КООРДИНАЦИОННЫЕ ПОЛИЭДРЫ AnSe_n (An = Th, U, Np, Pu, Am ИЛИ Cm) В СТРУКТУРАХ КРИСТАЛЛОВ

© 2020 г. В. Н. Сережкин*, М. Албакаджажи, Д. В. Пушкин, Л. Б. Сережкина

Самарский национальный исследовательский университет им. акад. С. П. Королева, 443011, Самара, ул. Акад. Павлова, д. 1 *e-mail: serezhkin@samsu.ru

Получена 10.06.2019, после доработки 10.06.2019, принята к публикации 10.09.2019

С помощью полиэдров Вороного-Дирихле (ВД) проведен кристаллохимический анализ соединений, содержащих в структурах кристаллов координационные полиэдры $AnSe_n$ (An = Th, U, Np, Pu, Am или Cm). Установлено, что в селенидах встречаются атомы An(II), An(III), An(IV) и An(V), которые координируют от 6 до 10 атомов селена в виде Se^{2–} или Se[–]. Показано, что полиэдры ВД позволяют определять валентное состояние атомов An в структурах кристаллических веществ и выявлять ошибки в кристаллоструктурной информации. Установлена зависимость кратности связей Se–Se от их длины в 0D, 1D и 2D группировках, состоящих только из атомов селена.

Ключевые слова: актиниды, селениды, полиэдры Вороного-Дирихле, стереохимия, актинидное сжатие

DOI: 10.31857/S0033831120040024

ВВЕДЕНИЕ

Одной из актуальных проблем современной атомной энергетики является совершенствование методов разделения минорных актинидов (Np, Am, Cm) и лантанидов (Ln), которые присутствуют в соотношении ≈ 1 : 40 в высокоактивных отходах [1]. В последние годы выяснилось, что прогресс в решении указанной проблемы может быть связан с использованием экстрагентов, содержащих «мягкие» донорные лиганды X (в частности, X = S, Se или Te), которые образуют более ковалентные связи An-X (An – актинид) по сравнению с аналогичными связями Ln–X [1–3]. Хотя природа различия степени ковалентности указанных связей остается предметом дискуссии, тем не менее в последние годы усилился интерес к исследованию строения и свойств соединений, содержащих координационные полиэдры AnX_n , где X = S, Se или Те [2-5]. Такие соединения представляют значительный интерес также из-за наличия в структурах кристаллов гомоатомных взаимодействий между атомами халькогенов, межатомные расстояния для которых изменяются в очень широких пределах. Наиболее короткие расстояния Х-Х соответствуют ковалентной связи {например, $d(Se-Se) \approx 2.3 \text{ Å}$ [6, 7]}, а самые длинные отвечают ван-дер-ваальсовым взаимодействиям { $d(Se\cdots Se) \approx 3.8$ Å [6, 7]}. Склонность S, Se и Te к гомоатомным взаимодействиям (далее X/X) является важной особенностью их стереохимии, которая обусловлена существованием анионов X⁻, способных образовывать в структурах кристаллов разнообразные группировки, влияющие на строение и свойства соединений.

Неоднократно отмечалось, что межхалькогенные контакты X/X затрудняют или делают невозможным однозначное определение формальных зарядов атомов в структурах кристаллов [8–12]. Одним из примеров такого рода может служить Np₂Se₅ {250760} [13]. В фигурных скобках здесь и далее указан цифровой или буквенный код соединения в базах структурных данных [14, 15]. По данным работы [13], в структуре Np₂Se₅ присутствуют атомы Np, Se1 и Se2 в соотношении 2 : 4 : 1. Атомы Se2 представляют собой ионы Se²⁻, которые связаны с 4 атомами Np. Каждый атом Sel (формально ион Se⁻) также связывает 4 атома Np, но при этом одновременно входит в состав линейных цепей -Se1-Se1-Se1-, в которых каждый атом имеет двух соседей, находящихся на расстояниях

КЧ An		Число КТТ		TTB	Пример	
	Форма КП	атомов	полиэдра ВД	полиэдра ВД	соединения	
6	Октаэдр	44	46	{3/8}	Ba ₄ USe ₆ {251723} [23]	
7	Тригональная призма	5	36	{3/2 4/3}	Cs ₂ Pd ₃ USe ₆ {262557} [24]	
	Одношапочная	28	314353	{3/10}	Pu1 в Pu ₂ Se ₃ {649953} [25]	
	тригональная призма					
8	Пентагональная	2	4 ⁵ 5 ²	{3/10}	CuNpSe ₂ {260194} [26]	
	бипирамида					
	Тригональный додекаэдр	90	4454	{3/12}	U1 в BaU ₂ Se ₅ {251554} [27]	
	Двухшапочная	41	4 ⁶ 5 ²	{3/10 4/1}	CsU ₂ Se ₆ {170328} [28]	
	тригональная призма					
9	Куб	1	38	{4/6}	hP-ThSe {52443} [29]	
	Трехшапочная	30	4 ³ 5 ⁶	{3/14}	USe ₂ {652123} [30]	
	тригональная призма					
10	Одношапочная квадратная	5	4 ⁵ 5 ⁴	{3/12 4/1}	PuSe ₂ {649957} [25]	
	антипризма					
	Двухшапочная квадратная	3	$4^{2}5^{8}$	{3/16}	$Th_2Se_5 \{89668\} [31]$	
	антипризма					
	Сфенокорона	1	4654	{3/12 4/2}	$Np_2Se_5 \{ 250760 \} [13]$	

Таблица 1. Некоторые характеристики КП атомов An в комплексах AnSe_n

2.65 и 2.80 Å. На основании полученных результатов, включая данные XANES спектроскопии, авторы работы [13] пришли к выводу, что большинство результатов указывает на промежуточное (между +3 и +4) валентное состояние Np, которое они описали формулой $[Np^{(3+x)+}]_2(Se^{2-})(Se_4)^{(4+2x)-}$ (0 < $x \le 1$), хотя не исключили, что в Np₂Se₅ актинид присутствует в состоянии Np(IV). Этот пример наглядно иллюстрирует мнение авторов работы [12], которые отметили, что в соединениях, содержащих линейные цепочки из атомов халькогенов, из-за отсутствия надежных кристаллохимических критериев формальные степени окисления присваиваются в лучшем случае произвольно («arbitrary at best»).

На примере соединений, содержащих более 4000 кристаллографически неэквивалентных координационных полиэдров (КП) AnO_n (An = U [16], Np [17], Pu [18], Am и Cm [19]), было показано, что параметры полиэдров Вороного–Дирихле (ВД) позволяют четко различать валентное состояние атомов An в структурах кислородсодержащих веществ. Результаты работ [16–19] позволяют предположить, что характеристики полиэдров ВД могут быть использованы для оценки валентного состояния атомов An и в селенидах. Экспериментальная проверка указанного предположения явилась основной целью данной работы.

Объекты исследования и методика кристаллохимического анализа. Исследованию подвергли все соединения An, сведения о структурах кристаллов которых имеются в базах данных [14, 15] или опубликованы в научной печати и удовлетворяют двум требованиям: (1) все кристаллографически неэквивалентные атомы An образуют КП или «комплексы» AnSen; (2) отсутствует какое-либо разупорядочение в размещении атомов An и Se. Этим требованиям соответствовали данные для 177 соединений, в структурах которых содержалось соответственно 250 и 708 кристаллографически неэквивалентных атомов An и Se. Кристаллохимический анализ проводили с позиций стереоатомной модели структуры кристаллов (СМСК), в рамках которой геометрическим образом любого атома является соответствующий ему полиэдр ВД [16-21]. На основании сведений о симметрии кристаллов, параметрах их элементарных ячеек и координатах базисных атомов были рассчитаны характеристики полиэдров ВД всех атомов, а по методу пересекающихся сфер [20] их координационные числа (КЧ). Все расчеты проводили с помощью комплекса программ TOPOS-InterMol [22].

