УДК 548.3

КООРДИНАЦИОННЫЕ ПОЛИЭДРЫ AnS_n (An = Th, U, Np, Pu, Am, Cm ИЛИ Cf) В СТРУКТУРАХ КРИСТАЛЛОВ

© 2020 г. В. Н. Сережкин*, М. Албакаджажи, Л. Б. Сережкина

Самарский национальный исследовательский университет им. акад. С.П. Королева, 443011, Самара, ул. Акад. Павлова, д. 1 *e-mail: serezhkin@samsu.ru

Получена 28.11.2019, после доработки 28.11.2019, принята к публикации 24.12.2019

С помощью полиэдров Вороного–Дирихле (ВД) проведен кристаллохимический анализ 216 сульфидов, содержащих в структурах кристаллов 296 координационных полиэдров AnS_n (An = Th, U, Np, Pu, Am, Cm или Cf). Выяснено, что в сульфидах встречаются атомы An(II), An(III), An(IV), U(V) и U(VI), связывающие от 6 до 10 атомов серы, которые существуют в виде ионов S^{2–} или S[–]. Охарактеризованы важнейшие параметры полиэдров ВД атомов An и S, установлена зависимость кратности связи S[–]–S[–] от ее длины. Показано, что в отличие от методики, опирающейся на анализ длин связей An–S, использование параметров полиэдров ВД позволяет уверенно определять валентное состояние атомов An в структурах сульфидов.

Ключевые слова: сульфиды, актиниды, степень окисления, полиэдры Вороного–Дирихле, стереохимия, кратность связей S–S

DOI: 10.31857/S0033831120060015

ВВЕДЕНИЕ

В последние годы было обнаружено, что экстрагенты, содержащие мягкие донорные атомы X (X = S, Se или Te), обладают повышенной селективностью к актинидам (An) по сравнению с лантанидами (Ln) [1-3]. Этот факт имеет важное значение как для теоретической координационной химии f-элементов, так и для совершенствования промышленных методов разделения Ln(III) и минорных An(III) в высокоактивных отходах, образующихся при переработке отработанного ядерного топлива. Предполагается, что разная селективность вызвана более высокой ковалентностью связей An-X по сравнению со связями Ln-X. Для количественной оценки различия ковалентности связей в работе [1] предложено использовать разность длин связей An-X (d_{AnX}) и Ln-X (d_{LnX}) в изоструктурных соединениях *f*-металлов с почти идентичными ионными радиусами атомов An(III) и Ln(III). На примере двух пар таких атомов (U/La и Pu/Ce) авторы работы [1] охарактеризовали влияние природы халькогена X (S, Se или Te) на d_{AnX} и *d*_{LnX} в изоструктурных комплексах и выявили две важные тенденции: при фиксированной природе Х во всех случаях $d_{AnX} < d_{LnX}$ и разность ($d_{LnX} - d_{AnX}$)

иАПІ

закономерно растет по мере увеличения «мягкости» атома халькогена X в ряду $S \rightarrow Se \rightarrow Te$.

На наш взгляд, для оценки различия ковалентности связей An–X и Ln–X удобнее использовать радиусы сферических доменов (R_{sd}), объем которых совпадает с объемом полиэдров Вороного–Дирихле (BД) атомов An(III) или Ln(III), окруженных в структурах кристаллов атомами X. Важно, что в отличие от ионных радиусов R_{sd} практически не зависит от координационного числа (KЧ) атомов An(III) или Ln(III). Поэтому исчезает необходимость наличия изоструктурных соединений, поскольку достаточно знать только средние значения R_{sd} атомов *f*-металла в комплексах AX_n [A = An(III) или Ln(III)] в структурах кристаллов при фиксированной природе неметалла X.

