УДК 539.26+546.798.21

МОЛИБДАТНЫЕ КОМПЛЕКСЫ Np(V) C СООТНОШЕНИЕМ NpO₂⁺: MoO₄²⁻ = 1 : 2 И КАТИОНАМИ Na⁺ ВО ВНЕШНЕЙ СФЕРЕ

© 2020 г. М. С. Григорьев, И. А. Чарушникова*, А. М. Федосеев

Институт физической химии и электрохимии им. А.Н. Фрумкина РАН, 119071, Москва, Ленинский просп., 31, корп. 4 *e-mail: charushnikovai@ipc.rssi.ru

Получена 05.06.2019, после доработки 24.07.2019, принята к публикации 30.07.2019

Синтезированы и структурно охарактеризованы два молибдатных комплекса Np(V) с катионами Na⁺ во внешней сфере и соотношением NpO₂⁺ : MoO₄²⁻ = 1 : 2 состава Na₆[(NpO₂)₂(MoO₄)₄]·2H₂O (I) и Na₆[(NpO₂)₂(MoO₄)₄]·5H₂O (II). Два кристаллографически независимых атома Np(V) в обеих структурах имеют координационное окружение в виде пентагональных бипирамид, экваториальную плоскость которых образуют атомы кислорода анионов MoO₄²⁻. В каждой структуре присутствует по четыре независимых аниона MoO_4^{2-} , два являются тридентатно-мостиковыми и два – бидентатно-мостиковые. Структура I имеет слоистое строение, в структуре II основной мотив строения – анионный каркас, обусловленный включением в состав соединения бо́льшего числа молекул воды по сравнению с соединением I.

Ключевые слова: нептуний(V), катионы щелочных металлов, молибдаты, синтез, кристаллическая структура

DOI: 10.31857/S0033831120050081

К настоящему времени получены молибдатные комплексы с внешнесферными маленькими катионами Li⁺ и Na⁺ с соотношением NpO₂⁺ : MoO₄²⁻ от 1:1 до 1:3. Структурно охарактеризованы комплексы с соотношением 1 : 1, представленные соединениями $Li_{2}[(NpO_{2})_{2}(MoO_{4})_{2}(H_{2}O)] \cdot 8H_{2}O$ [1] и Na₂[(NpO₂)₂(MoO₄)₂(H₂O)]·H₂O [2]. Структуры комплексов с соотношением NpO_2^+ : MoO_4^{2-} 1 : 1.5 и 1 : 3 представлены соединениями Na₄[(NpO₂)₂(MoO₄)₃(H₂O)]·5H₂O и Na₅[(NpO₂)(MoO₄)₃]· 5H₂O [1]. В настоящей работе исследовано строение молибдатных комплексов Np(V) с соотношением NpO_2^+ : $MoO_4^{2-} = 1 : 2$, представленных двумя соединениями: $Na_6[(NpO_2)_2(MoO_4)_4] \cdot 2H_2O$ (I) и $Na_{6}[(NpO_{2})_{2}(MoO_{4})_{4}] \cdot 5H_{2}O(II).$

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Методика синтеза молибдатных комплексов Np(V) описана в работе [1].

Рентгенодифракционные эксперименты проведены на автоматическом четырехкружном дифрактометре с двумерным детектором Bruker Kappa Арех II (излучение MoK_{α}). Измерены интенсивности рефлексов в полусфере обратного пространства. Параметры элементарных ячеек уточнены по всему массиву данных. В экспериментальные интенсивности введены поправки на поглощение с помощью программы SADABS [3]. Структуры расшифрованы прямым методом (SHELXS97 [4]) и уточнены полноматричным методом наименьших квадратов (SHELXL-2014 [5]) по F^2 по всем данным в анизотропном приближении для всех неводородных атомов. Низкое качество экспериментальных данных для соединения II, возможно, обусловлено двойниковой природой кристалла, однако попытка учесть двойникование с использованием программы TWINABS не удалась. На начальных этапах уточнения для атома Na⁷ в структуре II наблюдался сильно увеличенный объем эллипсоида температурных смещений, по-видимому, из-за частичной занятости данной позиции. В дальнейшем атом Na⁷ уточнялся с половинной кратностью, что соответствует балансу зарядов в структуре.