В общем случае полиэдр ВД атома An в селенидах имеет состав AnSe_n Z_r , где n - KЧ атома An, Z атомы второй координационной сферы, а сумма n + r равна общему числу граней полиэдра ВД. Хотя полиэдры ВД атомов Z также обязательно имеют общую грань с полиэдром ВД атома An, однако, в соответствии с критериями [20], контакты An/Z не учитываются при определении KЧ атомов. Однозначно разделить все межатомные контакты атомов An на связи An–Se и невалентные взаимодействия An/Z (косая черта отмечает наличие общей грани у полиэдров ВД атомов An и Z) позволяет метод пересекающихся сфер [20].

Форму КП AnSe_n определяли с помощью «упрощенных» полиэдров ВД, которые не учитывают грани An/Z. Каждому геометрическому типу комплексов AnSe_n отвечает полиэдр ВД, имеющий определенный комбинаторно-топологический тип (КТТ). Строчные числа в символе КТТ указывают число вершин (или ребер) у грани, а надстрочные – общее число таких граней. Для выявленных КП AnSe_n (табл. 1) в фигурных скобках указан также топологический тип вершин (ТТВ) соответствующих полиэдров ВД. В обозначениях ТТВ первое число указывает ранг вершины v (число ребер полиэдра, пересекающихся в вершине), а второе (после косой черты) – общее количество таких вершин.

Полиэдры ВД атомов актинидов. В охарактеризованных селенидах встречаются атомы шести актинидов (An = Th, U, Np, Pu, Am или Cm), которые проявляют КЧ от 6 до 10 (табл. 1). Важнейшие характеристики полиэдров ВД атомов An в зависимости от их валентного состояния и КЧ указаны в табл. 2. В структурах кристаллов атомы Ап чаще всего реализуют КП AnSe₈ в виде тригонального додекаэдра (табл. 1). Как и в соединениях, содержащих КП AnO_n (An = U, Np, Pu, Am или Cm [16– 19]), дескриптором валентного состояния актинида может служить объем полиэдра ВД (V_{vdp}) атома An или его одномерный аналог – радиус сферического домена (R_{sd}), поскольку $V_{vdp} = 4\pi (R_{sd})^3/3$. Существенно, что $R_{\rm sd}$ практически не зависит от КЧ и формы КП атомов An, но при этом достаточно закономерно уменьшается с ростом степени окисления An [в среднем на 0.06(1) Å при переходах An(III) \rightarrow An(IV) для An = Th, U, Np и U(IV) \rightarrow U(V), табл. 2]. При фиксированной степени окисления $R_{\rm sd}$ уменьшается с ростом атомного номера актинида из-за увеличения эффективного заряда ядра атома.

Отметим, что при подготовке табл. 2 для некоторых соединений пришлось исправить чис-

РАДИОХИМИЯ том 62 № 4 2020

ленные значения степени окисления атомов An, указанные авторами структурных определений. Одним из примеров могут служить изоструктурные Ba₄USe₆ {251723}, Ba₃FeUSe₆ {251724} и Ba₃MnUSe₆ {251725} (далее соответственно с1, с2 и с3, а в общем случае – Ва₃RUSe₆), недавно охарактеризованные в работе [23]. Согласно авторам, в Ba₂RUSe₆ присутствуют атомы U⁴⁺ с КЧ 6, поскольку длина связей U-Se в с1-с3 (соответственно 2.8248(3), 2.8362(3) и 2.8422(3) Å [23]) хорошо коррелирует с $d(U^{4+}-Se)$ в нескольких родственных веществах. Однако наши данные показывают, что $R_{\rm sd}$ атомов U в c1-c3 различаются и равны соответственно 1.741, 1.803 и 1.808 Å. Значение R_{sd} для с1 действительно практически совпало со средним для атомов U(IV) с КЧ 6 (1.742 Å, табл. 2). В то же время в с2 и с3 R_{sd} урана в пределах $\sigma(R_{sd})$ совпадает со средней величиной $R_{\rm sd}$ для атомов U(III) с КЧ 6 (1.799 Å, табл. 1), а не U(IV), как считают авторы [23]. В кристаллах Ва₃RUSe₆ полиэдры ВД атомов U кроме шести граней U-Se имеют по две грани U/R (R – соответственно Ba2, Fe и Mn для c1-c3) и по шесть граней U/Ba. Длина контактов U/R в c1 (3.90 Å) существенно длиннее, чем в c2 или c3 (\approx 3.5 Å), тогда как d(U/Ba) в c1, наоборот, короче (4.17 Å), чем в c2 или c3 (4.53 Å). В совокупности имеющиеся данные дают основание считать, что в изоструктурных кристаллах Ba₃RUSe₆ происходит перераспределение электронной плотности по схеме $U^{4+} + R^{2+} \leftrightarrow U^{3+} + R^{3+}$, при этом равновесие указанного процесса, зависящее от природы R, в структуре c1 (R = Ba) смещено влево, а для c2 и c3 (R = Fe и Mn) - вправо.

Другим примером может служить Rb₄U₄P₄Se₂₆. Этот селенид авторы работы [32] ошибочно считают соединением U⁵⁺, характеризуя его форму- $(Rb^{+})_4(U^{5+})_4(PSe_4^{3-})_4(Se^{2-})_2(Se_2^{2-})_4.$ лой Однако, согласно СМСК, в этом веществе ионы PSe₄³⁻ попарно связаны мостиковым атомом селена в анионы $P_2Se_9^{6-}$ и поэтому строение $Rb_4U_4P_4Se_{26} =$ $Rb_2U_2P_2Se_{13}$ отвечает формуле $(Rb^+)_2(U^{4+})_2(P_2Se_9^{6-})$. $(Se_2^{2-})_2$. Величина R_{sd} атомов U (1.721 Å) в структуре $Rb_2U_2P_2Se_{13}$ свидетельствует о состоянии U^{4+} [среднее $R_{sd} = 1.730(20)$ Å, табл. 2], а не U⁵⁺, для которого $R_{sd} = 1.688(1)$ Å. Указанное заключение подтверждается также данными для Cs₂Th₂P₂Se₁₃ = (Cs⁺)₂(Th⁴⁺)₂(P₂Se⁶⁻₉)(Se²⁻₂)₂ {93051} [33], который изоструктурен с Rb₂U₂P₂Se₁₃ и содержит атомы Th⁴⁺ (табл. 2, 3).