К сожалению, в настоящее время известны значения R_{sd} для атомов Ап только в комплексах AnO_n (An = Th [4], U [5], Np [6], Pu [7], Am и Cm [8], Bk, Cf и Es [9]) и AnSe_n [10], а для атомов Ln – в комплексах LnO_n [11], LnSe_n [12] и LnTe_n [13]. Основная цель данной работы заключается в определении R_{sd} атомов An в кристаллах, содержащих комплексы AnS_n. Остальные данные (R_{sd} для LnS_n и AnTe_n), необходимые для оценки ковалентности

	1 1 1			И	
КЧ An	Форма КП	Число	KTT	TTB	Пример
	Форма КП	атомов	полиэдра ВД	полиэдра ВД	соединения
6	Октаэдр	70	46	{3/8}	K ₃ Cu ₃ Th ₂ S ₇ {170866}
	Тригональная призма	6	36	{3/2 4/3}	U1 в U ₃ S ₅ {651313}
7	Одношапочная тригональная	28	314353	{3/10}	Np2 в Np ₃ S ₅ {261300}
	призма				
	Пентагональная бипирамида	3	4 ⁵ 5 ²	{3/10}	U1 в NiU ₈ S ₁₇ {646402}
8	Тригональный додекаэдр	138	4454	{3/12}	$CsPu(P_2S_7)$ { 94910}
	Двухшапочная тригональная	22	4 ⁶ 5 ²	{3/10 4/1}	FeUS ₃ {98}
	призма				
	Гексагональная бипирамида	1	4 ⁶ 6 ²	{3/12}	UMo ₆ S ₈ {81514}
9	Квадратная антипризма	1	48	{3/8 4/2 }	U2 в U ₃ S ₅ {651313}
	Трехшапочная тригональная	16	4 ³ 5 ⁶	{3/14}	US ₂ {87353}
	призма				
	Одношапочная квадратная	6	4 ⁵ 5 ⁴	{3/12 4/1}	AmS ₂ {609807}
	антипризма				
10	Двухшапочная квадратная	1	4 ² 5 ⁸	{3/16}	Th1 в Cs ₄ Th ₂ (P ₂ S ₆) ₃ {152375}
	антипризма				
	Сфенокорона	4	4 ⁶ 5 ⁴	{3/12 4/2}	$Th_2S_5 \{651159\}$

Таблица 1. Некоторые характеристики КП атомов An в комплексах AnS_n

связей An–X и Ln–X с помощью полиэдров ВД, планируется установить в ближайшее время.

При кристаллохимическом анализе соединений с комплексами AnS_n планировалось также использовать полиэдры ВД для решения дискуссионных вопросов о валентном состоянии атомов U в структурах некоторых сульфидов, в частности, в изоструктурных $R_6Cu_{12}U_2S_{15}$, где R = K, Rb, Cs. Так, по данным одних авторов [14, 15], изучивших кристаллы только при R = K, этому сульфиду отвечает формула $(K^+)_6(Cu^+)_{12}(U^{5+})_2(S^{2-})_{13}(S^-)_2$. В то же время, согласно работе [16], семейство $R_6Cu_{12}U_2S_{15}$ (R = K, Rb, Cs) является промежуточной сульфидной системой из (R⁺)₆(Cu⁺)₁₂(U⁵⁺)₂(S²⁻)₁₃(S⁻)₂ и $(R^+)_6(Cu^+)_{12}(U^{6+})_2(S^{2-})_{15}$. Результаты, полученные при кристаллохимическом анализе соединений, содержащих более 9000 кристаллографически неэквивалентных координационных полиэдров (КП) LnX_n (X = O [11], Se[12] или Te[13]) и AnO_n [5–9], позволяют предположить, что параметры полиэдров Вороного–Дирихле (ВД) могут быть использованы для оценки валентного состояния атомов An и в сульфидах. Экспериментальная проверка указанного предположения являлась одной из целей данной работы.

Объекты исследования и методы анализа. Объектами анализа явились все соединения An, сведения о которых содержатся в базах данных [17, 18]. К соединениям предъявляли следующие требования: в структурах кристаллов, сведения о которых опубликованы не ранее 1960 года, содержатся КП AnS_n, при этом отсутствует какое-либо разупорядочение в размещении атомов An или S, имеющих целочисленную степень окисления. Указанным условиям соответствовали данные для 216 соединений, в структурах которых содержалось 298 кристаллографически разных атомов An и 933 атома S. В двух соединениях (Cm₁₀OS₁₄ {62240} [19] и C₂₈₈H₃₀₀B₆O₉P₁₈S₂₀U₇ {PUDCEX} [20]) кроме КП AnS_n присутствовало по одному КП AnYS_n (Y = O или B), сведения для которых не принимали во внимание. Здесь и далее в фигурных скобках указан цифровой или буквенный код, которым соединение идентифицируется соответственно в базах данных [17, 18].

