МОЛИБДАТНЫЕ КОМПЛЕКСЫ Np(V) С КАТИОНАМИ Li⁺ И Na⁺ ВО ВНЕШНЕЙ СФЕРЕ

© 2020 г. М. С. Григорьев, И. А. Чарушникова*, А. М. Федосеев

Институт физической химии и электрохимии им. А.Н. Фрумкина РАН, 119071, Москва, Ленинский просп., д. 31, корп. 4 *e-mail: charushnikovai@ipc.rssi.ru

Получена 20.04.2019, после доработки 25.07.2019, принята к публикации 26.07.2019

Синтезированы и структурно охарактеризованы молибдатные комплексы Np(V) с катионами Li⁺ и Na⁺ состава Li₂[(NpO₂)₂(MoO₄)₂(H₂O)]·8H₂O (I), Na₄[(NpO₂)₂(MoO₄)₃(H₂O)]·5H₂O (II), Na₅[(NpO₂)(MoO₄)₃]·5H₂O (II). В соединениях I–III координационное окружение атомов Np – пентагональные бипирамиды. Структуры I, II (соотношение NpO₂⁺ : MoO₄²⁻ = 1 : 1, 1 : 1.5) имеют слоистое строение. В структуре I диоксокатионы NpO₂⁺ объединяются в пары через катион-катионное взаимодействие. Соединение III (соотношение 1 : 3) имеет цепочечное строение, здесь достигается наименьшая дентатность молибдат-ионов.

Ключевые слова: нептуний(V), катионы щелочных металлов, молибдаты, синтез, кристаллическая структура, катион-катионное взаимодействие

DOI: 10.31857/S0033831120040036

Развитие технологии переработки облученного ядерного топлива требует более глубокого понимания химического поведения трансурановых элементов в различных степенях окисления в присутствии довольно широкого круга ионов различных элементов, в частности, молибдат-ионов, которые присутствуют и в концентратах урановых руд, и в продуктах деления. Исследования молибдатных соединений пятивалентного нептуния проводятся уже достаточно давно [1-8]. Следует отметить, что все выделенные и структурно охарактеризованные молибдатные соединения Np(V) были получены гидротермальным синтезом при температурах выше 180°С из подкисленных растворов молибдатов щелочных металлов. Использование подкисленных растворов щелочных металлов обусловлено задачей повышения устойчивости во времени и, в частности, при нагревании растворов после введения в них пятивалентного нептуния. Для расширения условий синтеза молибдатных соединений Np(V) был опробован способ получения стабильных растворов Np(V) в концентрированных растворах молибдатов лития и натрия. В результате были выделены соединения с разным соотношением NpO₂⁺ : MoO₄²⁻ от 1 : 1 до 1 : 3. В настоящей работе рассмотрено строение соединений состава

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

В качестве исходного служил раствор 0.2 моль/л нитрата Np(V), не содержащий свободной азотной кислоты, полученный центрифугированием суспензии гидроксида Np(V) в растворе 0.2 моль/л NpO₂NO₃; рабочие растворы готовили из молибдата натрия и молибдата лития марки х.ч. Основными условиями получения растворов Np(V) с концентрацией до ~0.01 моль/л в растворах молибдата лития и молибдата натрия являются использование исходной концентрации молибдата щелочного металла не менее 1 моль/л и интенсивное перемешивание раствора после введения аликвоты раствора NpO₂NO₃, не превышающей 0.05 мл, до полного растворения образующегося осадка. Крупные зеленые кристаллы образуются при выдерживании полученных молибдатных растворов Np(V) при комнатной температуре в течение нескольких недель в случае молибдата натрия и нескольких суток в случае молибдата лития при контролируемом медленном испарении растворов.