An	кч	Число	Ne	R.J. Å	D. Å	G ₂	d(An–Se), Å		
		атомов	1'1	11 _{sd} , 11	2 _A ,		диапазон	среднее	μ
Th(II)	6	6	6(0)	1.818(12)	0	0.08333(3)	2.89-2.94	2.93(2)	36
	8 ⁶	1	14	1.773	0	0.07854	3.118	3.118	8
Th(III)	7	1	13	1.822	0.189	0.08429	2.72-3.38	3.03(23)	7
	8	1	16	1.853	0.082	0.08192	3.09-3.51	3.16(14)	8
	Bce	2	15(2)	1.837(22)	0.135(75)	0.0831(17)	2.72-3.51	3.10(20)	15
Th(IV)	6	2	12(0)	1.772(5)	0	0.08221(3)	2.88-2.95	2.91(3)	12
	7	4	11(1)	1.769(9)	0.054(11)	0.08226(18)	2.82 - 3.07	2.94(7)	28
	8	18	12(2)	1.766(13)	0.048(29)	0.08118(53)	2.76-3.61	3.01(9)	144
	9	19	11(1)	1.779(16)	0.053(19)	0.08020(30)	2.86-3.71	3.10(11)	171
	10	3	10(0)	1.740(4)	0.065(16)	0.07962(9)	2.92-3.36	3.09(12)	30
	Bce	46	11(1)	1.770(16)	0.050(25)	0.08081(85)	2.76-3.71	3.05(12)	385
U(II)	6	12	6(0)	1.785(7)	0	0.08333(1)	2.86 - 2.90	2.88(1)	72
U(III)	6	3	14(0)	1.799(11)	0.003(5)	0.0857(45)	2.84-2.98	2.88(6)	18
	7	4	13(1)	1.771(11)	0.111(77)	0.0834(14)	2.53-3.35	2.94(17)	28
	8	11	15(1)	1.788(9)	0.058(46)	0.0810(4)	2.95-3.33	3.05(7)	88
	Bce	18	14(1)	1.786(13)	0.060(59)	0.0823(25)	2.53-3.35	3.01(12)	134
U(IV)	6	19	11(2)	1.742(18)	0.012(15)	0.08235(79)	2.69-2.90	2.85(4)	114
	7	17	11(1)	1.720(10)	0.045(12)	0.08195(33)	2.73-3.01	2.87(7)	119
	8	90	11(2)	1.729(22)	0.052(25)	0.08135(57)	2.65-3.58	2.95(10)	720
	9	13	11(1)	1.726(16)	0.031(18)	0.08009(23)	2.79-3.27	3.02(12)	117
	Bce	139	11(2)	1.730(20)	0.044(26)	0.08144(80)	2.65-3.58	2.94(10)	1070
U(V)	6	1	13	1.687	0.007	0.08290	2.69-2.80	2.73(6)	6
	8	1	12	1.689	0.049	0.08176	2.77-3.02	2.88(10)	8
	Bce	2	13(1)	1.688(1)	0.028(30)	0.08233(81)	2.69-3.02	2.82(11)	14
Np(II)	6	1	6	1.801	0	0.08333	2.903	2.903	6
Np(III)	7	1	14	1.766	0.052	0.08082	2.93-3.14	2.99(7)	7
1 \ /	8	3	15(1)	1.789(4)	0.060(52)	0.08090(3)	2.99-3.17	3.05(4)	24
	Bce	4	15(1)	1.783(12)	0.058(42)	0.08088(5)	2.93-3.17	3.04(5)	31
Np(IV)	7	2	11(1)	1.717(1)	0.051(2)	0.08222(12)	2.77-2.99	2.86(7)	14
1 \	8	4	11(2)	1.710(15)	0.030(16)	0.08119(6)	2.86-3.03	2.91(5)	32
	10	1	10	1.703	0.041	0.07936	2.93-3.07	3.02(6)	10
	Bce	7	11(2)	1.711(11)	0.038(15)	0.08122(96)	2.77-3.07	2.92(8)	56
Pu(II)	6	3	6(0)	1.795(4)	0	0.08333(3)	2.89-2.90	2.893(5)	18
Pu(III)	6	1	12	1.766	0.012	0.08084	2.89-2.93	2.92(Ž)	6
× ,	7	1	13	1.773	0.171	0.08427	2.67-3.26	2.94(20)	7
	8	2	16(1)	1.794(12)	0.059(36)	0.08129(64)	2.98-3.37	3.07(10)	16
	9	1	13	1.765	0.035	0.07992	3.02-3.15	3.08(6)	9
	Bce	5	14(2)	1.779(16)	0.067(64)	0.0815(17)	2.67-3.37	3.02(Ì́3)	38
Am(III)	8	1	16	1.783	0	0.08092	3.037-3.043	3.040(3)	8
``'	9	1	13	1.741	0.027	0.07992	2.96-3.13	3.04(8)	9
	Bce	2	15(2)	1.762(30)	0.014(19)	0.08042(71)	2.96-3.13	3.04(6)	17
Cm(II)	6	1	6	1.798	0	0.08333	2.899	2.899	6
Cm(IIÍ)	9	1	13	1.739	0.041	0.07983	3.01-3.05	3.03(2)	9

Таблица 2. Важнейшие характеристики полиэдров ВД атомов An в селенидах^а

^а Для всех атомов An указаны: КЧ – координационное число по отношению к атомам Se; *N*_f – среднее число граней полиэдра ВД; *D*_A – смещение ядра атома An из геометрического центра тяжести его полиэдра ВД; *G*₃ – безразмерный второй момент инерции полиэдра ВД; *d*(An–Se) – длина связей в координационных полиэдрах AnSe_n; μ – общее число связей An–Se. В скобках даны стандартные отклонения.

⁶ Данные для hP-ThSe {52443} [29], в предшествующей строке – данные для ThSe при стандартных условиях.

Еще одним примером, доказывающим, что для оценки валентного состояния атомов An вместо межатомных расстояний предпочтительнее использовать эквивалентный интегральный параметр полиэдра ВД (R_{sd} или V_{vdp}), могут служить AnSe (An = Th, U, Np, Pu и Cm). При стандартных условиях эти моноселениды имеют однотип-

ное строение (принадлежат к структурному типу NaCl) и формально содержат в своем составе атомы An(II). Однако в селенидах Th и U величина $R_{\rm sd}$ атомов An(II) меньше или в пределах $2\sigma(R_{\rm sd})$ совпадает с $R_{\rm sd}$ атомов An(III) (табл. 2). Например, для USe среднее $R_{\rm sd}$ атома U [1.785(7) Å] практически совпадает со средним $R_{\rm sd}$ [1.786(13) Å] для ато-