Как и ранее [4–13], кристаллохимический анализ проводили с позиций стереоатомной модели структуры кристаллов (СМСК), в рамках которой геометрическим образом любого атома является соответствующий ему полиэдр Вороного–Дирихле (ВД) [21, 22]. На основании данных о симметрии кристаллов, параметрах их элементарных ячеек и координатах базисных атомов были рассчитаны характеристики полиэдров ВД всех атомов, а по методу пересекающихся сфер [22] – их координационные числа (КЧ). Все расчеты проводили с помощью комплекса программ TOPOS–InterMol [21].

В общем случае полиэдр ВД атома An в сульфидах имеет состав AnS_nZ_p , где $n - K\Psi$ атома An, Z – атомы второй координационной сферы, а сумма n + p равна общему числу граней полиэдра ВД. В соответствии с критериями [22], контакты An/Z

КООРДИНАЦИОННЫЕ ПОЛИЭДРЫ AnS_n

An	кч	Число	Ne	R,Å	D. Å	Go	<i>d</i> (AnS), Å		
7 111	IX I	атомов	1,1	rt _{sd} , rt	$D_{\rm A}, \Pi$	03	диапазон	среднее	μ
Th(II)	6	4	6(0)	1.761(2)	0	0.08333(3)	2.836-2.843	2.840(3)	24
Th(IV)	6	4	13(1)	1.705(4)	0.010(20)	0.08250(42)	2.74-2.82	2.79(2)	24
	7	6	10(0)	1.688(15)	0.045(2)	0.08220(7)	2.69-2.94	2.81(7)	42
	8	17	12(2)	1.695(12)	0.020(26)	0.08085(24)	2.75-3.11	2.90(6)	136
	9	7	12(1)	1.707(15)	0.036(8)	0.08049(10)	2.79-3.43	2.98(15)	63
	10	4	11(2)	1.682(22)	0.048(15)	0.07949(2)	2.86-3.16	2.98(10)	40
	Bce	38	12(1)	1.696(15)	0.029(23)	0.08103(91)	2.69-3.43	2.91(11)	305
U(II)	6	21	6(0)	1.702(2)	0	0.08333(3)	2.74-2.75	2.744(3)	126
U(III)	6	4	14(1)	1.727(16)	0.021(37)	0.0852(41)	2.71-2.88	2.77(6)	24
	7	5	12(2)	1.679(24)	0.131(84)	0.0844 (10)	2.24-3.23	2.78(18)	35
	8	20	14(1)	1.697(20)	0.076(24)	0.0810(5)	2.63-3.17	2.90(9)	160
	Bce	29	14(1)	1.698(24)	0.078(50)	0.0822(23)	2.24-3.23	2.87(12)	219
U(IV)	6	18	12(1)	1.673(23)	0.008(11)	0.08288(84)	2.60-2.77	2.72(4)	108
	7	18	11(1)	1.655(10)	0.042(8)	0.08214(11)	2.64-2.91	2.76(7)	126
	8	103	10(2)	1.656(18)	0.051(26)	0.08149(65)	2.53-3.26	2.83(9)	824
	9	8	11(1)	1.645(29)	0.020(22)	0.08019(13)	2.71-3.14	2.88(12)	72
	10	1	10	1.636	0.041	0.07948	2.80-3.09	2.90(10)	10
	Bce	148	11(2)	1.657(19)	0.043(27)	0.08166(87)	2.53-3.26	2.81(10)	1140
U(V)	6	5	12(2)	1.618(12)	0.013(18)	0.08286(30)	2.54-2.75	2.62(5)	30
U(VI)	6	7	12(0)	1.562(5)	0.0002(6)	0.08080(26)	2.60-2.62	2.611(6)	42
Np(II)	6	1	6	1.714	0	0.08333	2.76	2.76	6
Np(III)	8	4	12(1)	1.718(23)	0.038(44)	0.08137(44)	2.81-3.04	2.93(6)	32
Np(IV)	6	5	11(1)	1.664(12)	0	0.08258(6)	2.68-2.75	2.71(2)	30
	7	1	10	1.642	0.045	0.08225	2.65-2.85	2.73(7)	7
	8	11	13(2)	1.649(7)	0.036(27)	0.08131(46)	2.71-2.92	2.81(5)	88
	9	2	12(1)	1.651(4)	0.043(3)	0.08005(5)	2.80-3.11	2.89(10)	18
	Bce	19	12(2)	1.653(11)	0.028(26)	0.08156(85)	2.65-3.11	2.80(8)	143
Pu(II)	6	3	6(0)	1.717(2)	0	0.08333(3)	2.765-2.771	2.768(2)	18
Pu(III)	6	1	14	1.719	0.004	0.08159	2.79–2.84	2.82(2)	6
	8	4	12(2)	1.722(15)	0.048(32)	0.08153(27)	2.82-3.06	2.93(7)	32
	9	3	13(0)	1.687(37)	0.050(10)	0.08013(39)	2.85-3.52	2.95(14)	27
	Bce	8	13(1)	1.708(28)	0.043(27)	0.08101(78)	2.79-3.52	2.93(10)	65
Am(II)	6	1	6	1.735	0	0.08333	2.80	2.80	6
Am(III)	9	1	13	1.670	0.027	0.07993	2.85-3.00	2.92(8)	9
Cm(II)	6	1	6	1.729	0	0.08333	2.79	2.79	6
Cm(III)	7	1	13	1.719	0.044	0.08340	2.78-2.97	2.85(8)	7
	8	3	15(2)	1.703(8)	0.082(37)	0.08213(99)	2.76-3.37	2.91(13)	24
	9	1	13	1.666	0.039	0.07984	2.88-2.92	2.90(2)	9
	Bce	5	14(1)	1.699(21)	0.066(35)	0.0819(15)	2.76-3.37	2.90(11)	40
Cf(II)	6	1	6	1.781	0	0.08333	2.87	2.87	6