Атомы Н молекул воды в структуре I локализованы из разностного Фурье-синтеза, позиции атомов уточнены с $U_{\rm H} = 1.5 U_{_{3\rm KB}}({\rm O})$ и ограничением расстояний О–Н и углов Н–О–Н. В структуре II атомы Н не локализованы.

Основные кристаллографические данные и характеристики рентгеноструктурного эксперимен-

I worming is it provide provide the providet the providet the providet the providet the providet the	Таблица 1.	Кристаллографические	данные и характе	еристики рентгено	структурного	эксперимента
---	------------	----------------------	------------------	-------------------	--------------	--------------

Параметр	I	П
Формула	H ₄ O ₂₂ Na ₆ Mo ₄ Np ₂	H ₁₀ O ₂₅ Na ₆ Mo ₄ Np ₂
M	1351.73	1405.78
Т, К	100(2)	293(2)
Сингония	Триклинная	Моноклинная
Пространственная группа	$P\overline{1}$	$P2_1/c$
Параметры ячейки:		
a, Å	6.4083(2)	7.8794(2)
b, Å	7.1423(2)	23.6353(9)
<i>c</i> , Å	23.9180(7)	14.3062(5)
α, град	90.340(1)	90
β, град	90.154(1)	105.910(2)
ү, град	104.107(1)	90
$V, Å^3; Z$	1061.68(5); 2	2562.21(15); 4
$\rho_{\rm выч}, \Gamma/cm^3$	4.228	3.644
$\mu(MoK_{\alpha}), { m Mm}^{-1}$	8.560	7.105
Количество измеренных/независимых отражений	13462/6131	25905/7141
Количество независимых отражений с $I > 2\sigma(I)$	5144	5635
Количество уточняемых параметров	320	340
$R(F); wR(F^2) [I > 2\sigma(I)]$	0.0286; 0.0490	0.0809; 0.2081
$R(F); wR(F^2)$ [весь массив]	0.0388; 0.0522	0.0981; 0.2212
GOOF	0.988	1.032
$\Delta \rho_{\text{max}}$ и $\Delta \rho_{\text{min}}$, $e \cdot \text{Å}^{-3}$	1.185; -1.286	18.666; -3.968

та приведены в табл. 1. Длины связей и валентные углы в структурах приведены в табл. 2 и 3. Координаты атомов депонированы в Кембриджский центр кристаллографических данных, депозиты ССDС 1885368, 1885369.

Рис. 1. Фрагмент структуры $Na_6[(NpO_2)_2(MoO_4)_4]$ ·2H₂O (I). Эллипсоиды температурных смещений показаны с 50%-ной вероятностью. Операции симметрии: a – (*x*, *y* – 1, *z*); b – (1 – *x*, 1 – *y*, 1 – *z*); c – (*x*, *y* + 1, *z*); d – (1 – *x*, 2 – *y*, –*z*).

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

В молибдатных комплексах I (рис. 1) и II (рис. 2) по два кристаллографически независимых атома нептуния(V) имеют координационное окружение в виде пентагональных бипирамид, экваториальную плоскость которых образуют атомы кислорода пяти анионов MoO_4^{2-} .

В обеих структурах присутствуют по четыре независимых аниона ${\rm MoO_4^{2-}},$ при этом два из них

Рис. 2. Фрагмент структуры Na₆[(NpO₂)₂(MoO₄)₄]·5H₂O (**II**). Эллипсоиды температурных смещений показаны с 30%-ной вероятностью. Операции симметрии: a - (1 - x, 1 - y, 1 - z); b - (1 + x, y, 1 + z); c - (x, 1/2 - y, 1/2 + z).