таолица 5. пекоторые характ	еристики	соединении	, в структурах кристаллов ког	орых имеются свя	зи зе-зе-					
Соединение	An CO/ КЧ	R _{sd} (An), Å	Атомы, образующие связи Se–Se	k _{Se-Se}	Рефкод	Литература				
Лимеры (Se–Se) ^{2–}										
BaaThSea(Sea)a	4/8	1757	Sel-Sel	0.98	429804	[41]				
C_{s} Th (P Se)(Se)	1/0	1 745	Sel Sel	0.93	03051	1221				
$C_{2} I_{12} (I_{2} C_{9}) (S_{2} C_{2})_{2}$	4/9	1.743	$S_{2}0$ $S_{2}11$	0.95	95051	[55]				
	4/9	1./4/	569-5611	0.93	000000	E 401				
$Cs_4 Ih_2(P_5 Se_{15})(Se_2)$	4/8	1.778	Sel2–Sel3	0.99	280220	[42]				
	4/9	1.777	_	—						
$KThSb_2Se_5(Se_2)_{0.5}$	4/9	1.764	Se6–Se6	0.81	85460	[43]				
$ThSe_2 = ThSe(Se_2)$	4/8	1.748	Se2–Se3	1.04	652028	[44]				
Ba PdU Ser (Ser)	5/6	1 687	Se4-Se4	0.95	429514	1451				
	5/0	1.007	Se5_Se5	0.93	127511	[10]				
$C_{\alpha}C_{\alpha}UC_{\alpha}(C_{\alpha})$	1/0	1 710		0.95	420080	E461				
$CSSCUSe_3(Se_2)$	4/8	1./18	Sel-Sel	0.99	429089					
$KU_2SbSe_4(Se_2)_2$	4/8	1.726	Se3-Se4	0.98	8/805	[4/]				
	4/8	1.727	Se8–Se9	1.00						
	4/8	1.728	Sel1–Sel2	1.00						
$K_4 USe_8 = K_4 U(Se_2)_4$	4/8	1.731	Se1–Se2	0.96		[48]				
4 0 4 2/4			Se3–Se4	0.94						
$US_{2} = US_{2}(S_{2})$	1/9	1 742	So2 So2	1.01	652124	E401				
$USe_3 = USe(Se_2)$	4/0	1.742		1.01	(52104					
$USe_3 = USe(Se_2)$	4/8	1./30	Se2-Se3	1.05	052104					
$USe_3 = USe(Se_2)$	4/8	1./19	Se2–Se3	1.00	83713	[51]				
$Rb_2U_2(P_2Se_9)(Se_2)_2$	4/9	1.721	Se2–Se8	0.92	-	[32]				
	4/9	1.721	Se6–Se10	0.92						
$NpSe_2 = NpSe(Se_2)$	4/8	1.697	Se1–Se3	1.02	424526	[52]				
$\mathbf{F} = \mathbf{J}$		Trutor	Sam Sa [®] Sa (uman)6			L 1				
$\mathbf{C}_{\mathbf{r}}$ Th $(\mathbf{D}, \mathbf{C}_{\mathbf{r}})(\mathbf{C}_{\mathbf{r}})$	1/0	1 745			02051	[[22]				
$Cs_2 In_2(P_2Se_9)(Se_2)_2$	4/9	1.745	SesSe12Se2 (1/1°)	1.22 (0.39+0.63)	93051					
$Rb_2U_2(P_2Se_9)(Se_2)_2$	4/9	1.721	SelSe5Sel3 (171°)	1.20 (0.62+0.58)	-	[32]				
		Тетрам	иер Se···Se–Se···Se ^в	1						
$Th_2Se_2 = Th_2Se_2(Se_2)$	4/10	1 745	Se1 \cdots Se2–Se2 \cdots Se1 (175°) ^B	127(023+104)	652029	[44]				
112003 112003(002)	1,10			1.27 (0.25 * 1.0 1)	002029	L · · J				
1.05		Цепочки	·Se···Se [°] ···Se· [°] (угол) ^о	1						
$KTh_2Se_6 = KTh_2Se_2(Se^{1.25})_4$	4/8	1.758	$ \cdot \text{Sel} \cdot \text{Sel} \cdot \text{Sel} \cdot (180^\circ)$	0.71 (0.48+0.23)	85811	[53]				
$RbTh_2Se_6 = RbTh_2Se_2(Se^{1.25-})_4$	4/8	1.760	\cdots Sel \cdots Sel \cdots Sel \cdots (180°)	0.71(0.48+0.23)	85812	531				
$CsTh_2Se_c = CsTh_2Se_2(Se^{1.25-})$	4/8	1 754	$\cdot \text{Sel} \cdot \text{Sel} \cdot \text{Sel} \cdot (180^\circ)$	0.73(0.52+0.21)	260957	[[1]				
$Th_{Se_{2}} = Th_{Se_{2}} (Se_{2})^{2}$	4/10	1 738	$\cdot\cdot$ Se1 $\cdot\cdot\cdot$ Se1 $\cdot\cdot\cdot$ Se2 $-(175^{\circ})$	0.43(0.19+0.24)	89668	[31]				
1112005 1112(00)3(002)	1,10	1.750	$\cdot \text{Se}_2\text{-}\text{Se}_2\text{-}\cdot\text{Se}_1\text{-}\cdot(173^\circ)$	1.03(0.19+0.21)	0,000	[31]				
Th S_{2} - Th (S_{2}^{2}) $(S_{2})^{2}$	4/10	1 720	Se1 $$ Se1 $$ Se2 $$ (175°)	1.03(0.00+0.23)	90667	[21]				
$\Pi_2 Se_5 - \Pi_2 (Se_3)(Se_2)$	4/10	1./38	1.521 521 522 (173)	$0.40(0.14\pm0.26)$	89007	[31]				
\mathbf{W}	1/0	1 = 1 0	Se2 - Se2 - Se1 - (175)	1.06 (0.80+0.26)	1	5 5 4 3				
$KU_2Se_6 = KU_2Se_2(Se^{1.2.5})_4$	4/8	1./18	···Se2····Se2····Se2··· (180°)	0.82 (0.52+0.30)	1/1665	[54]				
$RbU_2Se_6 = RbU_2Se_2(Se_1^{1.25-})_4$	4/8	1.719	$-Se2-Se2-Se2-(180^{\circ})$	0.83 (0.52+0.31)	260959	[9]				
$CsU_2Se_6 = CsU_2Se_2(Se^{1.25})_4$	4/8	1.718	\cdots Sel \cdots Sel \cdots Sel \cdots (180°)	0.82 (0.57+0.25)	170328	[28]				
$TIU_2Se_6 = TIU_2Se_2(Se^{1.25})_4$	4/8	1.715	$ \cdot \text{Se2} \cdot \text{Se2} \cdot \text{Se2} \cdot (180^\circ)$	0.83(0.52+0.31)	260960	[[9]				
$La_2 \tilde{U}_2 Se_0 = La_2 \tilde{U}_2 Se_2 (Se^{1.33})$	4/9	1 714	$\cdot \text{Se3} \cdot \text{Se3} \cdot \text{Se3} \cdot (180^\circ)$	0 96 (0 50+0 46)	248052	181				
	.,,,		··Se4···Se4···Se4·· (180°)	0.75(0.38+0.37)		[0]				
			··Se5···Se5···Se5·· (180°)	0.75(0.30+0.37)						
$KN_{P} S_{2} = KN_{P} S_{2} (S_{2}^{1})^{25-1}$	1/0	1 707	$ Se^2Se^2Se^2(180^\circ)$	0.75(0.57(0.50))	260062	101				
$r_{1}r_{2}se_{6} - r_{1}r_{2}se_{2}(se^{-2s})_{4}$	4/ð	1.707	1.502 502 502 (100)	$0.87(0.33\pm0.32)$	200902					
$\operatorname{USNP}_2\operatorname{Se}_6 = \operatorname{USNP}_2\operatorname{Se}_2(\operatorname{Se}^{1.25^{-}})_4$	4/8	1.704	1362562562(180°)	0.8/(0.59+0.28)	260963	[9]				
$Np_2Se_5 = Np_2Se^{2-}(Se^{1.5-})_4$	4/10	1.703	···Se1····Se1···Se1···(180°)	0.97 (0.59+0.38)	250760	[13]				
Сетки 4 ⁴ из атомов Se ⁻										
$PuSe_2 = Pu^{III}Se^{2-}Se^{-}$	3/9	1.765	\cdots Se1 \cdots Se1 \cdots (×4)	0.69 ^г	649957	[25]				
$AmSe_2 = Am^{III}Se^{2-}Se^{-}$	3/9	1.741	\cdots Se1 \cdots Se1 \cdots (×4)	0.98 ^r	609814	1551				
$CmSe_2 = Cm^{III}Se^2-Se^-$	3/9	1 739	\cdots Se1 \cdots Se1 \cdots (×4)	0 98 ^r	42346	1561				
		1.137		0.70	12340					

Таблица 3. Некоторые характеристики соединений, в структурах кристаллов которых имеются связи Se-Se^a

^а СО – степень окисления, КЧ – координационное число. Номера атомов Se в пятой колонке соответствуют указанным в базе

со – степень окисления, кч – координационное число. помера атомов зе в пятои колонке соответствуют указанным в базе данных [14] или (при отсутствии рефкода) в соответствующей статье. ⁶ Для тримеров Se···Se[®] ···Se и цепей ··Se···Se[®] ···Se·· перед скобками указана суммарная величина k для центрального атома Se[®], а в скобках даны значения k соответственно для левой (Se···Se[®]) и правой (Se[®]···Se) связей в указанном тримере или цепочке. За номерами атомов в скобках указан угол Se···Se[®] ···Se.

^в В тетрамере Se1 = Se²⁻, a Se2 = Se⁻. Для связи Se2–Se2 k = 1.04, а для связей Se1…Se2 и Se2…Se1 k = 0.23.

^г Суммарная кратность четырех идентичных связей Se[…]Se, образованных каждым ионом Se[–] в сетке 4⁴.

РАДИОХИМИЯ том 62 № 4 2020

Рис. 1. Зависимость телесных углов Ω (выражены в % от 4π ср) 2002 граней полиэдров ВД 250 атомов An от межатомных расстояний d(An–Se), соответствующих этим граням.