Параметр	I	II	III
Формула	H ₁₈ O ₂₁ Li ₂ Mo ₂ Np ₂	H ₁₂ O ₂₂ Na ₄ Mo ₃ Np ₂	H ₁₀ O ₁₉ Na ₅ Mo ₃ Np
M	1033.90	1217.88	953.85
Т, К	293(2)	293(2)	100(2)
Сингония	Триклинная	Моноклинная	Моноклинная
Пространственная группа	PĪ	$P2_1/c$	Сс
a, Å	9.1641(6)	11.4281(13)	7.3401(2)
b, Å	10.9224(7)	13.1602(16)	19.6907(7)
c, Å	11.4791(7)	14.5279(17)	13.4036(4)
α, град	118.352(3)	90	90
<i>β</i> , град	90.618(3)	95.660(7)	105.585(2)
ү, град	98.698(3)	90	90
$V, Å^3; Z$	995.02(11); 2	2174.3(4); 4	1866.02(10); 4
$ρ_{\text{выч}}$, γ/cm ³	3.451	3.720	3.395
$\mu(MoK_{\alpha}), \mathrm{Mm}^{-1}$	7.901	7.815	5.546
Число измеренных/независимых отражений	34983/22624	70037/9537	26040/8590
Число независимых отражений с $I > 2\sigma(I)$	11464	7711	7539
Число уточняемых параметров	300	283	253
$R(F)$; $wR(F^2)$ [$I > 2\sigma(I)$]	0.0536; 0.0863	0.0288; 0.0567	0.0392; 0.0688
$R(F); wR(F^2)$ [весь массив]	0.1246; 0.1007	0.0438; 0.0609	0.0493; 0.0729
GOOF	0.784	1.046	1.030
$\Delta \rho_{\rm max} \mu \Delta \rho_{\rm min} e \dot{A}^{-3}$	3.414: -2.636	1.762; -2.182	1.867: -2.349

Таблица 1. Кристаллографические данные и характеристики рентгеноструктурного эксперимента

При быстром испарении реакционной смеси в случае молибдата лития, как правило, образуются стеклообразные продукты, а в случае молибдата натрия – мелкокристаллические осадки. В растворах молибдата натрия крупные зеленые кристаллы начинают формироваться по достижении концентрации $Na_2MoO_4 2$ моль/л. Затем начинают формироваться зеленые кристаллы различного габитуса наряду с кристаллизацией дигидрата молибдата натрия. Кристаллы, образующиеся в ходе описанного процесса кристаллизации реакционной смеси, были отобраны для настоящей работы.

Рентгенодифракционные эксперименты проведены на автоматическом четырехкружном дифрактометре с двумерным детектором Bruker Kappa Арех II (излучение MoK_{α}). Измерены интенсивности рефлексов в полусфере обратного пространства. Параметры элементарных ячеек уточнены по всему массиву данных. В экспериментальные интенсивности введены поправки на поглощение с помощью программы SADABS [9]. Структуры расшифрованы прямым методом (SHELXS97 [10]) и уточнены полноматричным методом наименьших квадратов (SHELXL-2014 [11]) по F^2 по всем данным в анизотропном приближении для всех неводородных атомов. Кристалл I состоял из трех доменов с вкладами второго и третьего доменов 0.3338(6) и 0.2658(6) соответственно. Атомы H молекул воды в структуре I найдены с помощью программы [12], позиции атомов уточнены с $U_{\rm H} =$ $1.5U_{_{3\rm KB}}({\rm O})$ и ограничением расстояний O–H и углов H–O–H. Атомы H в структурах II и III не локализованы.

Основные кристаллографические данные и характеристики рентгеноструктурного эксперимента приведены в табл. 1. Длины связей и валентные углы в структурах приведены в табл. 2–4, длины связей в координационных полиэдрах (КП) внешнесферных катионов Na приведены в табл. 5. Координаты атомов депонированы в Кембриджский центр кристаллографических данных, депозиты ССDС 1885366, 1885367, 1885707.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Комплекс с соотношением $NpO_2^+: MoO_4^{2-} = 1: 1$ представлен структурой литиевого соединения $Li_2[(NpO_2)_2(MoO_4)_2(H_2O)] \cdot 8H_2O$ (I) (рис. 1, табл. 2).

Два кристаллографически независимых атома Np в структуре имеют координационное окружение в виде пентагональных бипирамид с «ильны-