РАДИОХИМИЯ том 62 № 5 2020

I				II				
Связь	<i>d</i> , Å	Связь	<i>d</i> , Å	Связь	<i>d</i> , Å	Связь	<i>d</i> , Å	
Np ¹ =O ¹	1.855(4)	Np ¹ –O ^{24a}	2.388(4)	Np ¹ =O ¹	1.855(10)	Np ¹ –O ³¹	2.461(12)	
Np ¹ =O ²	1.835(4)	Np ¹ –O ³¹	2.412(4)	Np ¹ =O ²	1.866(12)	$Np^{1}-O^{43}$	2.441(11)	
$Np^{1}-O^{11}$	2.452(4)	Np ¹ –O ^{32b}	2.486(4)	Np^1-O^{11}	2.413(12)	Np^1-O^{44a}	2.483(14)	
$Np^{1}-O^{21}$	2.423(4)	_		$Np^{1}-O^{21}$	2.462(12)	_		
-				_				
Np ² =O ³	1.847(4)	Np ² –O ²²	2.425(4)	Np ² =O ³	1.850(12)	Np^2-O^{24c}	2.506(11)	
$Np^2 = O^4$	1.840(4)	$Np^{2}-O^{41}$	2.456(4)	Np ² =O ⁴	1.845(12)	Np^2-O^{32c}	2.446(13)	
$Np^{2}-O^{12}$	2.419(4)	$Np^2 - O^{44d}$	2.391(4)	$Np^2 - O^{12b}$	2.455(11)	$Np^{2}-O^{41}$	2.421(12)	
$Np^2 - O^{13c}$	2.419(4)	1		$Np^2 - O^{13a}$	2.490(13)			
•				-				
(Mo ¹ –O) _{cneuu}	1.767(4)	$(Mo^3-O)_{cneur}$	1.768(4)	(Mo ¹ –O) _{cneuu}	1.751(13)	$(Mo^3-O)_{cneur}$	1.768(13)	
(Mo ² -O) _{средн}	1.762(4)	(Mo ⁴ O) _{средн}	1.764(4)	(Mo ² -O) _{средн}	1.772(12)	(Mo ⁴ -O) _{срелн}	1.757(14)	
Угол	ω, град	Угол	ω, град	Угол	ω, град	Угол	ω, град	
O ¹ Np ¹ O ²	178.81(16)	O ²¹ Np ¹ O ^{32b}	69.69(12)	O ¹ Np ¹ O ²	178.9(6)	O ²¹ Np ¹ O ³¹	71.9(4)	
$O^{11}Np^1O^{24a}$	70.05(12)	$O^{24a}Np^1O^{31}$	72.44(13)	O ¹¹ Np ¹ O ³¹	71.6(4)	$O^{21}Np^1O^{43}$	74.2(4)	
$O^{11}Np^1O^{21}$	72.63(12)	$O^{31}Np^1O^{32b}$	76.63(12)	$O^{11}Np^1O^{44a}$	72.0(5)	$O^{44a}Np^1O^{43}$	71.2(5)	
-		-		-				
$O^3Np^2O^4$	179.11(16)	$O^{13c}Np^2O^{41}$	69.77(12)	$O^3Np^2O^4$	178.8(6)	O ^{32c} Np ² O ^{24c}	71.1(4)	
$O^{12}Np^2O^{22}$	72.38(12)	$O^{44d}Np^2O^{12}$	75.33(13)	$O^{12b}Np^2O^{13a}$	73.5(4)	$O^{41}Np^2O^{32c}$	73.1(5)	
$O^{13c}Np^2O^{22}$	69.03(12)	$O^{44d}Np^2O^{41}$	73.81(13)	$O^{12b}Np^2O^{24c}$	71.7(4)	$O^{41}Np^2O^{13a}$	70.8(5)	
1	~ /	1		1				
[OMo ¹ O] _{cpell}	109.44(19)	[OMo ³ O] _{cpeut}	109.44(18)	[OMo ¹ O] _{cpeut}	109.5(7)	[OMo ³ O] _{cpeut}	109.4(6)	
[OMo ² O] _{срелн}	109.46(18)	[OMo ⁴ O] _{cpeдH}	109.46(18)	[OMo ² O] _{средн}	109.4(6)	[OMo ⁴ O] _{cpent}	109.4(8)	
^a Операции симметрии: I: $a - (x, y - 1, z); b - (1 - x, 1 - y, 1 - z); c - (x, y + 1, z); d - (1 - x, 2 - y, -z); II: a - (1 - x, 1 - y, 1 - z); b - (1 - x, 1 - y, 1 - z); b - (1 - x, 2 - y, -z); II: a - (1 - x, 1 - y, 1 - z); b - (1 - x, 2 - y, -z); II: a - (1 - x, 1 - y, 1 - z); b - (1 - x, 2 - y, -z); II: a - (1 - x, 1 - y, 1 - z); b - (1 - x, 2 - y, -z); II: a - (1 - x, 1 - y, 1 - z); b - (1 - x, 2 - y, -z); II: a - (1 - x, 2 - y, -z); II: a - (1 - x, 2 - y, -z); b - (1 - x$								