мов U(III). С учетом данных для аналогичных по составу и структуре LnX (X = S, Se или Te) [34, 35] этот факт позволяет считать, что моноселениды Th и U реально представляют собой An^{III}Se(\bar{e}) и должны обладать металлической проводимостью. В то же время NpSe, PuSe и CmSe, также относящиеся к структурному типу NaCl, по-видимому, следует рассматривать как полупроводники An^{II}Se, поскольку для них R_{sd} атомов An(II) больше, чем для An(III) (табл. 2).

Полиэдры ВД атомов Ап в селенидах в сумме имеют 2740 граней, 1915 из которых соответствует связям An-Se (табл. 2). На зависимости телесных углов (Ω), под которыми грани «видны» из ядра атома An или Se, от межатомных расстояний An–Se (рис. 1) связям An–Se соответствуют грани с Ω в области от 5 до 19% полного телесного угла, равного 4π ср. Остальные грани с $\Omega < 5\%$ отвечают невалентным взаимодействиям An/Z. В роли атомов Z чаще всего выступают атомы An или Se (соответственно 326 и 87 граней). Самый короткий контакт An/An (3.60 Å) реализуется в кристаллах hP-ThSe {52443} со структурой CsCl, образующихся при давлении 15 ГПа [29]. Интересно, что в hP-ThSe для атома Th величина R_{sd} (1.773 Å) практически совпадает со средним $R_{\rm sd}$ атомов Th(IV) [1.770(16) Å, табл. 2]. С позиций СМСК этот факт дает основание предполагать, что при высоком давлении моноселенид тория следует рассматривать как $Th^{IV}Se^{2-}(\bar{e})_2$. Сравнительно часто (от 25 до 70 граней) встречаются невалентные контакты с атомами H, P, Cu, Pd, Pt и Ba. В остальных редко встречающихся взаимодействиях An/Z участвуют атомы еще 23 разных элементов. Безразмерный второй момент инерции (G_3), который характеризует степень сферичности полиэдров ВД, для 250 атомов An в среднем равен 0.0815(12). Смещение ядер атомов An из центра тяжести их полиэдров ВД (D_A) составляет 0.043(34) Å и в пределах 2 σ равно нулю.

Характеристики полиэдров ВД атомов An, указанные в табл. 2, можно использовать для идентификации валентного состояния атомов An в любых селенидах. В качестве примера рассмотрим U₂La₂Se₉ {248052}, для которого авторы работы [8] из нескольких вариантов распределения формальных валентностей, включая U₂^{III}La₂^{III}(Se²⁻)₃(Se⁻)₆ и U₂^{IV}La₂^{III}(Se²⁻)₃(Se^{1.33-})₆, предпочли последний, который лучше согласуется с результатами XANES спектроскопии для атомов металлов. Поскольку в структуре U₂La₂Se₉ R_{sd} атомов U (1.714 Å) в пределах $\sigma(R_{sd})$ совпадает со средним R_{sd} для U(IV) [1.730(20) Å, табл. 2], на основании кристаллоструктурных данных можно утверждать, что в этом селениде действительно содержатся атомы U(IV), а не U(III), для которых среднее $R_{sd} = 1.786(13)$ Å.

Другим примером может служить упомянутый в начале статьи Np₂Se₅ {250760}, для которого авторы работы [13] предположили промежуточное (между +3 и +4) валентное состояние Np, хотя не исключили и Np(IV). Рассчитанное значение R_{sd} для атомов Np в этой структуре равно 1.703 Å. Учитывая, что средние значения R_{sd} для Np(III) и Np(IV) в селенидах равны соответственно 1.783(12) и 1.711(11) Å (табл. 2), на основании имеющихся кристаллоструктурных данных можно уверенно утверждать, что в Np₂Se₅ присутствуют атомы Np(IV), а не Np(III).

Полиэдры ВД атомов селена. В структурах рассмотренных соединений содержатся атомы селена двух кристаллохимических типов. Большинство из них (647 из 708) можно рассматривать как ионы Se^{2–}, а остальные 61 – как ионы Se[–]. Полиэдры ВД ионов Se^{2–} и Se[–] имеют в среднем соответственно 16(3) и 14(2) граней. Среднее КЧ ионов Se^{2–} и Se[–] равно 4(1) и 5(1), поэтому на один ион приходится соответственно 12 и 9 невалентных взаимодействий Se/Z. Степень сферичности полиэдров ВД ионов Se^{2–} и Se[–] принципиально не различается [$G_3 = 0.0841(33)$ и 0.0856(29) соответственно]. Смещение ядер атомов селена из центра тяжести их полиэдров ВД для Se^{2–} и Se[–] равно со-

ответственно 0.18(13) и 0.26(13) Å и в пределах 2 о равно нулю.

Радиусы сферических доменов ионов Se²⁻и Se⁻ равны 1.87(8) и 1.90(7) Å и совпадают в пределах σ . Сходство $R_{\rm sd}$ атомов Se²⁻ и Se⁻ объясняется тем, что в структурах кристаллов они образуют одинаковую 8-электронную оболочку. Принципиальное различие ионов Se²⁻ и Se⁻ заключается в способе реализации такой оболочки. Так, ионы Se²⁻ обычно образуют ее только за счет химических связей Se-An и/или Se-R (R – внешнесферные катионы, компенсаторы заряда). В то же время ионы Seпомимо гетероатомных связей Se-An обязательно образуют от 1 до 4 ковалентных связей Se-Se. Ионы Se⁻ присутствуют в структурах 31 соединения (табл. 3), причем обычно они сосуществуют с ионами Se²⁻. Именно за счет связей Se-Se, образованных ионами Se⁻, в селенидах An возникают разнообразные по топологии олигомерные (0D). цепочечные (1D) или слоистые (2D) группировки, содержащие только атомы селена (рис. 2).

Различие кристаллохимической роли ионов Se^{2–} и Se[–] наглядно проявляется на распределениях (Ω , d) для граней полиэдров ВД, которые соответствуют взаимодействиям между атомами селена (рис. 3). Для полиэдров ВД Se^{2–} (рис. 3, а) максимальное Ω (Se–Se) < 15%, расстояния d(Se–Se) лежат в диапазоне 2.89–5.96 Å, а среднее межатомное расстояние [3.9(5) Å] превышает удвоенный ван-дер-ваальсов радиус (≈ 3.8 Å) селена. В структурах селенидов чаще всего реализуются внутримолекулярные контакты Se^{2–}/Se^{2–}, для которых ранг граней (РГ) полиэдров ВД изменяется от 2 до 6. Отметим, что согласно СМСК значения РГ указывают минимальное число химических связей,

Рис. 2. Схематическое строение группировок из атомов Se (черные кружки) в структурах селенидов An. Короткие (в области 2.3–2.6 Å) контакты Se–Se указаны сплошной линией, а более длинные (в интервале 2.6–3.0 Å) – пунктиром: (а) гантели Se₂²⁻; (б) тример; (в) тетрамер; (г, д) цепочки (Se⁻)_∞; (е) квадратная сетка 4⁴ (Se⁻)_{2∞}.

соединяющих в структуре кристалла атомы Se, полиэдры ВД которых имеют общую грань. Межмолекулярные контакты Se^{2–}/Se^{2–}, для которых $P\Gamma = 0$, реализуются всего в двух структурах.

У полиэдров ВД 61 иона Se⁻ имеется 587 граней Se/Se (рис. 3, б), ранг которых изменяется от

Рис. 3. Зависимость телесных углов Ω (в % от 4 π ср) граней полиэдров ВД атомов Se от межатомных расстояний *d*(Se–Se), соответствующих этим граням. (а) 6215 граней Se–Se в 624 полиэдрах ВД ионов Se^{2–}, (б) 587 граней Se–Se в 61 полиэдре ВД ионов Se[–].