		-					
Связь	<i>d</i> , Å	Связь	<i>d</i> , Å	Угол	ω, град	Угол	ω, град
Np ¹ =O ¹	1.866(4)	Np ² –O ^{21d}	2.439(5)	O ¹ Np ¹ O ²	178.8(2)	[OMo ² O] _{средн}	109.5(3)
Np ¹ =O ²	1.816(5)	$Np^{2}-O^{24}$	2.453(5)	$O^{11a}Np^1O^{12}$	73.2(2)	O ^{2w} Li ¹ O ^{3w}	117.6(9)
Np ¹ –O ^{11a}	2.414(6)	(Mo ¹ -O) _{средн}	1.755(5)	$O^{22}Np^1O^{23b}$	73.49(19)	O ^{2w} Li ¹ O ^{4w}	103.8(8)
Np^1-O^{12}	2.469(5)	(Mo ² -O) _{средн}	1.754(5)	O ^{11a} Np ¹ O ^{23b}	73.8(2)	O ^{2w} Li ¹ O ^{5w}	105.3(9)
$Np^{1}-O^{22}$	2.456(5)	Li ¹ –O ^{2w}	1.934(18)	$O^{12}Np^1O^{1w}$	69.55(19)	O ^{3w} Li ¹ O ^{4w}	104.4(9)
Np ¹ –O ^{23b}	2.410(6)	Li ¹ –O ^{3w}	1.955(16)	$O^{22}Np^1O^{1w}$	72.0(2)	O ^{3w} Li ¹ O ^{5w}	115.5(9)
Np^1-O^{1w}	2.538(6)	Li ¹ –O ^{4w}	2.05(2)	$O^3Np^2O^4$	179.2(3)	O ^{4w} Li ¹ O ^{5w}	109.4(9)
$Np^2 = O^3$	1.833(5)	Li ¹ –O ^{5w}	1.867(17)	$O^1Np^2O^{14}$	71.20(16)	O ^{2w} Li ² O ^{6w}	104.5(7)
Np ² =O ⁴	1.844(5)	Li ² –O ^{2w}	2.048(18)	$O^1Np^2O^{24}$	70.62(17)	O ^{2w} Li ² O ^{7w}	112.6(9)
$Np^2 - O^1$	2.502(5)	Li ² –O ^{6w}	1.885(18)	$O^{13c}Np^2O^{14}$	72.74(17)	O ^{2w} Li ² O ^{8w}	99.9(8)
$Np^2 - O^{13c}$	2.444(5)	Li ² –O ^{7w}	1.887(16)	$O^{21d}Np^2O^{24}$	72.86(18)	O ^{6w} Li ² O ^{7w}	114.5(9)
Np^2-O^{14}	2.462(5)	Li ² –O ^{8w}	1.909(15)	$O^{21d}Np^2O^{13c}$	72.63(17)	O ^{6w} Li ² O ^{8w}	115.7(10)
-				[OMo ¹ O] _{срелн}	109.5(3)	O ^{7w} Li ² O ^{8w}	108.6(7)
	(1	1 0) 1	(1 1				

Таблица 2. Длины связей (*d*) и валентные углы (ω) в структуре Li₂[(NpO₂)₂(MoO₄)₂(H₂O)]·8H₂O (I)^a

а Операции симметрии: a - (1 - x, 1 - y, 2 - z); b - (1 - x, 1 - y, 1 - z); c - (-x, 1 - y, 2 - z); d - (-x, 1 - y, 1 - z).

Таблица 3. Длины связей (d) и валентные углы (ω) в структуре Na₄[(NpO₂)₂(MoO₄)₃(H₂O)] 5H₂O (II)^a

Связь	<i>d</i> , Å	Связь	<i>d</i> , Å	Угол	ω, град	Угол	ω, град
Np ¹ =O ¹	1.828(3)	Np ² –O ¹²	2.422(3)	$O^1Np^1O^2$	177.21(16)	O ^{13c} Np ² O ^{23c}	70.70(10)
Np ¹ =O ²	1.840(3)	Np ² –O ^{13c}	2.414(3)	$O^{11}Np^1O^{21}$	72.13(10)	O ¹² Np ² O ³¹	69.32(9)
Np^1-O^{11}	2.416(3)	$Np^2 - O^{23c}$	2.452(3)	$O^{22a}Np^1O^{32b}$	75.29(11)	O ^{13c} Np ² O ³¹	69.35(10)
$Np^{1}-O^{21}$	2.453(3)	$Np^{2}-O^{31}$	2.491(3)	$O^{21}Np^1O^{32b}$	73.72(11)	O ^{33d} Np ² O ^{23c}	76.62(10)
Np ¹ –O ^{22a}	2.439(3)	Np ² –O ^{33d}	2.463(3)	$O^{11}Np^1O^{1w}$	71.37(11)	[OMo ¹ O] _{средн}	109.46(15)
Np ¹ –O ^{32b}	2.415(3)	(Mo ¹ -O) _{срелн}	1.758(3)	$O^{22a}Np^1O^{1w}$	68.22(11)	[OMo ² O] _{средн}	109.44(15)
Np^1-O^{1w}	2.623(4)	(Mo ² –O) _{средн}	1.763(3)	$O^3Np^2O^4$	178.05(13)	[OMo ³ O] _{средн}	109.46(17)
Np ² =O ³	1.838(3)	(Mo ³ -O) _{срелн}	1.764(3)	$O^{12}Np^2O^{33d}$	74.62(10)	1	
Np ² =O ⁴	1.852(3)						

а Операции симметрии: a – (–x, y + 1/2, –z + 1/2); b – (–x, y – 1/2, –z + 1/2); c – (1 – x, y + 1/2, –z + 1/2); d – (1 – x, y – 1/2, –z + 1/2).