Таблица 2. Некоторые длины связей (d) и валентные углы (ω) в структурах Na₆[(NpO₂)₂(MoO₄)₄]·2H₂O (I) и Na₆[(NpO₂)₂(MoO₄)₄]·5H₂O (II)^a

(1 + x, y, 1 + z); c - (x, 1/2 - y, 1/2 + z).

(атомы Mo¹ и Mo² в I, Mo¹ и Mo⁴ в II) являются тридентатно-мостиковыми лигандами, два других – бидентатно-мостиковыми. В структуре I анионы MoO_4^{2-} связывают диоксокатионы NpO₂⁺ в анионные слои, параллельные плоскости (011), в структуре II образуется анионный каркас.

В структуре I локализовано шесть кристаллографически независимых катионов Na⁺. Кислородное окружение атомов Na формируется в виде нерегулярных 5- и 6-вершинников (табл. 3). Однако, сравнительный анализ кислородного окружения внешнесферных катионов с использованием программы Topos Pro [6] показал, что в окружении атома Na¹ есть два контакта с атомами кислорода O^{31} и O^{32} , отвечающих слабому невалентному взаимодействию. Вклад такого взаимодействия составляет ~17% а контакты Na…O менее 3 Å, это позволяет описать КП атома Na¹ как 7-вершинник. Катионы Na⁺ образуют прослойки между анионными слоями.

В структуре II найдено семь независимых катионов Na⁺, пять из которых находятся в общем поло-

РАДИОХИМИЯ том 62 № 5 2020

жении. Катион с атомом Na³ локализуется в центре инверсии, катион с атомом Na⁷ находится в общем положении, но уточнялся с кратностью 0.5, следовательно, на одну формульную единицу приходится шесть катионов Na⁺. Кислородное окружение атома Na⁷ – сильно искаженный тетраэдр (табл. 3), остальные контакты превышают 3.2 Å. Анализ, проведенный с помощью программы Topos Pro, показал, что взаимодействие с атомами кислорода тетраэдра составляет только ~72%. С учетом слабого взаимодействия (контакт 3.272 Å) вклад увеличивается до ~78%, однако остальные контакты превышают 3.8 Å. Вероятно, несоответствие размеров свободного пространства и самого катиона Na⁺ является причиной статистической разупорядоченности атома Na⁷ в результате его смещения в слишком большой полости. Шелочные катионы в структуре II локализуются в полостях анионного каркаса, полиэдры Na связываются в трехмерный катионный каркас.

В структуре I присутствуют две молекулы воды, в структуре II – пять. Молекулы воды в структуре

ГРИГОРЬЕВ и др.