Таблица 2. Важнейшие характеристики полиэдров ВД атомов An в сульфидах^а

^а Для всех атомов An указаны: КЧ – координационное число по отношению к атомам S; *N*_f – среднее число граней полиэдра ВД; *D*_A – смещение ядра атома An из геометрического центра тяжести его полиэдра ВД; *G*₃ – безразмерный второй момент инерции полиэдра ВД; *d*(An–S) – длина связей в координационных полиэдрах AnS_n; µ – общее число связей An–S. В скобках даны стандартные отклонения.

Рис. 1. Зависимость среднего значения R_{sd} атомов An [(1) An(II), (2) An(III), (3) An(IV)] от их формальной степени окисления в кристаллах, содержащих комплексы AnS_n. Для упрощения рисунка две независимые точки [для U(V) с $R_{sd} = 1.618$ Å и для U(VI) с $R_{sd} = 1.562$ Å] не показаны.

не учитываются при определении КЧ атомов. Каждому геометрическому сорту комплексов AnS_n отвечает полиэдр ВД с определенным комбинаторно-топологическим типом (КТТ). Строчные числа в символе КТТ указывают число вершин у грани, а надстрочные – общее число таких граней. Для выявленных типов КП AnS_n (табл. 1) в фигурных скобках указан также топологический тип вершин (ТТВ) соответствующих полиэдров ВД. В обозначениях ТТВ первое число указывает ранг вершины v (число ребер полиэдра ВД, пересекающихся в вершине), а второе (после косой черты) – общее количество таких вершин. Поскольку «упрощенные» полиэдры ВД дуальны КП (число вершин одного полиэдра равно числу граней другого и наоборот), то ТТВ одновременно характеризует тип и число граней КП.

