₃·H₂O и NaRb₅[NpO₂(NO₃)₂]₆·4H₂O) катионными сетками [1]. Отметим, что средние для этих соединений длины связей в экваториальной плоскости гексагональных бипирамид равны: Np-O_{nitr} 2.559 Å, Np–O_{vl} 2.418 Å.

РАДИОХИМИЯ том 62 № 3 2020

Молекула воды O^{1w} , включенная в координационное окружение атома Np¹, образует водородные связи, акцепторами протонов в которых являются атом кислорода O^1 катиона NpO₂⁺ и O^3 аниона NO₃⁻ (табл. 4, рис. 3). Водородные связи объединяют комплексные анионы [NpO₂(NO₃)₂(H₂O)₂]⁻ в слои, параллельные плоскости [*100*] в кристалле. Слабое водородное взаимодействие типа C_{sp} 3–H···O [6], в котором акцепторами протонов являются атом O^1 катиона NpO₂⁺, атомы O^2 и O^4 аниона NO₃⁻, дополнительно стабилизирует кристаллическую упаковку. Контакты С···O лежат в пределах 3.309(2)–3.464(2) Å, контакты H···O – в пределах 2.55(3)–2.65(2) Å.

Катион тетраметиламмония $N(CH_3)_4^+$ локализован на оси второго порядка в позиции 2*e*, он располагается между слоями из комплексных анионов $[NpO_2(NO_3)_2(H_2O)_2]^-$.

Причиной отсутствия КК взаимодействия в структуре II являются, по-видимому, стерические затруднения, вызванные размерами внешнесферного катиона. В слоях из комплексных анионов $[NpO_2(NO_3)_2(H_2O)_2]^-$, объединенных водородными связями, расстояние Np^{...}Np превышает 5 Å (табл. 2), тогда как в соединениях с КК связями это расстояние не может превышать 4.3 Å, если

Рис. 3. Водородные связи в структуре $[N(CH_3)_4][NpO_2(NO_3)_2(H_2O)_2]$ (II). Проекция в направлении [100]. Операции симметрии: a - (-x, 1 - y, 1 - z); b - (-x, -y, 1 - z); c - (x, 1 - y, z - 1/2).

рассматривать его как сумму длин связей Np=O и Np–O_{yl}, так как усредненные длины этих связей примерно равны 1.85 и 2.45 Å [7].

Структура III состоит из катионов NpO₂⁺ и имидазолия $C_3H_5N_2^+$, молекул имидазола и нитратанионов. Атом Np¹ катиона NpO₂⁺ находится в общем положении, в экваториальной плоскости его окружают пять молекул имидазола (рис. 4), образуя комплексный катион [NpO₂(Im)₅]⁺. КП атома Np¹ – пентагональная бипирамида с «ильными» атомами кислорода группы NpO₂ в апикальных позициях (средняя длина связей Np=O 1.836 Å, табл. 3). Средняя длина связей Np=N в экваториальной плоскости бипирамиды равна 2.559 Å, максимальное отклонение атомов азота от среднеквадратичной плоскости экватора не превышает 0.197(4) Å.

Два независимых нитрат-иона не входят в координационное окружение нептуния. Избыток отрицательного заряда компенсируется включением в структуру III катиона имидазолия.

В формировании кристаллической упаковки соединения III важную роль играет водородное вза-

Рис. 4. Фрагмент структуры [HIm][NpO₂(Im)₅](NO₃)₂ (**III**). Эллипсоиды температурных смещений даны с 50%-ной вероятностью. Пунктирными линиями показаны водородные связи.

имодействие типа N-H…O. Комплексные катионы [NpO₂(Im)₅]⁺ связываются между собой водородными связями, акцепторами протонов в которых выступают «ильные» атомы кислорода катионов NpO₂⁺, а доноры протонов – иминные группы имидазола с атомами азота N¹⁰ и N¹² (табл. 4). В результате образуются слои, в которых комплексные катионы [NpO₂(Im)₅]⁺ располагаются таким образом, что молекулы имидазола, задействованные в Н-связях с группами NpO₂, располагаются внутри слоя из комплексных катионов (рис. 5). Плоскости этих молекул имидазола образуют с экваториальной плоскостью пентагональной бипирамиды двугранные углы 55.4(2)° (атомы [N⁹C¹²N¹⁰C¹¹C¹⁰], рис. 4) и 50.3(2)° (атомы [N¹¹C¹⁵N¹²C¹⁴C¹³]). Кратчайшее межатомное расстояние Np…Np в слое равно 7.244 Å.