]	[II				
Связь	<i>d</i> , Å							
Na ¹ –O ²	2.301(4)	Na ¹ –O ¹	2.585(4)	Na ¹ –O ³⁴	2.358(15)	Na ¹ –O ³³	2.557(16)	
Na ¹ –O ³³	2.333(4)	Na ¹ -O ³¹	2.957(4)	Na ¹ –O ¹	2.382(14)	Na ¹ –O ²³	2.589(15)	
Na^1-O^{34}	2.378(4)	Na ¹ -O ³²	2.966(4)	Na ¹ –O ^{3w}	2.407(18)	Na ¹ –O ²¹	2.592(16)	
Na^1-O^{34}	2.577(4)							
				$Na^{2}-O^{22}$	2.360(15)	Na ² –O ^{1w}	2.45(2)	
Na ² –O ^{2w}	2.340(5)	Na ² -O ¹²	2.410(4)	Na ² –O ³	2.406(15)	Na ² –O ³³	2.522(15)	
Na^2-O^{41}	2.361(5)	$Na^2 - O^{42}$	2.480(4)	$Na^{2}-O^{23}$	2.432(15)	$Na^2 - O^{32}$	2.685(16)	
Na^2-O^{43}	2.426(4)							
Na^3-O^4	2.314(4)	Na ³ -O ⁴⁴	2.417(5)	Na^3-O^{14}	2.316(14).2	Na ³ –O ⁴	2.484(13)·2	
$Na^3 - O^{43}$	2.392(4)	Na^3-O^{43}	2.660(4)	Na ³ –O ^{2w}	2.426(16) 2			
$Na^{3}-O^{42}$	2.404(4)	Na ³ –O ³	2.677(5)					
Na ⁴ –O ^{1w}	2.361(5)	$Na^{4}-O^{31}$	2.519(4)	Na ⁴ –O ^{1w}	2.352(18)	Na^4-O^{23}	2.443(15)	
$Na^{4}-O^{21}$	2.438(5)	Na^4-O^{32}	2.590(5)	Na ⁴ –O ¹	2.348(13)	Na ⁴ –O ^{4w}	2.50(2)	
$Na^4 - O^{34}$	2.445(4)			Na ⁴ –O ²	2.369(15)			
		1.5 01		27.5 014		27.5 02	• • • • • •	
$Na^{3}-O^{2}$	2.383(4)	$Na^{3}-O^{1}$	2.424(4)	$Na^{3}-O^{14}$	2.324(16)	Na ³ -O ³	2.404(14)	
$Na^{3}-O^{23}$	2.401(4)	Na ⁵ –O ¹⁴	2.441(5)	$Na^{3}-O^{3W}$	2.375(16)	Na ⁵ –O ⁴	2.407(14)	
Na ³ –O ¹¹	2.418(4)			Na ³ –O ³³	2.382(15)	Na ³ –O ^{3w}	2.47(2)	
N 6 014	0.070(4)	NT 6 022	0.500(1)	N. 6 Olw		at 6 ofw		
$Na^{0}-O^{14}$	2.372(4)	$Na^{0}-O^{22}$	2.523(4)	$Na^{6}-O^{4w}$	2.38(2)	$Na^{\circ}-O^{+w}$	2.63(3)	
$Na^{6}-O^{3}$	2.393(4)	Na ⁶ -O ²³	2.554(5)	$Na^{6}-O^{42}$	2.37(3)	Na ⁰ –O ²	2.63(2)	
Naº–O4	2.497(4)			Na ^o –O ⁴³	2.52(2)			
				NT 7 05W	2 27(2)	NI 7 042	2.4((2))	
				$Na' - O^{3w}$	2.37(3)	$Na' - O^{+2}$	2.46(3)	
				Na'-O ³⁴	2.36(2)	Na'-O ²²	2.64(2)	

Таблица 3. Длины связей в кислородном окружении катионов Na⁺

Таблица 4. Водородные связи в структуре I

D –H \cdots A	<i>D</i> –Н, Å	H…A, Å	$D \cdots A$, Å	D – \mathbf{H} ··· A , град	Операция симметрии для А
		Na ₆ [(Np	$O_2)_2(MoO_4)$	$_{4})_{4}]^{-2}H_{2}O(I)$	
O^{1w} – H^1 ··· O^1	0.837(19)	1.97(2)	2.790(5)	165(6)	
O^{1w} – H^2 ··· O^{23}	0.837(19)	2.16(4)	2.933(6)	154(7)	
O^{2w} – H^3 ···O ³	0.844(19)	1.93(2)	2.737(5)	161(6)	
O^{2w} – H^4 ···· O^{14}	0.853(19)	2.13(3)	2.964(6)	165(6)	x, y + 1, z

I образуют водородные связи с атомами кислорода диоксокатионов NpO_2^+ и анионов MoO_4^{2-} одного слоя (табл. 4).