ми» атомами кислорода в апикальных позициях. Экваториальную плоскость бипирамиды атома Np¹ формируют атомы кислорода молекулы воды О^{1w} и четырех анионов МоО₄²⁻, максимальное отклонение атомов кислорода от среднеквадратичной плоскости у атома кислорода воды [0.272(6) Å]. Экваториальный пояс бипирамиды атома Np² плоский, и вместо молекулы воды в него включен атом O^1 группы Np¹O₂. В структуре имеет место специфическое катион-катионное (КК) взаимодействие, связывающее катионы NpO₂⁺ в пары лиганд-координирующий центр через один «ильный» атом кислорода. Межатомное расстояние Np \cdots Np в паре равно 4.0944(5) Å, а угол Np $^{1}O^{1}Np^{2}$ составляет 138.7(3)°. Экваториальные плоскости бипирамид Np¹ и Np² составляют двугранный угол 48.2(2)°.

Два кристаллографически независимых аниона MoO₄^{2–} связывают катионные димеры в анионные слои, выступая как тетрадентатно-мостиковые ли-

ганды. Между слоями располагаются гидратированные катионы Li⁺ и молекулы кристаллизационной воды.

Два кристаллографически независимых катиона Li⁺ имеют тетраэдрическое окружение из молекул воды, при этом они сдваиваются через общую молекулу воды O^{2w} в димерные комплексы (рис. 1). Межатомное расстояние Li…Li в димере равно 3.31(3) Å, а угол Li¹O^{2w}Li² составляет 112.2(8)°.

В структуре найдено девять независимых молекул воды. Одна молекула (атом O^{1w}) включена в КП атома Np¹, семь молекул входят в гидратную оболочку катионов Li⁺, и одна молекула воды (атом O^{9w}) является кристаллизационной. Трехмерная сеть водородных связей стабилизирует кристаллическую упаковку I. В водородных связях в качестве акцепторов протонов участвуют «ильные» атомы кислорода катионов NpO₂⁺, атомы кислорода молибдат-ионов и молекул воды (табл. 6). Комплекс с соотношением NpO_2^+ : $MoO_4^{2-} = 1$: 1.5 представлен структурой натриевого соединения $Na_4[(NpO_2)_2(MoO_4)_3(H_2O)] \cdot 5H_2O$ (II) (рис. 2, табл. 3).

Два кристаллографически независимых атома Np в структуре имеют координационное окружение в виде пентагональных бипирамид. Экваториальную плоскость КП атома Np¹ формируют атомы кислорода четырех анионов MoO_4^{2-} и одной молекулы воды, атома Np² – атомы кислорода пяти анионов MoO_4^{2-} . Три кристаллографически независимых аниона MoO_4^{2-} связывают диоксокатионы NpO_2^+ в анионные слои, выступая как тридентатно-мостиковые лиганды.

В структуре II найдены пять независимых катионов Na⁺, которые располагаются в межслоевом пространстве. Два из них (атомы Na¹ и Na²) локализуются в центрах инверсии, следовательно, на одну формульную единицу приходится четыре катиона Na⁺. КП катионов Na⁺ (табл. 5) можно описать как искаженный октаэдр (атомы Na¹ и Na²), 5-вершинник (атомы Na³ и Na⁴) и нерегулярный 6-вершинник (атом Na⁵). Был проведена оценка кислородного окружения катионов Na⁺ в структуре II на основе метода полиэдров Вороного– Дирихле с использованием программы Topos Pro

Рис. 1. Фрагмент структуры $Li_2[(NpO_2)_2(MoO_4)_2(H_2O)]$. 8H₂O (I), пунктирной линией показана КК связь. Эллипсоиды температурных смещений показаны с 50% вероятностью. Операции симметрии: a - (1-x, 1-y, 2-z); b - (1-x, 1-y, 1-z).

[13]. Анализ показал, что для всех 6-вершинников вклад сильных взаимодействий между центральным атомом натрия и атомами кислорода из окружения приближается к 100%. В окружении атома Na³ вклад атомов кислорода, образующих 5-вершинник, составляет ~82%, и на расстоянии 3.140–3.481 Å есть три контакта, которые отвечают

Рис. 2. Фрагмент структуры $Na_4[(NpO_2)_2(MoO_4)_3(H_2O)] \cdot 5H_2O$ (II). Эллипсоиды температурных смещений показаны с 30% вероятностью. Операции симметрии: a – (–x, 1/2+y, 1/2–z); b – (–x, –1/2+y, 1/2–z); c – (1–x, 1/2+y, 1/2–z); d – (1–x, –1/2+y, 1/2–z).