РАДИОХИМИЯ том 62 № 4 2020

0 до 6. Как и в случае ионов Se^{2-} , наиболее многочисленными являются грани с РГ > 1, которые характеризуют внутримолекулярные невалентные взаимодействия между ионами Se⁻. Для 473 таких граней $\Omega(\text{Se-Se}) < 15\%$, d(Se-Se) лежат в диапазоне 2.90-5.96 Å (в среднем – 3.9(5) Å). Для 40 граней $P\Gamma = 0$, и они отвечают межмолекулярным контактам. Для них $\Omega(Se-Se) < 10$ %, a d(Se-Se)изменяется от 3.62 до 4.62 Å. Ранг 74 остальных самых крупных граней полиэдров ВД равен 1 и, согласно СМСК, все они соответствуют химическим связям Se⁻-Se⁻. Для «связевых» граней полиэдров ВД Ω(Se-Se) изменяется от 12 до 23%, d(Se–Se) лежат в диапазоне 2.33–2.92 Å (рис. 3, б). Отметим также, что для 300 граней с $d(Se^--Se^-) < d$ 3.8 Å, из которых 74 соответствуют химическим связям Se⁻–Se⁻, а остальные – специфическим или ван-дер-ваальсовым взаимодействиям, с достоверностью аппроксимации $R^2 = 0.88$ выполняется линейная зависимость

$$\Omega(\text{Se}^{-}-\text{Se}^{-}) = 45.5(8) - 10.9(2)d(\text{Se}^{-}-\text{Se}^{-}).$$
(1)

Примечательно, что коэффициенты уравнения (1) в пределах погрешностей совпадают с аналогичной зависимостью

$$\Omega(\text{Se}^{-}-\text{Se}^{-}) = 45.4(4) - 11.1(1)d(\text{Se}^{-}-\text{Se}^{-}), \qquad (2)$$

которая с $R^2 = 0.95$ была установлена при учете 567 граней с $d(\text{Se}^--\text{Se}^-) < 3.8 \text{ Å в селенсодержащих соединениях лантанидов [36].}$

Кратность связей Se-Se в селенидах An. С позиций СМСК зависимости (1) и (2) свидетельствуют о возможности количественной оценки кратности (k_i) связей Se⁻–Se⁻ на основании расстояния между атомами селена. Как известно, в рамках метода пересекающихся сфер [20] максимально возможная длина связи Se⁻–Se⁻ равна сумме r_{s} (Se) + $R_{\rm sd}({\rm Se}^-)$, где $r_{\rm s}({\rm Se})$ – слейтеровский радиус атома Se, а $R_{sd}(Se^{-})$ – радиус сферического домена атома Se⁻. Поскольку $r_{\rm s}$ (Se) = 1.15 Å [7], а среднее $R_{\rm sd}({\rm Se}^-) = 1.9$ Å, то связи с $k_i = 0$ соответствует d(Se-Se) = 3.05 Å. Как и ранее [36], в качестве связи с $k_i = 1$ примем среднее d(Se-Se) = 2.34(1) Å для 40 разных связей в пяти кристаллографически разных молекулах Se₈ в структурах α- {2718} [37], β- {24670} [38], γ- {36333} [39] и δ- {418318} [40] полиморфов. Постулируя, что кратность связи Se-Se линейно уменьшается при увеличении ее длины, получим, что в указанном приближении в селенидах актинидов

$$k_i(\text{Se-Se}) = 4.3 - 1.4d_i(\text{Se-Se}).$$
 (3)

Отметим, что зависимость (3) выполняется и для селенсодержащих соединений лантанидов, поскольку в их структурах среднее $R_{\rm sd}({\rm Se}^-)$ также равно 1.9 Å [36].

Рассмотрим некоторые примеры, свидетельствующие о пригодности уравнения (3) для оценки кратности связей Se-Se. Так, в обсуждаемых соединениях актинидов для 20 кристаллографически независимых дианионов (Se₂)²⁻ среднее d(Se-Se) = 2.38(4) Å, а $k = 0.97(5) \approx 1$ (табл. 3). Почти линейные тримеры Se…Se*…Se в структурах Cs₂Th₂(P₂Se₉)(Se₂)₂ [33] и Rb₂U₂(P₂Se₉)(Se₂)₂ [32] являются фрагментом аниона $(P_2Se_0)^{6-}$, в котором мостиковый атом Se* (суммарное $k \approx 1.2$) связан с двумя атомами Se (для них $k \approx 0.6$), входящими в состав тетраэдрических анионов PSe₄³⁻. Почти такую же, как и в тримерах, величину k(1.27) имеют мостиковые атомы Se* и в единственном практически линейном тетрамере Se...Se*-Se*...Se в структуре Th₂Se₅ {652029}, в которой для связи Se*-Se* k = 1.04, а для связей Se···Se* k = 0.23. Отметим, что в этом тетрамере $Se = Se^{2-}$, a $Se^* =$ Se⁻. Поэтому фрагмент Se*–Se* тетрамера можно рассматривать как дианион (Se^{*})²⁻, каждый атом которого взаимодействует с соседним ионом Se²⁻. порождая дополнительный контакт Se^{2-...}Se* с k = 0.23.

Наиболее сложная ситуация с кратностью связей Se-Se наблюдается в соединениях, содержащих цепи из ионов Se⁻ (табл. 3). Самым многочисленным примером таких соединений являются изоструктурные RAn^{IV}₂Se₆, в кристаллах которых между слоями $An_2Se_6^-$ (An = Th, U или Np) располагаются ионы R^+ (R = K, Rb, Cs или Tl). В электронейтральном слое AnSe₃ на каждый атом Ап приходится по одному атому Se²⁻ и два атома Se⁻, поэтому состав слоя можно описать как An⁴⁺(Se²⁻)(Se⁻)₂. Появление одновалентных металлов R сопровождается изменением электронного распределения в RAn₂^{IV}Se₆, которое упрощенно можно описать двумя вариантами: R⁺(An⁴⁺)₂. $(Se^{2-})_2(Se^{1.25-})_4$ или $(R^+)_2(An^{4+})_4(Se^{2-})_6(Se^{2-})_3$ [9, 53]. Первый вариант опирается на результаты рентгеноструктурного анализа и учитывает наличие в структурах RAn^{IV}₂Se₆ асимметричных линейных цепей, образованных атомами Se⁻ (табл. 3). Второй вариант учитывает данные электронно-дифракционных измерений, которые указывают на существование в $RAn^{IV}{}_2Se_6$ модулированных сверхструктур, вызванных волнами зарядовой плотности. Имеющиеся данные дают основание считать, что чередующиеся расстояния d(Se-Se) в области $\approx 2.7-2.9$ Å в цепях –Se–Se–Se– являются следствием эффекта усреднения при обычном рентгеноструктурном исследовании монокристаллов [53]. Результаты суперпространственного кристаллоструктурного анализа соразмерных суперячеек показывают [9, 53], что реально в этих «цепочках» чередуются гантели Se_2^{2-} и анионы Se^{2-} , которые возникли при восстановительном расщеплении по схеме $Se_2^{2-} + 2\bar{e} \rightarrow 2Se^{2-}$ одной четверти таких гантелей за счет электронов атомов R.