В обеих структурах I и II на два кристаллографически независимых диоксокатиона приходится четыре независимых аниона. В обоих соединениях два молибдат-иона являются тридентатно-мостиковыми лигандами и два – бидентатно-мостиковыми, но структура I слоистая, структура II – каркасная. Сравним строение анионного слоя I (рис. 3, а) и анионного каркаса II (рис. 3, б). В слое каждый атом Np связывается с пятью атомами Mo, а атомы Mo связываются с двумя или с тремя атомами Np. В слое можно выделить металлоциклы на основе тридентатных молибдат-ионов (атомы Np¹, Mo¹, Np², Mo²), которые объединяются в цепочки вдоль направления [010] в кристалле. Металлоциклы с бидентатными молибдат-ионами (атомы Np¹, Mo³, Np¹, Mo³ или атомы Np², Mo⁴) объединяют металлоциклы с тридентатными колибдат-ионами (атомы Np¹, Mo³, Np¹, Mo³ или атомы Np², Mo⁴, Np², Mo⁴) объединяют металлоциклы с тридентатными анионами

Рис. 3. Проекция в направлении [100]: (а) анионного слоя в структуре I, (б) анионного каркаса в структуре II.

вдоль направления [001]. В слоях также присутствуют циклы с восемью атомами металла, включающие четыре атома Np и четыре атома Mo.

Точно такое же число связей между атомами Np и Mo образуется в анионном каркасе II (рис. 3, б). В кристалле сохраняются цепочки из металлоциклов на основе тридентатных молибдат-ионов [атомы Np¹, Mo⁴, Np², Mo¹; атомы Np¹, Mo⁴, Np¹, Mo⁴; атомы Np², Mo¹, Np², Mo¹), на рисунке они вытянуты вдоль направления [001]. Циклы на основе восьми атомов металла размыкаются, а металлоциклы на основе бидентатных молибдат-ионов (атомы Np¹, Mo², Np², Mo³) соединяют цепочки в каркас.

Для удобства сравнения нагляднее структуры I и II представить в виде сетки на основе только атомов Np (рис. 4). В кристалле I полуправильная [7] 5-связанная сетка (3³4²) состоит из 3- и 4-угольников, расположенных рядами вдоль направления [010] (рис. 4, а). Атомы Np¹ и Np² являются узлами 3-угольников, 4-угольники образованы только атомами атомы Np¹ или только атомами Np².

Трехмерная сетка из атомов Np в кристалле II также является 5-связанной и состоит из 3- и 6-угольников. Ряды из 3-угольников сохраняются, они лежат в диагональной плоскости (101), в рядах из 4-угольников половина связей Np¹…Np² размыкается с образованием 6-угольников в этой же плоскости. Сетка, лежащая в плоскости (101) изображена пунктирными линиями на рис. 4, б, сплошными линиями изображен фрагмент со-

РАДИОХИМИЯ том 62 № 5 2020

седней параллельной сетки. Связи Np¹…Np², образованные вдоль направления [010], «сшивают» цепочки 3-угольников из соседних слоев, также с образованием 6-угольников (изображены жирными пунктирными линиями). В результате формируется трехмерная сетка (3³6²).

Различие в строении соединений с соотношением 1 : 2 обусловлено присутствием в структуре II в циклах с участием бидентатно-мостиковых молибдат-ионов кристаллографически неэквивалентных атомов нептуния. В кристалле I бидентатно-мостиковые молиблат-ионы объединяют кристаллографически эквивалентные атомы нептуния: атом Mo^3 связан с двумя атомами Np^1 , а атом $Mo^4 - c$ двумя атомами Np^2 (рис. 3, а). В кристалле II оба бидентатных молибдат-иона объединяют разные атомы – Np^1 и Np^2 (рис. 3, б), что позволяет разомкнуть восьмичленный цикл. Кроме того, возможной причиной различия в строении комплексов может быть увеличение числа молекул воды в структуре II. Все молекулы воды включены в гидратные оболочки катионов Na⁺, создавая конкуренцию атомам кислорода молибдат-ионов.

