УДК 541.11+621.039.72

АЛЮМОСИЛИКАТНЫЕ СОРБЕНТЫ НА ОСНОВЕ ГЛИНИСТО-СОЛЕВЫХ ШЛАМОВ ОАО «БЕЛАРУСЬКАЛИЙ» ДЛЯ СОРБЦИИ РАДИОНУКЛИДОВ ЦЕЗИЯ И СТРОНЦИЯ

© 2020 г. Л. Н. Москальчук^{*a*} *, В. В. Милютин^{*b*}, Н. А. Некрасова^{*b*}, Т. Г. Леонтьева^{*c*}, А. А. Баклай^{*c*}, П. Е. Белоусов^{*d*}, В. В. Крупская^{*d*,*e*}

^а Белорусский государственный технологический университет, 220006, Минск, ул. Свердлова, д. 13а ^b Институт физической химии и электрохимии им. А. Н. Фрумкина РАН, 119071, Москва, Ленинский пр., д. 31, корп. 4

^с Объединенный институт энергетических и ядерных исследований – Сосны НАН Беларуси, 220109, Минск, а/я 119 ^d Институт геологии рудных месторождений, петрографии, минералогии и геохимии РАН,

119017, Москва, Старомонетный пер., д. 35

^е Московский государственный университет им. М.В. Ломоносова, геологический факультет, 119234, Москва, Ленинские горы, д. 1

*e-mail: leonmosk@tut.by

Получена 05.03.2019, после доработки 13.04.2019, принята к публикации 23.04.2019

Изучены минеральный состав, физико-химические свойства и сорбционные характеристики глинистосолевых шламов (ГСШ) отходов от переработки сильвинитовой руды ОАО «Беларуськалий» (Солигорск, Беларусь), а также алюмосиликатных и иллитовых сорбентов, полученных на их основе. Показано, что в процессе обогащения образцов ГСШ происходит изменение их химического и минералогического составов. Установлено, что отмывка ГСШ водой с последующей обработкой соляной кислотой и Трилоном Б приводит к увеличению содержания основного компонента ГСШ – иллита – в 1.2–1.3 раза за счет растворения карбонатов (доломита и кальцита) и гипса. Установлено, что присутствие иллита играет определяющую роль в сорбционной активности сорбентов по отношению к радионуклидам ¹³⁷Cs и ⁹⁰Sr. При использовании обогащенных образов иллитовых сорбентов (ИС-30 и ИС-3м) значения коэффициента распределения ¹³⁷Cs увеличиваются в 2 раза, а ⁹⁰Sr – в 20 раз по сравнению с необогащенными образцами алюмосиликатных сорбентов из ГСШ и их использования для очистки жидких радиоактивных отходов от радионуклидов ¹³⁷Cs и ⁹⁰Sr и создания барьеров для обеспечения безопасного хранения и захоронения низко- и среднеактивных радиоактивных отходов.

Ключевые слова: глинисто-солевые шламы, алюмосиликатные сорбенты, иллитовые сорбенты, модифицирование, сорбция, радионуклиды цезия, стронция

DOI: 10.31857/S0033831120030065

ВВЕДЕНИЕ

Природные глины и цеолиты активно используются при создании геохимических, инженерных барьеров при строительстве хранилищ радиоактивных отходов (РАО), объем которых постоянно растет с развитием атомной энергетики [1]. Для сооружения барьеров требуется большое количество материала, в связи с чем наиболее перспективно использование дешевых материалов – глин или пород с повышенным содержанием глинистой составляющей, которые обладают хорошими сорбционными и противомиграционными свойствами и доступны в различных регионах. Сорбенты на основе природных глин, например бентонитовых, наиболее эффективны при извлечении целого ряда радионуклидов, в том числе радионуклидов цезия, благодаря процессам их селективной сорбции и фиксации [2]. Сорбция цезия на глинистых минералах происходит за счет механизма ионного обмена. Этот показатель выше у тех глинистых минералов, у которых выше способность к ионному обмену, т.е. у минералов группы смектита (например монтмориллонита) и группы слюдистых минералов (например иллита) [3–5]. На долю глинистых минералов приходится до 65–80% объема всех осадочных пород [6].