В связи с этим отметим, что, согласно работе [36], рассчитанное по уравнению (3) значение k позволяет установить усредненный формальный заряд (χ) соответствующих атомов селена в структуре селенидов по уравнению

$$\chi(\mathrm{Se}) = k - 2. \tag{4}$$

Например, для KTh₂Se₆ [53], которому в рамках первого варианта отвечает формула $KTh_2Se_2(Se^{1.25-})_4$, у атомов селена в цепочках -Se-Se–Se– среднее k = 0.71 (табл. 3). Поэтому, согласно (4), для них γ (Se) = -1.29, что, на наш взгляд, хорошо согласуется с ожидавшимся $\chi(Se) = -1.25$ для всех изоструктурных RAn₂Se₆. Отметим, что наилучшее согласие между ожидавшимся и рассчитанным по (4) зарядами на Se наблюдается для трех селенидов Th [γ (Se) = -1.29, -1.29 и -1.27 соответственно при R = K, Rb и Cs, табл. 3]. Для четырех производных U [γ (Se) = -1.18, -1.17, -1.18 и -1.17] и двух производных Np [γ (Se) = -1.13 и -1.13, табл. 3] согласие ухудшается. Этот факт вызван тем, что период повторяемости вдоль оси цепочек -Se-Se-Se- во всех случаях совпадает с трансляцией b, которая практически не зависит от R^+ (K, Rb, Cs или Tl, табл. 3) и определяется только природой актинида. Так, для изоструктурных RAn₂Se₆ при An = Th, U и Np соответственно в среднем *b* = 5.630(7), 5.555(4) и 5.522(4) Å. Поскольку из-за актинидного сжатия *b* закономерно уменьшается, то из-за симбатного сокращения d(Se-Se) в соответствии с (3) и (4) увеличивается величина k и уменьшается модуль $\chi(Se)$. Можно допустить, что по аналогичной причине рассчитанные значения $\gamma(Se)$ для атомов Se3, Se4 и Se5 (соответственно -1.04,

РАДИОХИМИЯ том 62 № 4 2020

-1.25 и -1.25) в трех независимых линейных цепочках структуры $U_2^{IV}La_2^{III}(Se^{2-})_3(Se^{1.33-})_6$ (табл. 3) отличаются от ожидавшегося для них значения -1.33 [8] из-за особенностей размещения атомов U и La вдоль оси цепочек –Se–Se–Se–.

Приемлемые результаты дает расчет $\gamma(Se)$ и в кристаллах Th₂Se₅ {89667}, содержащих цепочки ···Se1···Se2-Se2···Se1···Se1···Se2-Se2··· из кристаллографически разных атомов селена. Так, согласно данным работы [31], для атомов Se1 = Se^{2–}, Se2 = Se⁻ и Se3 = Se²⁻ средние k равны 0.40, 1.06 и 0.0 (табл. 3), поэтому соответственно $\gamma(Se) =$ -1.6, -0.94 и -2.0. По существу, единственным веществом, для которого с позиций СМСК не удается охарактеризовать валентное состояние атомов Se в цепочках -Se-Se-Se-, является уже упоминавшийся Np₂Se₅. Распределение зарядов в этом селениде, основанное на модели структуры, установленной авторами [13], теоретически отвечает формуле (Np⁴⁺)₂(Se²⁻)(Se^{1.5-})₄. Однако, имеющиеся экспериментальные данные с учетом уравнений (3) и (4) приводят к неприемлемому результату $(Np^{4+})_2(Se^{2-})(Se^{1.03-})_4 \approx (Np^{4+})_2(Se^{2-})$. (Se⁻)₄ (табл. 3). На наш взгляд, этот факт является дополнительным свидетельством в поддержку точки зрения авторов работы [31], которые отметили и детально обсудили псевдотетрагональную симметрию структур An_2X_5 , где An = Th, U, Np, a X = S, Se. Поэтому противоречивость имеющихся данных для Np₂Se₅, по-видимому, вызвана тем, что уточнение этой структуры авторы работы [13] провели в рамках тетрагональной пространственной группы *P4*₂/*nmc*, а не ромбической *Pcnb*. Так, интерпретация данных, полученных при уточнении псевдотетрагонального Th₂Se₅ в пространственной группе Pcnb, с позиций СМСК (табл. 3) затруднений не вызывает.

Максимальное КЧ 4, которое атомы Se⁻ проявляют по отношению к другим атомам селена, реализуется в квадратных сетках 4⁴ (рис. 2, е). В кристаллах AnSe₂, содержащих такие сетки, при An = Pu, Am и Cm суммарное *k* для атомов Se1 = Se⁻ равно соответственно 0.69, 0.98 и 0.98 (табл. 3), a χ (Se) = -1.31, -1.02 и -1.02.

ФОНДОВАЯ ПОДДЕРЖКА

Исследование выполнено при финансовой поддержке РФФИ в рамках научного проекта № 19-03-00048 а.

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют об отсутствии конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- Gaunt A.J., Reilly S.D., Enriquez A.E., Scott B.L., Ibers J.A., Sekar P., Ingram K.I.M., Kaltsoyannis N., Neu M.P. // Inorg. Chem. 2008. Vol. 47, N 1. P. 29. doi 10.1021/ic701618a
- Jones M.B., Gaunt A.J., Gordon J.C., Kaltsoyannis N., Neu M.P., Scott B.L. // Chem. Sci. 2013. Vol. 4, N 3. P. 1189. doi 10.1039/C2SC21806B
- Behrle A.C., Kerridge A., Walensky J.R. // Inorg. Chem. 2015. Vol. 54, N 24. P. 11625. doi 10.1021/acs. inorgchem.5b01342
- Macor J.A., Brown J.L., Cross J.N., Daly S.R., Gaunt A.J., Girolami G.S., Janicke M.T., Kozimor S.A., Neu M.P., Olson A.C., Reilly S.D., Scott B.L. // Dalton Trans. 2015. Vol. 44, N 43. P. 18923. doi 10.1039/ C5DT02976G
- Cross J.N., Macor J.A., Bertke J.A., Ferrier M.G., Girolami G.S., Kozimor S.A., Maassen J.R., Scott B.L., Shuh D.K., Stein B.W., Stieber S.C.E. // Angew. Chem. Int. Ed. 2016. Vol. 55, N 41. P. 12755. doi 10.1002/ anie.201606367
- 6. Уэллс А. Структурная неорганическая химия. М.: Мир, 1987. Т. 1. 408 с.
- Современная кристаллография. Т. 2: Вайнштейн Б.К., Фридкин В.М., Инденбом В.Л. Структура кристаллов. М.: Наука, 1979. 359 с.
- Bugaris D.E., Copping R., Tyliszczak T., Shuh D.K., Ibers J.A. // Inorg. Chem. 2010. Vol. 49, N 5. P. 2568. doi 10.1021/ic902503n
- Bugaris D.E., Wells D.M., Jiyong Yao, Skanthakumar S., Haire R.G., Soderholm L., Ibers J.A. // Inorg. Chem. 2010. Vol. 49, N 18. P. 8381. doi 10.1021/ic1008895
- Ward M.D., Mesbah A., Minasian S.G., Shuh D.K., Tyliszczak T., Lee M., Choi E.S., Lebègue S., Ibers J.A. // Inorg. Chem. 2014. Vol. 53, N 13. P. 6920. doi 10.1021/ ic500721d
- Mesbah A., Prakash J., Beard J.C., Lebègue S., Malliakas C.D., Ibers J.A. // Inorg. Chem. 2015. Vol. 54, N 18. P. 9138. doi 10.1021/acs.inorgchem.5b01566
- Mesbah A., Prakash J., Ibers J.A. // Dalton Trans. 2016. Vol. 45, N 41. P. 16067. doi 10.1039/C6DT02540D
- Jin Geng Bang, Hu Yung-Jin, Bellott B., Skanthakumar S., Haire R.G., Soderholm L., Ibers J.A. // Inorg. Chem. 2013. Vol. 52, N 15. P. 9111. doi 10.1021/ic401384t
- 14. *Inorganic* Crystal Structure Database. Gmelin-Institut für Anorganische Chemie & FIC Karlsruhe, 2018.
- 15. *Cambridge* Structural Database System. Cambridge Crystallographic Data Centre, 2018.