Из ранее изученных молибдатов с соотношением 1 : 2 известно соединение $K_3NpO_2(MoO_4)_2$ [8]. Структура слоистая, два независимых молибдатиона, би- и тридентатно-мостиковый, связываются с катионами NpO_2^+ в анионные слои, такие же, как в структуре I. Катионы K^+ располагаются в межслоевом пространстве.

Рис. 4. Сетки на основе атомов Np: (a) двумерная сетка $3^{3}4^{2}$ в структуре I, проекция в направлении [100]; б – трехмерная сетка $3^{3}6^{2}$ в структуре II.

В следующем соединении – $K_4(H_5O_2)[(NpO_2)_3(MoO_4)_4] \cdot 4H_2O$ [9] – основу структуры составляют анионные слои, подобные найденным в I, т. е. в слоях сотношение NpO_2^+ : $MoO_4^{2-} = 1$: 2. В межслоевом пространстве локализуются однозарядные катионы NpO_2^+ , K^+ и гидроксония $H_5O_2^+$. КК взаимодействие между нептуноильными группировками в межслоевом пространстве и в слое стягивает слои в структуру, расстояние $Np\cdots Np$ равно 4.130 Å. КП атома Np^1 в межслоевом пространстве – тетрагональная бипирамида. Два независимых аниона MoO_4^{2-} являются тридентатно-мостиковыми лигандами.

Таким образом, исследовано строение двух молибдатов Np(V) с катионами Na⁺ во внешней сфере с соотношением NpO₂⁺: MoO₄²⁻ = 1 : 2. В обоих соединениях КП атомов нептуния – пентагональные бипирамиды, в которых экваториальную плоскость формируют атомы кислорода молибдатионов. Структура I имеет слоистое строение, в структуре II основной мотив строения – анионный каркас. Образование каркасной структуры в комплексе II является, по-видимому, необычным фактом, обусловленным различием в I и II состава металлоциклов, построенных на основе бидентатно-мостиковых молибдат-ионов, и включением в состав соединения II бо́льшего числа молекул воды.

ФОНДОВАЯ ПОДДЕРЖКА

Работа выполнена при частичном финансировании Министерством науки и высшего об-

разования Российской Федерации (тема № АА-АА-А18-118040590105-4) и Программой 35 Президиума РАН «Научные основы создания новых функциональных материалов».

Рентгенодифракционные эксперименты выполнены в ЦКП ФМИ ИФХЭ РАН.

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют об отсутствии конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- 1. Григорьев М.С., Чарушникова И.А., Федосеев А.М. // Радиохимия. 2020. Т. 62, № 4. С. 304.
- Григорьев М.С., Батурин Н.А., Федосеев А.М., Буданцева Н.А. // Коорд. хим. 1994. Т. 20, № 7. С. 552.
- 3. *Sheldrick G.M.* SADABS. Madison, Wisconsin (USA): Bruker AXS, 2008.
- 4. *Sheldrick G.M.* // Acta Crystallogr. Sect. A. 2008. Vol. 64, N 1. P. 112.
- Sheldrick G.M. // Acta Crystallogr. Sect. C. 2015. Vol. 71, N 1. P. 3.
- 6. Blatov V.A., Shevchenko A.P., Proserpio D.M. // Cryst. Growth Des. 2014. Vol. 14, N 7. P. 3576.
- 7. *Уэллс А*. Структурная неорганическая химия. М.: Мир. 1987. Т. 1. 408 с.
- Григорьев М.С., Чарушникова И.А., Федосеев А.М., Буданцева Н.А., Яновский А.И., Стручков Ю.Т. // Радиохимия. 1992. Т. 34, № 5. С. 7.
- Григорьев М.С., Чарушникова И.А., Федосеев А.М., Буданцева Н.А., Батурин Н.А., Регель Л.Л. // Радиохимия. 1991. Т. 33, № 4. С. 19.