Анионы NO_3^- располагаются на внешних поверхностях слоев и связываются водородными связями с комплексными катионами $[NpO_2(Im)_5]^+$. Катионы имидазолия $C_3H_5N_2^+$ располагаются в межслоевом пространстве и как доноры протонов связываются с анионами NO_3^- . При этом анион с атомом азота N^1 связывается водородными

Рис. 5. Слои из комплексных катионов $[NpO_2(Im)_5]^+$, анионов NO_3^- и катионов $C_3H_5N_2^+$ в структуре III, проекция на плоскость [010]. Пунктирными линиями показаны водородные связи. Операции симметрии: a – (1 – x, 1 – y, 1/2 + z); b – (1 – x, 2 – y, –1/2 + z); c – (x, y – 1, z); d – (3/2x, 1/2 + y, –1/2 + z).

связями через атом O^4 с комплексным катионом $[NpO_2(Im)_5]^+$ одного слоя и через атом O^3 с катионом имидазолия. Анион с атомом азота N^2 связывается относительно прочной водородной связью типа C–H···O (контакты C^9 ···O⁶ 3.052(11) Å, H^{16} ···O⁶ 2.28 Å, угол D–H···A 138°) с комплексным катионом этого же слоя, а через атомы O^8 – с комплексным катионом соседнего слоя и катионом имидазолия. Двугранные углы между экваториальной плоскостью пентагональной бипирамиды и плоскостями задействованных в этих связях молекул имидазола равны: 78.9(3)° (атомы $[N^3C^3N^4C^2C^1]$), 78.6(2)° (атомы $[N^5C^6N^6C^5C^4]$) и 77.3(3)° (атомы $[N^7C^9N^8C^8C^7]$).

В трехмерной системе водородных связей имеет место и взаимодействие типа C_{sp} 2–H···O с участием С–Н групп имидазола. Контакты С···O лежат в пределах 3.052(11)–3.380(10) Å, контакты H···O – в пределах 2.28–2.53 Å. Эти H-связи более прочные, чем связи типа C_{sp} 3–H···O в структуре **II**.

Образование «громоздких» комплексных катионов $[NpO_2(Im)_5]^+$, по-видимому, и определяет структуру соединения III, так как для заполнения пространства кроме маленького нитрат-иона тре-

РАДИОХИМИЯ том 62 № 3 2020

буются дополнительные элементы. В данном случае в роли таких элементов выступают как катион имидазолия, так и дополнительный анион NO₃⁻. Они вносят в структуру вклады как кулоновского, так и водородного взаимодействий.

Таким образом, исследовано строение нитратных комплексов пятивалентного нептуния с однозарядными органическими катионами во внешней сфере. В комплексе с гуанидинием I осуществляется КК взаимодействие ионов NpO₂⁺ с образованием тригонально-гексагональных катионных сеток. В соединении II с катионом N(CH₃)₄⁺ во внешней сфере КК взаимодействие отсутствует из-за стерических затруднений, и в КП атома Np вместо катионов NpO₂⁺ включены молекулы воды. В структуре III наличие крупных комплексных катионов [NpO₂(Im)₅]⁺ также препятствует возникновению КК связей в кристалле. КП атомов Np – гексагональная (I, II) и пентагональная бипирамида (III).

ФОНДОВАЯ ПОДДЕРЖКА

Работа выполнена при частичном финансировании Министерством науки и высшего образования Российской Федерации (тема № АААА-А18-118040590105-4).

Рентгенодифракционные эксперименты выполнены в Центре коллективного пользования физическими методами исследования ИФХЭ РАН.

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют об отсутствии конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- Чарушникова И.А., Григорьев М.С., Федосеев А.М., Бессонов А.А., Лысенко К.А. // Радиохимия. 2020. Т. 62, № 2. С. 114.
- Sheldrick G.M. SADABS. Madison, Wisconsin (USA): Bruker AXS, 2008.
- Sheldrick G.M. // Acta Crystallogr., Sect. A. 2008. Vol. 64, N 1. P. 112.
- Sheldrick G.M. // Acta Crystallogr., Sect. C. 2015. Vol. 71, N 1. P. 3.
- 5. Григорьев М.С., Чарушникова И.А., Крот Н.Н. // Радиохимия. 2005. Т. 47, № 6. С. 504.
- 6. Steiner T. // Chem. Commun. 1997. N 8. P. 727.
- Крот Н.Н., Григорьев М.С. // Успехи химии. 2004. Т. 73, № 1. С. 94.