Природные глины существенно различаются по сорбционным характеристикам, механизмам поглощения и удержания радионуклидов, фильтрационным свойствам, что необходимо учитывать при создании инженерных барьеров безопасности для изоляции РАО в местах хранения/захоронения [7]. Для повышения сорбционной способности материалы на основе глин могут подвергаться модифицированию химическими и термическими методами [8, 9]. Таким образом, научно обоснованный и экономически целесообразный выбор глинистых материалов, способных сорбировать радионуклиды, связан с поиском доступных и дешевых природных материалов, которые могут обеспечить безопасное хранение/захоронение РАО на конкретном объекте, а также с изучением возможности их модификации для улучшения сорбционных свойств и характеристик.

Одним из перспективных сорбционных материалов для иммобилизации радионуклидов являются крупнотоннажные отходы от переработки сильвинитовой руды предприятия ОАО «Беларуськалий» (Солигорск, Беларусь) – глинистосолевые шламы (ГСШ). Данный вид промышленных отходов представляет собой суспензию глины в насыщенном растворе солей NaCl и KCl. В настоящее время ГСШ не используются и складируются в шламохранилищах, в которых накоплено более 110 млн т. Шламохранилища вследствие ветровой эрозии и высокой концентрации солей калия и натрия являются источником загрязнения не только прилегающих почв и территорий, но и поверхностных и подземных вод.

Целью данной работы является получение алюмосиликатных сорбентов на основе глинисто-солевых шламов, изучение их состава, физико-химических и сорбционных свойств по отношению к радионуклидам ¹³⁷Cs и ⁹⁰Sr.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

В работе использовали следующие образцы:

РАДИОХИМИЯ том 62 № 3 2020

– ГСШ-1, ГСШ-2 и ГСШ-3 – исходные образцы глинисто-солевых шламов, отобранные из шламохранилищ 1-го, 2-го и 3-го рудоуправления ОАО «Беларуськалий» соответственно;

– АС-10, АС-20 и АС-30 – образцы алюмосиликатных сорбентов, полученные путем промывки исходных образцов глинисто-солевых шламов (ГСШ-1, ГСШ-2 и ГСШ-3) дистиллированной водой с последующей сушкой до постоянной массы при 100°С в течение 6 ч;

– АС-1м, АС-2м и АС-3м – образцы алюмосиликатных сорбентов, полученные путем обработки раствором 0.1 моль/дм³ НСl исходных образцов глинисто-солевых шламов (ГСШ-1, ГСШ-2 и ГСШ-3) с последующей промывкой дистиллированной водой и сушкой до постоянной массы при 100°С в течение 6 ч;

– ИС-30 – образец иллитового сорбента, полученный путем промывки образца ГСШ-3 дистиллированной водой с последующей обработкой нерастворимого осадка Трилоном Б, выделением фракции глинистых частиц с размером менее 2 мкм седиментационным методом с последующей сушкой до постоянной массы при 100°С в течение 6 ч;

– ИС-3м – образец иллитового сорбента, полученный путем промывки образца ГСШ-3 дистиллированной водой с последующей последовательной обработкой нерастворимого осадка раствором 0.1 моль/дм³ HCl, Трилоном Б, выделением фракции глинистых частиц с размером менее 2 мкм седиментационным методом с последующей сушкой до постоянной массы при 100°С в течение 6 ч.

Количественный анализ содержания породообразующих оксидов в образцах сорбентов проводили рентгеноспектральным флуоресцентным методом на спектрометре последовательного действия модели Axios mAX, PANalytical. Удельную поверхность образцов определяли с использованием метода низкотемпературной адсорбции азота (метод БЭТ) на установке Quadrasorb SI/Kr.