Полиэдры ВД атомов актинидов. В структурах обсуждаемых сульфидов атомы An (An = Th, U, Np, Pu, Am, Cm или Cf) образуют от 6 до 10 связей An–S (табл. 1, 2), длина которых лежит в области от 2.24 (U₂S₃ {651316} [[23]) до 3.37 Å (Cm₁₀OS₁₄ {622406} [19]). Как и ранее [4–13], форму КП AnS_n определяли с помощью «упрощенных» полиэдров ВД, при построении которых не учитываются грани An/Z. В сульфидах атомы An реализуют десять разных типов КП, из которых наиболее часто встречаются тригональные додекаэдры AnS₈ (табл. 1). Степень окисления An лежит в диапазоне от 2 до 6, при этом двухвалентное состояние An(II) проявляют все семь актинидов. Состояние An(III) встречается в соединениях U, Np, Pu, Am и Cm, An(IV) – в случае Th, U и Np, a An(V) или An(VI) - только для U (табл. 2). Как неоднократно отмечалось (в частности, в работах [5-9]), дескриптором валентного состояния актинида может служить объем полиэдра ВД (V_{vdp}) атома An или его одномерный аналог – радиус сферического домена (R_{sd}), поскольку $V_{vdp} = 4\pi (R_{sd})^3/3$. Как известно, $R_{\rm sd}$ (или $V_{\rm vdp}$) закономерно уменьшается с ростом степени окисления актинида, но при этом практически не зависит от КЧ атома Ап. Имеющиеся данные показывают, что в обсуждаемых сульфидах $R_{\rm sd}$ атомов An действительно можно считать параметром, инвариантным по отношению к КЧ. Например, в обсуждаемой выборке около половины соединений содержат атомы U(IV) с КЧ 6, 7, 8, 9 или 10, в КП которых длина связей U-S лежит в диапазоне 2.53-3.26 Å при среднем расстоянии d(U-S) = 2.81(10) Å. В то же время среднее R_{sd} для тех же атомов U(IV) равно 1.657(19) Å (табл. 2) и $\sigma(R_{sd})$ примерно в 5 раз меньше, чем $\sigma[d(U-S)]$. Поэтому на фоне значительной вариации длины связей U–S (различие достигает 0.73 Å) параметр $R_{\rm sd}$, для которого $\sigma \sim 0.02$ Å, может рассматриваться как величина, не зависящая от КЧ. Другим примером могут служить атомы Th(IV), тоже реализующие все КЧ от 6 до 10 (табл. 2). В этом случае d(Th-S) изменяется на 0.74 Å при среднем значении 2.91(11) Å. В то же время R_{sd} для атомов Th(IV) равно 1.696(15) Å и поэтому $\sigma(R_{sd})$ примерно в 7 раз меньше, чем $\sigma[d(Th-S)]$.

На примере кислородсодержащих соединений Ап было показано [5–9], что рост степени окисления актинидов во всех случаях сопровождается закономерным уменьшением R_{sd} . Например, в оксидах среднее значение R_{sd} атомов в ряду Np(III)–Np(IV)–Np(V)–Np(VI)–Np(VII) равно соответственно 1.439, 1.380, 1.345, 1.297 и 1.262 Å [6]. Однако в сульфидах Ап наблюдаются особенности. Как видно из рис. 1 и табл. 2, среднее R_{sd} атомов Np(II) и Np(III) в сульфидах практически совпадает (соответственно 1.714 и 1.718 Å). Аналогичная ситуация наблюдается и в сульфидах урана и плутония, в которых среднее R_{sd} атомов An(II) и An(III) различается соответственно на 0.004 и 0.009 Å.

Все точки кривой An(II) на рис. 1 соответствуют моносульфидам AnS, которые формально содержат в своем составе атомы An(II). Отметим, что все AnS относятся к структурному типу NaCl. К этому же структурному типу принадлежат и монохалькогениды лантанидов, которые, несмотря на однотипный состав и строение, резко различаются электрофизическими свойствами. С учетом имеющихся данных для LnX (X = S, Se или Te) [12, 13, 24, 25], совпадение средних значений R_{sd} атомов An(II) и An(III) в сульфидах U, Np и Pu дает основание считать, что эти моносульфиды реально представляют собой An^{III}X^{2–}(\bar{e}) и поэтому должны обладать металлической проводимостью. В то же время моносульфиды Am и Cm, для которых R_{sd} (An^{II}) > R_{sd} (An^{III}), вероятнее всего являются полупроводниками An^{III}X^{2–}.