РАДИОХИМИЯ том 62 № 4 2020

Связь	<i>d</i> , Å	Связь	<i>d</i> , Å	Угол	ω, град	Угол	ω, град
Np ¹ =O ¹	1.868(6)	Np ¹ –O ^{22a}	2.422(6)	$O^1Np^1O^2$	176.7(3)	$O^{21}Np^1O^{31}$	74.5(2)
Np ¹ =O ²	1.849(6)	Np^1-O^{31}	2.405(5)	$O^{11}Np^1O^{21}$	69.8(2)	[OMo ¹ O] _{срелн}	109.5(3)
Np^1-O^{11}	2.470(6)	(Mo ¹ O) _{средн}	1.766(6)	$O^{11}Np^1O^{22a}$	71.52(16)	[OMo ² O] _{средн}	109.4(3)
Np ¹ –O ^{12a}	2.439(6)	(Mo ² -O) _{средн}	1.767(6)	$O^{12a}Np^1O^{31}$	74.3(2)	[OMo ³ O] _{средн}	109.4(3)
Np^1-O^{21}	2.455(6)	(Мо ³ –О) _{средн}	1.766(6)	$O^{12a}Np^1O^{22a}$	70.2(2)		

Таблица 4. Длины связей (d) и валентные углы (ω) в структуре Na₅[(NpO₂)(MoO₄)₃] 5H₂O (III)^a

а Операция симметрии: a - (x, -y - 1, z + 3/2).

Таблица 5. Длины связей (d) в КП катионов Na⁺

П			III				
Связь	<i>d</i> , Å						
Na ¹ –O ^{4w}	2.306(4)·2	Na ⁴ –O ⁴	2.314(3)	Na ¹ –O ¹³	2.326(6)	Na ³ –O ³³	2.366(7)
Na^1-O^{34}	2.408(3)·2	Na ⁴ –O ³	2.353(3)	Na ¹ –O ^{5w}	2.352(7)	Na ³ –O ^{1w}	2.376(7)
Na ¹ –O ³	2.566(3)·2	Na ⁴ –O ³⁴	2.422(4)	Na ¹ –O ²³	2.370(7)	Na ³ –O ¹⁴	2.402(6)
Na ² –O ^{2w}	2.366(5)·2	Na ⁴ –O ^{5w}	2.467(6)	Na ¹ -O ¹²	2.393(7)	Na ³ –O ^{2w}	2.425(7)
$Na^{2}-O^{22}$	2.422(3)·2	Na ⁴ -O ¹⁴	2.503(4)	Na ¹ –O ^{3w}	2.399(7)	Na^4-O^{24}	2.316(7)
Na^2-O^2	2.595(3)·2	Na ⁵ –O ^{6w}	2.321(4)	Na ¹ –O ²	2.500(8)	Na ⁴ –O ³²	2.350(7)
Na ³ –O ^{6w}	2.389(5)	Na ⁵ –O ^{5w}	2.426(5)	$Na^{2}-O^{23}$	2.292(6)	Na ⁴ -O ¹⁴	2.381(7)
$Na^{3}-O^{24}$	2.393(4)	Na ⁵ –O ⁴	2.408(3)	Na ² –O ^{4w}	2.345(7)	Na ⁴ –O ^{1w}	2.400(7)
Na ³ –O ²	2.473(4)	Na ⁵ -O ¹⁴	2.426(4)	Na ² –O ³²	2.398(7)	Na ⁴ –O ^{2w}	2.437(7)
$Na^{3}-O^{23}$	2.517(4)	Na ⁵ -O ¹⁴	2.457(3)	Na ² –O ²¹	2.413(7)	Na ⁵ –O ¹	2.331(7)
Na ³ –O ^{3w}	2.684(8)	Na ⁵ –O ³³	2.513(3)	Na ² –O ¹	2.430(7)	Na ⁵ –O ^{5w}	2.359(7)
				Na ² –O ¹³	2.488(6)	Na ⁵ –O ²	2.367(7)
				Na ³ –O ²⁴	2.346(7)	Na ⁵ –O ^{4w}	2.370(7)
				Na ³ –O ^{3w}	2.367(7)	Na ⁵ -O ¹³	2.463(7)

слабому невалентному взаимодействию. В итоге вклад сильных и слабых взаимодействий составляет ~96%. Для атома Na⁴ вклад атомов кислорода 5-вершинника составляет ~87%. С учетом двух слабых невалентных взаимодействий (контакты 3.060 и 3.353 Å) вклад увеличивается до ~99%.

В структуре II найдено шесть кристаллографически независимых молекул воды. Молекула воды О¹w входит в координационное окружение атома Np¹, остальные молекулы воды включены в кислородное окружение катионов Na⁺.