Минеральный анализ исходных и модифицированных образцов проводили методом рентгеновской дифракции при помощи рентгеновского дифрактометра Ultima-IV, Rigaku. Анализ результатов проводили согласно рекомендациям, описанным в работах [10, 11]. Количественный минеральный анализ проводили методом Ритвельда [12]

Минород	Содержание в образцах, мас%				
минерал	ГСШ-1	ГСШ-2	ГСШ-3		
Кварц	6.7	5.2	7.4		
КПШ (микроклин)	16.4	15.0	14.0		
Доломит	24.8	20.5	19.6		
Кальцит	2.6	2.2	2.9		
Гипс	5.1	7.5	2.4		
Каолинит	< 0.1	1.5	0.5		
Иллит	42.2	46.5	51.1		
Хлорит	1.9	1.6	2.1		

Таблица 1. Минералогический состав исходных образцов ГСШ

в программном пакете PROFEX GUI для BGMN [13]. Соотношение глинистых минералов в тонких фракциях (<2 мкм) рассчитывали медом математического моделирования рентгеновских дифракционных картин от ориентированных препаратов в воздушно-сухом и насыщенном этиленгликолем состояниях в програмном пакете Sybilla (Sevron).

Морфологические характеристики глинистой фракции размером менее 2 мкм изучали на просвечивающем электронном микроскопе TITAN 80-300 TEM/STEM.

Сорбционные характеристики образцов определяли на примере сорбции микроколичеств радионуклидов ¹³⁷Cs и ⁹⁰Sr. Перед использованием высушенные образцы растирали в ступке и просеивали через сито с размером ячеек 0.16 мм. Эксперименты проводили в статических условиях путем непрерывного перемешивания навески воздушно-сухого сорбента массой около 0.1 г, взвешенной с точностью 0.0001 г с 20 см³ раствора в течение 48 ч. Затем смесь фильтровали через бумажный фильтр «белая лента» и определяли в фильтрате удельную активность радионуклидов. По результатам анализов рассчитывали значения коэффициента распределения (K_d) соответствующего радионуклида по формуле

$$K_{\rm d} = \frac{A_0 - A_{\rm p}}{A_{\rm p}} \cdot \frac{V_{\rm p}}{m_{\rm c}},\tag{1}$$

где A_0 , A_p – соответственно удельная активность радионуклида в исходном растворе и в фильтрате после сорбции соответствующего радионуклида, Бк/дм³; V_p – объем жидкой фазы, см³; m_c – масса сорбента, г.

Удельную активность ¹³⁷Cs и ⁹⁰Sr в растворах определяли прямым радиометрическим методом с использованием спектрометрического комплекса СКС-50М (Грин стар технолоджиз, Москва), включающего гамма- и бета-спектрометрические тракты соответственно. Пробы, содержащие ⁹⁰Sr, перед измерением выдерживали в течение не менее 14 сут для установления радиоактивного равновесия пары ⁹⁰Sr–⁹⁰Y.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Согласно проведенному минеральному анализу (табл. 1), исходные образцы глинисто-солевых шламов ГСШ-1, ГСШ-2 и ГСШ-3 характеризуются в целом довольно близким составом с преобладанием иллита, доломита и калиевых полевых шпатов (КПШ).

Химический состав алюмосиликатных сорбентов АС-30 и АС-3м и иллитовых сорбентов ИС-30 и ИС-3м приведен в табл. 2.

Высокое содержание CaO в алюмосиликатных сорбентах отражает присутствие кальцита и гипса, MgO – доломита. Снижение этих показателей в образце модифицированного алюмосиликатного сорбента AC-3м свидетельствует о растворении карбонатов и гипса в результате обработки образца ГСШ-3 соляной кислотой. В ходе обработки образцов алюмосиликатных сорбентов ГСШ-3о и ГСШ-3м Трилоном Б при получении образцов иллитовых сорбентов ИС-3о и ИС-3м происходит

Haspaura of posta	Содержание, %										
пазвание образца ППП," %	Na ₂ O	MgO	Al ₂ O ₃	SiO ₂	K ₂ O	CaO	TiO ₂	MnO	Fe ₂ O ₃	P_2O_5	
AC-30	18.17	0.22	8.02	10.43	37.37	5.95	10.72	0.59	0.06	4.08	0.18
АС-3м	7.85	0.14	2.96	15.12	58.45	8.77	0.46	0.94	0.02	4.97	0.06
ИС-30	16.75	1.48	6.86	17.09	42.70	6.18	0.20	0.93	0.03	7.70	0.05
ИС-3м	12.40	1.54	4.19	15.39	50.47	6.92	0.09	1.23	0.03	7.65	0.05

Таблица 2. Химический состав образцов сорбентов

^а ППП – потери при прокаливании.