- Serezhkin V.N., Savchenkov A.V., Pushkin D.V., Serezhkina L.B. // Applied Solid State Chem. 2018. Vol. 2(3). P. 2. doi 10.18572/2619-0141-2018-2-3-2-16
- 17. Сережкин В.Н., Сережкина Л.Б. // Радиохимия. 2018. Т. 60, № 1. С. 3. doi 10.1134/S1066362218010010
- Сережкин В.Н., Пушкин Д.В., Сережкина Л.Б. // Радиохимия. 2018. Т. 60, № 3. С. 193. doi 10.1134/ \$1066362218030013
- 19. Сережкин В.Н., Сережкина Л.Б. // Радиохимия. 2018. Т. 60, № 4. С. 289. doi 10.1134/ S106636221804001X
- 20. Сережкин В.Н., Михайлов Ю.Н., Буслаев Ю.А. // ЖНХ. 1997. Т. 42, № 12. С. 2036.
- Serezhkin V.N. // Structural Chemistry of Inorganic Actinide Compounds/Eds Krivovichev S.V., Burns P.C., Tananaev I.G. Amsterdam: Elsevier, 2007. P. 31.
- Serezhkin V.N., Medvedkov Ya.A., Serezhkina L.B., Pushkin D.V. // Russ. J. Phys. Chem. A. 2015. Vol. 89, N 6. P. 1018. doi 10.1134/S0036024415060254
- Mesbah A., Prakash J., Beard J.C., Pozzi E.A., Tarasenko M.S., Lebègue S., Mal-liakas C.D., Van Duyne R.P., Ibers J.A. // Inorg. Chem. 2015. Vol. 54, N 6. P. 2851. doi 10.1021/ic5029806
- 24. *Oh G.N., Choi E.S., Ibers J.A.* // Inorg. Chem. 2012. Vol. 51. P. 4224. doi /10.1021/ic2027048
- Marcon J.P., Pascard.R. // J. Inorg. Nucl. Chem. 1966.
 Vol. 28. P. 2551. doi 10.1016/0022-1902(66)80379-2
- Wells D.M., Skanthakumar S., Soderholm L. // Acta Crystallogr., Sect. E. 2009. Vol. 65, N 3. P. i14. doi 10.1107/S160053680900395X
- Prakash J., Tarasenko M.S., Mesbah A., Lebègue S., Malliakas C.D., Ibers J.A. // Inorg. Chem. 2014. Vol. 53, N. 21. P. 11626. doi 10.1021/ic501795w
- Chan B.C., Hulvey Z., Abney K.D., Dorhout P.K. // Inorg. Chem. 2004. Vol. 43, N. 8. P. 2453. doi 10.1021/ ic0353209
- Olsen J.S., Gerward L., Benedict U., Luo H., Vogt O. // High Temp.—High Press. 1988. Vol. 20, N 5. P. 553.
- Ellert G.V., Kuz'micheva G.M., Eliseev A.A., Slovyanskikh V.K., Morozov S.P. // Russ. J. Inorg. Chem. 1974. Vol. 19. P. 1548.
- Kohlmann H., Beck H.P. // Z. Kristallogr. 1999. Vol. 214, N 6. P. 341. doi 10.1524/zkri.1999.214.6.341
- Chondroudis K., Kanatzidis M.G. // J. Am. Chem. Soc. 1997. Vol. 119, N 10. P. 2574. doi 10.1021/ja963673j
- Briggs Piccoli P.M., Abney K.D., Schoonover J.D., Dorhout P.K. // Inorg. Chem. 2001. Vol. 40, N 19. P. 4871. doi 10.1021/ic0011031
- 34. Rogers E., Dorenbos P., van der Kolk E. // New J. Phys. 2011. Vol. 13. P. 093038. doi 10.1088/1367-2630/13/9/093038

- Serezhkin V.N., Albakajaji M., Serezhkina L.B. // Russ. J. Phys. Chem. A. 2019. Vol. 93, N 2. P. 288. doi 10.1134/ S0036024419020250
- Serezhkin V.N., Albakajaji M., Serezhkina L.B. // Russ. J. Inorg. Chem. 2019. Vol. 64, N 8. P. 984. doi 10.1134/ S0036023619080126
- Cherin P., Unger P. // Acta Crystallogr., Sect. B. 1972.
 Vol. 28, N 1. P. 313. doi 10.1107/S0567740872002249
- Marsh R.E., Pauling L., McCullough J.D. // Acta Crystallogr. 1953. Vol. 6, N 1. P. 71. doi 10.1107/ S0365110X53000168
- Foss O., Janickis V. // Dalton Trans. 1980. N 4. P. 624. doi 10.1039/DT9800000624
- Cernosek Z., Růzicka A., Holubová J., Cernosková E. // Main Group Met. Chem. 2007. Vol. 30, N 5. P. 231. doi 10.1515/MGMC.2007.30.5.231
- Prakash J., Mesbah A., Beard J.C., Lebègue S., Malliakas C.D., Ibers J.A. // J. Solid State Chem. 2015. Vol. 231, N 1. P. 163. doi 10.1016/j.jssc.2015.08.012
- Briggs Piccoli P.M., Abney K.D., Schoonover J.R., Dorhout P.K. // Inorg. Chem. 2000. Vol. 39, N 14. P. 2970. doi 10.1021/ic990767w
- Choi K.S., Iordanidis L., Chondroudis K., Kanatzidis M.G. // Inorg. Chem. 1997. Vol. 36. N 18. P. 3804. doi 10.1021/ic970224r
- 44. Noel H. // J. Inorg. Nucl. Chem. 1980. Vol. 42, N 12. P. 1715. doi 10.1016/0022-1902(80)80146-1
- Prakash J., Mesbah A., Lebegue S., Kanatzidis M.G. // J. Solid State Chem. 2015. Vol. 230, N 1. P. 70. doi 10.1016/j.jssc.2015.06.033

- Ward M.D., Lee M., Choi E.S., Ibers J.A. // J. Solid State Chem. 2015. Vol. 226, N 1. P. 307. doi 10.1016/j. jssc.2015.03.011
- Choi K.-S., Kanatzidis M.G. // Chem. Mater. 1999.
 Vol. 11, N 9. P. 2613. doi 10.1021/cm9903201
- Sutorik A.C., Kanatzidis M.G. // J. Am. Chem. Soc. 1991. Vol. 113, N 12. P. 7754. doi 10.1021/ja00020a043
- 49. Slovyanskikh V.K., Kuznetsov N.T., Gracheva N.V. // Russ. J. Inorg. Chem. 1989. Vol. 34, N 6. P. 900.
- Grønvold F., Haraldsen H., Thurmann-Moe T., Tufte T. // J. Inorg. Nucl. Chem. 1968. Vol. 30, N 8. P. 2117. doi https://doi.org/10.1016/0022-1902(68)80206-4
- Ben Salem A., Meerschaut A., Rouxel J. // C. R. Hebdomad. Seances Acad. Sci., Ser. 2. 1984. Vol. 299, N 10. P. 617.
- Bellott B.J., Haire R.G., Ibers J. // Z. Anorg. Allg. Chem. 2012. Vol. 638, N 11. P. 1777. doi 10.1002/ zaac.201200214
- Choi K-S., Patschke R., Billinge S.J.L., Waner M.J., Dantus M., Kanatzidis M.G. // J. Am. Chem. Soc. 1998. Vol. 120. P. 10706. doi 10.1021/ja981675t
- 54. Mizoguchi H., Gray D., Huang F.-Q., Ibers J.A. // Inorg. Chem. 2006. Vol. 45, N 8. P. 3307. doi 10.1021/ ic0521401
- Damien D., Jove J. // Inorg. Nucl. Chem. Lett. 1971.
 Vol. 7, N 7. P. 685. doi 10.1016/0020-1650(71)80055-7
- Pearson W.B. // Z. Kristallogr. 1985. Vol. 171, N 1–4.
 P. 23. doi 10.1524/zkri.1985.171.14.23