Соединение с соотношением NpO_2^+ : $MoO_4^{2-} = 1:3$ представлено структурой $Na_5[(NpO_2)(MoO_4)_3]$ · 5H₂O (III) (рис. 3, табл. 4).

Атом Np¹ имеет кислородное окружение в виде пентагональной бипирамиды, экваториальную плоскость которой формируют атомы кислорода пяти анионов MoO_4^{2-} .

В структуре **III** найдено три кристаллографически независимых аниона MoO_4^{2-} . Анионы с атомами Mo^1 и Mo^2 имеют бидентатно-мостиковую функцию, анион с атомом Mo^3 является моноден-

татным. Диоксокатионы NpO_2^+ в структуре связываются молибдат-ионами в анионные цепочки, вытянутые вдоль направления [001] в кристалле.

В структуре III найдены пять кристаллографически независимых катионов Na⁺, которые располагаются между анионными цепочками. Все они локализуются в общих позициях и имеют кислородное окружение в виде искаженного октаэдра (атом Na³), нерегулярных 6-вершинников (атомы Na¹, Na²) и 5-вершинников (атомы Na⁴, Na⁵). Анализ кислородного окружения с помощью программы Тороз Рго показал, что для 6-вершинников вклад атомов кислорода составляет не менее 98%. Для 5-вершинников вклад составляет ~88%, но на расстоянии 3.054 Å (атом Na⁴) и 3.078 Å (атом Na⁵) имеются контакты, которые дополняют взаимодействие до ~95%.

В структуре **III** найдено пять кристаллографически независимых молекул воды, которые входят в кислородное окружения катионов Na⁺.

Рассмотрим, как меняется структура соединений **I–III** с увеличением числа анионов MoO_4^{2-} , приходящихся на один диоксокатион.

РАДИОХИМИЯ том 62 № 4 2020

	5	1	5 51					
$D-\mathrm{H}\cdots A$	<i>D</i> –H, Å	H…A, Å	$D \cdots A$, Å	D– H ··· A , град	Операция симметрии для А			
Li ₂ [(NpO ₂) ₂ (MoO ₄) ₂ (H ₂ O)]·8H ₂ O (I)								
O^{1w} – H^1 ··· O^3	0.85(2)	2.21(7)	2.790(7)	126(7)				
O^{1w} – H^2 ··· O^{4w}	0.847(19)	2.19(5)	2.8703(9)	137(6)	-x, 1-y, 1-z			
O^{2w} – H^3 … O^4	0.851(19)	2.01(5)	2.781(8)	151(9)				
O^{2w} – H^4 ··· O^4	0.816(19)	2.06(5)	2.803(7)	152(9)	-x, -y, 1-z			
O^{3w} – H^5 … O^2	0.844(19)	2.14(6)	2.867(9)	145(9)	1-x, 1-y, 1-z			
O^{3w} – H^6 ··· O^3	0.836(19)	2.18(7)	2.847(9)	137(9)	-x, 1-y, 1-z			
O^{4w} – H^7 ··· O^{21}	0.85(2)	2.31(8)	2.964(8)	133(9)	-x, 1-y, 1-z			
O^{4w} – H^8 … O^{9w}	0.855(19)	1.95(3)	2.768(9)	158(7)	-x, -y, 1-z			
O^{5w} – H^9 … O^{3w}	0.85(2)	2.27(6)	3.030(10)	149(12)	-x, -y, -z			
O^{5w} – H^{10} ··· O^{14}	0.844(19)	2.24(6)	3.004(8)	151(11)	-x, -y, 1-z			
O^{6w} - H^{11} ··· O^{13}	0.847(19)	2.09(3)	2.919(8)	166(10)	x, y-1, z-1			
O^{6w} – H^{12} ··· O^{9w}	0.85(2)	2.39(6)	3.158(12)	150(11)	1 - x, -y, 1 - z			
O^{7w} – H^{13} ··· O^{1w}	0.852(19)	2.57(9)	3.205(9)	132(10)	x, y-1, z-1			
O^{7w} - H^{14} O^{12}	0.853(19)	2.16(6)	2.877(8)	142(8)	x, y-1, z-1			
O^{8w} – H^{15} ··· O^1	0.842(19)	2.33(3)	3.156(8)	169(8)				
O^{8w} - H^{16} O^{22}	0.836(19)	2.00(3)	2.817(8)	165(11)	1-x, 1-y, 1-z			
O^{9w} - H^{17} O^{12}	0.85(2)	2.24(3)	3.086(10)	171(10)	1-x, 1-y, 2-z			
O^{9w} – H^{18} ··· O^4	0.84(2)	2.57(7)	3.190(11)	132(8)				