Наименование минерала	AC-30	ИС-30	АС-3м	ИС-3м
Кварц	4.9	0.8	6.2	1.2
КПШ (микроклин)	21.8	7.2	27.8	14.2
Доломит-анкерит	17.0	<0.1	<0.1	<0.1
Кальцит	1.4	<0.1	<0.1	<0.1
Гипс	3.1	<0.1	<0.1	<0.1
Каолинит	2.0	1.0	0.8	1.0
Иллит	48.2	89.2	65.2	83.6
Хлорит	1.7	1.8	<0.1	<0.1

Таблица 3. Минеральный состав образцов сорбентов

растворение гипса и карбонатов, в результате чего в тонкой фракции (<2 мкм) содержание CaO снижается еще больше.

В табл. 3 приведены результаты анализа минерального состава образцов алюмосиликатных сорбентов ГСШ-30, ГСШ-3м и иллитовых сорбентов ИС-30 и ИС-3м.

Из табл. З видно, что в образцах иллитовых сорбентов ИС-Зо и ИС-Зм, которые получены в результате обработки образцов алюмосиликатных сорбентов ГСШ-Зо и ГСШ-Зм трилоном Б, значительно снижается содержание доломита-анкерита и гипса, которые растворяются в результате соответствующей химической обработки. Соответственно, в данных образцах заметно увеличивается содержание иллита, что приводит к увеличению удельной поверхности образцов иллитовых сорбентов (табл. 4).

Результаты исследования минералогического состава образцов (табл. 3) показывают, что выделение фракции глинистых частиц с размером менее 2 мкм из исходного образца ГСШ-3 по технологическим показателям наиболее целесообразно проводить путем его промывки водой с последующей обработкой нерастворимого осадка Трилоном Б (образец иллитового сорбента ИС-30). При исследовании ориентированных препаратов были получены следующие соотношения глинистых минералов (рис. 1), мас%: иллит 97, каолинит 1.1, хлорит 1.9.

Частицы иллита в сорбенте ИС-30 обладают преимущественно гексагональным габитусом с поперечными размерами в пределах 10–100 нм (рис. 2, 3). Блочное строение с характерной ли-

Таблица 4. Удельная поверхность образцов сорбентов

231

-	
Шифр образца	Удельная поверхность $(S_{\text{BET}}), \text{м}^2/\text{г}$
ГСШ-3	28 ± 1
AC-30	32 ± 1
АС-3м	66 ± 2
ИС-30	60 ± 2
ИС-3м	71 ± 3

стовой морфологией частиц иллита способствует формированию довольно высокой удельной поверхности ($60 \pm 2 \text{ м}^2/\Gamma$), которая определяет высокую степень сорбции радионуклидов из водных растворов [14].

Сорбционные характеристики по отношению к радионуклидам ¹³⁷Сs и ⁹⁰Sr изучали для образцов алюмосиликатных сорбентов ГСШ-3о, ГСШ-3м и иллитового сорбента ИС-3о. Значения коэффициента распределения (K_d) ¹³⁷Сs на различных образцах сорбентов при сорбции из раствора NaNO₃ с концентрацией 0.1 и 1.0 моль/дм³ приведены в табл. 5. Перед началом экспериментов в растворы вносили индикаторные количества ¹³⁷Сs в количестве около 10⁵ Бк/дм³ и выдерживали в течение не менее 3 сут для установления равновесия между радиоактивными и неактивными компонентами раствора. Здесь и далее приведены средние значения K_d двух параллельных экспериментов.

Представленные в табл. 5 результаты показывают, что наибольшие значения K_d ¹³⁷Cs наблюдаются для образца иллитового сорбента ИС-30 с максимальным содержанием иллитовой фазы.

Рис. 1. Рентгеновская дифрактограмма образца иллитового сорбента ИС-Зо (межплоскостные расстояния в Å).

Рис. 2. Микрофотография глинистых частиц образца иллитового сорбента ИС-30 (метод ПЭМ).

Обработка исходного образца ГСШ-3 раствором 0.1 моль/дм³ HCl несколько ухудшает сорбцию цезия полученным образцом модифицированного алюмосиликатного сорбента AC-3м, что связано, по-видимому, с разрушением алюмосиликатного каркаса в кислотной среде.

На рис. 4 приведена зависимость K_d ¹³⁷Cs от концентрации нитрата натрия в растворе на образцах алюмосиликатных сорбентов AC-30, AC-3м и иллитового сорбента ИС-30.

Представленные на рис. 4 результаты показывают, что значения $K_{\rm d}$ $^{137}{\rm Cs}$ на всех образцах законо-

Рис. 4. Зависимость коэффициента распределения (K_d) ¹³⁷Cs от концентрации NaNO₃ в растворе на образцах сорбентов: 1 - ИС-30, 2 - AC-30, 3 - AC-3M.

Рис. 3. Светлопольные ПЭМ-изображения с высоким разрешением (ВР ПЭМ) частиц иллита и профили интенсивности от выделенной области (образец ИС-30).

мерно снижаются при увеличении концентрации NaNO₃ в растворе. При этом полученные зависимости в билогарифмических координатах представляют собой прямые линии, что свидетельствует об ионообменном характере сорбции цезия.

При изучении сорбции ⁹⁰Sr в качестве жидкой фазы использовали:

водопроводную воду г. Москвы следующего состава, мг/дм³: Na⁺ 6–8, K⁺ 4–5, Mg²⁺ 15–17, Ca²⁺ 52–56, Cl⁻ 6–8, SO₄²⁻ 36–38, HCO₃⁻ 200–205, общее солесодержание 310–330; общая жесткость 3.6–3.8 мг-экв/дм³, pH 7.3–7.8;

- раствор 0.01 моль/дм³ CaCl₂, pH 6.0.

Перед началом экспериментов в растворы вносили индикаторные количества ⁹⁰Sr в количестве около 10^5 Бк/дм³ и выдерживали в течение 3 сут. Полученные значения коэффициента распределения (K_d) ⁹⁰Sr на изученных образцах сорбентов в растворах различного состава приведены в табл. 6.

Представленные в табл. 6 результаты показывают, что сорбционно-селективные характеристики по отношению к ⁹⁰Sr образцов сорбентов с высоким содержанием иллитовой фазы (ИС-30, ИС-3м) значительно выше по сравнению с необогащенными образами АС-30 и АС-3м, что свидетельствует о превалирующем вкладе иллита в сорбционной активности к стронцию.

Таблица 5. Значения коэффициента распределения (K_d) ¹³⁷Сs на различных образцах сорбентов при сорбции из растворов 0.1 и 1.0 моль/дм³ NaNO₃

	<i>K</i> _d ¹³⁷ Cs, см ³ /г, при сорбции из раствора			
Наименование				
образца	0.1 моль/дм ³	1.0 моль/дм ³		
	NaNO ₃	NaNO ₃		
AC-30	7300 ± 100	2100 ± 50		
АС-3м	6800 ± 100	1650 ± 50		
ИС-30	12000 ± 200	4800 ± 50		

При сорбции из раствора 0.01 моль/дм³ CaCl₂ сорбционные характеристики всех изученных сорбентов в значительной мере нивелируются, что связано с сильным конкурирующим влиянием ионов кальция на сорбцию стронция.