Таблица 6. Водородные связи с молекулами воды в структуре I

В соединении I с соотношением $NpO_2^+: MoO_4^{2-}=$ 1 : 1 на два кристаллографически независимых диоксокатиона приходится два независимых аниона. Основу этой структуры составляют анионные слои (рис. 4). В соединении I каждый молибдат-

Рис. 3. Фрагмент структуры $Na_5[(NpO_2)(MoO_4)_3]$:5H₂O (III). Эллипсоиды температурных смещений показаны с 50% вероятностью. Операция симметрии: a - (x+1/2, y+3/2, z-1).

РАДИОХИМИЯ том 62 № 4 2020

Рис. 4. Анионный слой в структуре $Li_2[(NpO_2)_2 \cdot (MoO_4)_2(H_2O)] \cdot 8H_2O$ (**I**), проекция в направлении [010]. Пунктирными линиями показаны КК связи.

Рис. 5. Анионный слой в структуре $Na_4[(NpO_2)_2^{-1}(MoO_4)_3(H_2O)]^{-5}H_2O$ (II), проекция в направлении [001].

ион имеет максимальную дентатность, равную четырем, и четырьмя кислородными вершинами тетраэдра координирован к четырем различным атомам нептуния. В координационную сферу атома Np^1 включается молекула воды, в координационную сферу атома Np^2 – атом кислорода соседнего диоксокатиона, дополняя координационное число атомов Np до 7.

Из исследованных ранее молибдатов Np(V) с щелочными катионами во внешней сфере известно строение натриевого соединения состава Na₂[(NpO₂)₂(MoO₄)₂(H₂O)]·H₂O [5] с соотношением NpO₂⁺: MoO₄²⁻ = 1 : 1. Основу этой структуры составляет анионный каркас. В каналах нептуноилмолибдатного анионного каркаса располагаются цепочки из катионов Na, КП которых в виде 6-вершинников сформированы атомами кислорода NpO₂⁺, MoO₄²⁻ и молекул воды.

В структуре $Na_2[(NpO_2)_2(MoO_4)_2(H_2O)] \cdot H_2O$ два независимых атома Np имеют КП в виде пентагональных бипирамид. Экваториальную плоскость КП атома Np¹ формируют атомы кислорода трех анионов, молекулы воды и соседнего катиона NpO₂⁺, экваториальную плоскость КП атома Np² – атомы кислорода пяти анионов MoO_4^{2-} . Иными словами, состав КП атомов Np в натриевом соединении отличается от состава КП в соединении I, при этом в структуре $Na_2[(NpO_2)_2(MoO_4)_2(H_2O)] \cdot H_2O$ также наблюдается КК взаимодействие, объединяющее диоксокатионы в пары. Но, если в литиевом молибдате I КП атомов Np объединяются через

Рис. 6. Анионная цепочка в структуре Na₅[(NpO₂)[.] (MoO₄)₃][.]5H₂O (**III**), проекция в направлении [100].

общую вершину – «ильный» атом кислорода, то в натриевой структуре два КП объединяются через общее ребро – «ильный» атом кислорода и мостиковый атом кислорода молибдат-иона. Расстояние Np…Np здесь меньше, чем в I, и равно 3.727(1) Å, а двугранный угол между экваториальными плоскостями бипирамид равен 94.2°.

В натриевой структуре $Na_2[(NpO_2)_2(MoO_4)_2 (H_2O)] \cdot H_2O$, как и в I, два независимых молибдат-иона, но способ связывания с катионами NpO_2^+ отличается от I. Тетрадентатно-мостиковый анион $Mo^1O_4^{2-}$ через кислородные вершины связан с четырьмя разными атомами Np. У тридентатного аниона $Mo^2O_4^{2-}$ одна кислородная вершина является общей для двух атомов Np, связанных КК вза-имодействием, две другие кислородные вершины связывают по одному атому Np, и одна вершина остается свободной. Таким образом, при различной дентатности молибдат-ионов они имеют одинаковую координационную емкость.

Одной из причин различия в строении соединений с катионами Li⁺ и Na⁺ с соотношением NpO₂⁺ : $MoO_4^{2-} = 1 : 1$ является, прежде всего, природа внешнесферного катиона. Для катионов Li⁺ характерно формирование гидратных оболочек, которые взаимодействуют со структурообразующими элементами через водородное связывание, тогда как катионы Na⁺ включают в свое координационное окружение атомы кислорода диоксокатионов и молибдат-ионов. Второй причиной является возможность образования разных КК связей. В соединении **I** образование пары с одной общей вершиной приводит к такому расположению структурообразующих элементов, что молибдат-ионы способны связывать по четыре атома Np, проявляя максимальную в данном случае дентатность и формируя при этом анионные слои. В натриевом соединении сдвоенные по общему ребру КП атомов Np способствуют образованию анионного каркаса.

В соединении II (соотношение NpO_2^+ : MoO_4^{2-} = 1: 1.5) дентатность молибдат-ионов понижается до трех, три независимых молибдат-иона образуют девять связей, и в координационную сферу атома Np¹ включена молекула воды. Каждый молибдат-ион связан с тремя атомами Np, но при этом атом Np¹ связан с четырьмя молибдат-ионами, а атом $Np^2 - c$ пятью. Основу строения соединения II также составляют анионные слои. В слое (рис. 5) атом Np^1 с молекулой воды в координационном окружении входит в состав двух металлоциклов, содержащих два атома Np и два атома Мо, и двух металлоциклов, содержащих три атома Np и три атома Mo. Атом Np² входит в состав четырех металлоциклов с двумя атомами Np и Mo и одного цикла с шестью атомами металлов.

В соединении **III** на один независимый диоксокатион приходится три аниона, два бидентатно-мостиковых и один монодентатный, и основу структуры здесь составляют анионные цепочки, составленные из металлоциклов с двумя атомами Np и Mo (рис. 6).

Таким образом, исследовано строение ряда молибдатов Np(V) с маленькими катионами щелочных металлов во внешней сфере с соотношением NpO₂⁺ : MoO₄²⁻ = 1 : 1, 1 : 1.5 и 1 : 3. В структуре с катионами Li⁺ I с соотношением 1 : 1 найдено КК взаимодействие, объединяющее диоксокатионы в пары. Во всех соединениях КП атомов нептуния – пентагональные бипирамиды. В соединениях с соотношением NpO₂⁺ : MoO₄²⁻ = 1 : 1 и 1 : 1.5 в экваториальный пояс бипирамид включены молекулы воды (I, II) или атом кислорода соседнего катиона NpO₂⁺ (I). Соединение III (соотношение 1 : 3) имеет цепочечное строение, здесь достигается наименьшая дентатность молибдат-ионов.

ФОНДОВАЯ ПОДДЕРЖКА

Работа выполнена при частичном финансировании Министерством науки и высшего образования Российской Федерации (тема № АААА-А18-118040590105-4) и Программой 35 Президиума РАН «Научные основы создания новых функциональных материалов».

Рентгенодифракционные эксперименты выполнены в ЦКП ФМИ ИФХЭ РАН.

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют об отсутствии конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- Федосеев А.М., Крот Н.Н. // Радиохимия. 1986. Т. 28, № 2. С. 169.
- Федосеев А.М., Буданцева Н.А. // Радиохимия. 1990. Т. 32, № 5. С. 19.
- 3. Григорьев М.С., Чарушникова И.А., Федосеев А.М., Буданцева Н.А., Батурин Н.А., Регель Л.Л. // Радиохимия. 1991. Т. 33, № 4. С. 19.
- Григорьев М.С., Чарушникова И.А., Федосеев А.М., Буданцева Н.А., Яновский А.И., Стручков Ю.Т. // Радиохимия. 1991. Т. 33, № 5. С. 7.
- Григорьев М.С., Батурин Н.А., Федосеев А.М., Буданцева Н.А. // Координац. химия. 1994. Т. 20, № 7. С. 552.
- Григорьев М.С., Батурин Н.А., Плотникова Т.Э., Федосеев А.М., Буданцева Н.А. // Радиохимия. 1995. Т. 37, № 1. С. 19.
- Григорьев М.С., Федосеев А.М., Буданцева Н.А., Антипин М.Ю. // Радиохимия. 2005. Т. 47, № 6. С. 500.
- Буданцева Н.А., Григорьев М.С., Федосеев А.М. // Радиохимия. 2015. Т. 57, № 3. С. 193.
- 9. *Sheldrick G. M.* SADABS. Madison, Wisconsin (USA): Bruker AXS, 2008.
- Sheldrick G. M. // Acta Crystallogr., Sect. A. 2008. Vol. 64, N 1. P. 112.
- Sheldrick, G.M. // Acta Crystallogr., Sect. C. 2015. Vol. 71, N 1. P. 3.
- Nardelli M. // J. Appl. Crystallogr. 1999. Vol. 21, N 3. P. 563.
- Blatov V. A., Shevchenko A. P., Proserpio D. M. // Cryst. Growth Des. 2014. Vol. 14, N 7. P. 3576.