ЗАКЛЮЧЕНИЕ

В результате проведенных исследований установлено, что в процессе модификации исходных образцов глинисто-солевых шламов (ГСШ) ОАО «Беларуськалий» происходит изменение их химического и минералогического состава. Установлено, что отмывка ГСШ водой с последующей обработкой соляной кислотой и Трилоном Б приводит к увеличению содержания основного компонента ГСШ – иллита – в 1.2–1.3 раза за счет растворения карбонатов (доломита-анкерита) и гипса. Показано, что присутствие иллита играет определяющую роль в сорбционной активности сорбентов по отношению к радионуклидам ¹³⁷Cs и ⁹⁰Sr. При использовании обогащенных по иллиту образов сорбентов (ИС-30 и ИС-3м) значения коэффициентов распределения ¹³⁷Cs увеличиваются в 2 раза, а ⁹⁰Sr – в 20 раз по сравнению с необогащенными образцами алюмосиликатных сорбентов (АС-30 и АС-3м). Полученные результаты исследований свидетельствуют о перспективности получения на основе глинисто-солевых шламов ОАО «Беларуськалий» (Солигорск, Беларусь) алюмосиликатных сорбентов радионуклидов различного назначения. Алюмосиликатные сорбенты могут быть использованы для эффективной очистки жидких радиоактивных отходов от радионуклидов ¹³⁷Cs и ⁹⁰Sr и создания дополнительных инженерных барьеров безопасности при строительстве пунктов захоронения радиоактивных отходов.

Таблица 6. Значения коэффициента распределения $(K_d)^{90}$ Sr на образцах сорбентов в растворах различного состава

	$K_{\rm d}^{90}$ Sr, см ³ /г, при сорбции				
Наименование	из раствора				
образца	водопроводная	0.01 моль/дм ³			
	вода	CaCl ₂			
AC-30	335 ± 5	105 ± 5			
АС-3м	320 ± 5	56 ± 3			
ИС-30	6250 ± 50	136 ± 5			
ИС-3м	6300 ± 50	27 ± 3			

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют об отсутствии конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Савченко В.А.* // Атом. техника за рубежом. 2004. № 7. С. 3.
- 2. Коноплева И.В. // Сорбционные и хроматографические процессы. 2016. Т. 16, № 4. С. 446.
- Semenkova A.S., Evsiunina M.V., Verma P.K., Mohapatra P.K., Petrov V.G., Seregina I.F., Bolshov M.A., Krupskaya V.V., Romanchuk A.Yu, Kalmykov S.N. // Appl. Clay Sci. 2018. Vol. 166. P. 88.
- Крупская В.В., Закусин С.В., Тюпина Е.А., Чернов М.С. // Горный журн. 2016. Т. 2. С. 81.
- 5. *Poinssot C., Baeyens B., Bradbury M.H.* Geochim. Cosmochim. Acta. 1999. Vol. 63, № 19/20. P. 3217.
- 6. Разворотнева Л.И., Богуславский А.Е., Маркович Т.И. // Радиохимия. 2016. Т. 58, № 3. С. 274.
- Krupskaya V.V., Biryukov D.V., Belousov P.E., Lekhov V.A., Romanchuk A.Yu., Kalmykov S.N. // Radioactive Waste. 2018. N 2(3). P. 24.
- Maes A., Vanderheyden D., Cremers A. // Clays Clay Miner. 1985. Vol. 33. P. 215.
- 9. Милютин В.В., Гелис В.М., Некросова Н.А., Кононенко О.А., Везенцев А.И., Воловичева Н.А., Королькова С.В. // Радиохимия. 2012. Т. 54, № 1. С. 71.
- Дриц В.А., Коссовская А.Г. Глинистые минералы: смектиты, смешанослойные минералы. М.: Наука, 1990. 214 с.
- Moore D.M., Reynolds R.C., Jr. // X-ray Diffraction and the Identification and Analysis of Clay Minerals. Oxford: Oxford Univ. Press, 1997. 2nd ed. P. 378.
- Post J.E., Bish D.L. // Rev. Mineral. Geochem. 1989. Vol. 20. P. 277.
- Doebelin N., Kleeberg R. // J. Appl. Crystallogr. 2015. Vol. 48. P. 1573.
- Воронина А.В., Блинова М.О., Куляева И.О., Санин П.Ю., Семенищев В.С., Афонин Ю.Д. // Радиохимия 2015. Т. 57, № 5. С. 446.