В кислородсодержащих соединениях при фиксированной степени окисления увеличение атомного номера An обычно сопровождается последовательным уменьшением $R_{sd}(An)$ из-за эффекта актинидного сжатия. Отсутствие такой закономерности в случае зависимости $R_{sd}(An) = f(Z)$ для сульфидов An^{II} или An^{III} (рис. 1), на наш взгляд, вызвано несколькими причинами. Важнейшими из них являются, по-видимому, особенности электронной структуры «легких» (от Ра до Ри) актинидов, которые при стандартных условиях наглядно проявляются в металлах и вызывают нелинейность актинидного сжатия [26, 27]. Можно допустить, что эти же особенности играют заметную роль и в случае соединений An(II), которые характерны для сульфидов, хотя в некоторых случаях, как показывает рассмотренный выше пример с US, NpS и PuS, их следует считать соединениями An(III). Одной из причин является также ограниченность кристаллоструктурных данных для трансплутониевых An, опирающихся на единичные кристаллоструктурные определения, которые выполнены еще в семидесятые годы прошлого столетия и вызывают некоторые сомнения. Например, указанные в работе [17] кристаллографические данные для CfS {52920} были реально установлены авторами работы [28], которые описали это вещество как одну из модификаций металлического калифорния. Однако позднее Захариасен [29] дал альтернативную интерпретацию результатов работы [28] и пришел к выводу, что фаза {52920} представляет собой не Cf. a CfS. Однако, как известно (рис. 1 в [26]), при стандартных условиях в ряду металлов Th-Am-Cm-Bk-Cf величина R_{sd}(An) линейно уменьшается с ростом Z. Поэтому, на наш взгляд, в ряду изоструктурных AnS также следует ожидать линейное уменьшение $R_{\rm sd}({\rm An^{II}})$ для тех же Ап. В связи с этим отметим, что через три точки, которые на рис. 1 отвечают атомам Th^{II}, Am^{II} и Cm^{II}, можно провести линию регрессии с достоверностью аппроксимации $R^2 = 0.9996$. Согласно этой зависимости, для Bk^{II} и Cf^{II} в моносульфидах

РАДИОХИМИЯ том 62 № 6 2020

 $R_{\rm sd}$ должно быть равно 1.724 и 1.719 Å, а параметры кубических ячеек для BkS и CfS соответственно 5.557 и 5.540 Å. Поэтому указанный для CfS {52920} параметр a = 5.743 Å [29], на наш взгляд, является существенно завышенным.

Заметим, что в процессе анализа в ряде случаев пришлось исправить численные значения степени окисления атомов An, которые были указаны авторами структурных определений. Одним из примеров является NiU₈S₁₇ {646402} [30], содержащий три кристаллографически разных атома урана (U1, U2 и U3), значения R_{sd} которых равны соответственно 1.717, 1.642 и 1.655 Å. По мнению авторов работы [30], у всех атомов U степень окисления одинакова и равна +4. Однако R_{sd} атома U1 существенно больше, чем у остальных атомов урана, и в пределах $\sigma(R_{sd})$ совпадает со средним для атомов U^{III} [1.698(24) Å, табл. 2]. В то же время R_{sd} атомов U2 и U3 в пределах $\sigma(R_{sd})$ действительно совпадает со средней величиной R_{sd} для атомов U^{IV} [1.656(20) Å, табл. 2]. С учетом сказанного и наличия взаимодействия между атомами S3 и S6, образующими димеры S2⁻, формулу для NiU₈S₁₇ {646402} следует представить в виде $Ni^{2+}(U^{3+})_4(U^{4+})_4(S^{2-})_{13}(S^{2-})_2.$

Другим примером могут служить недавно изученные изоструктурные Ba_3FeUS_6 {238057} [31] (далее **c1**) и Ba_3MnUS_6 {251726} [32] (далее **c2**). Согласно авторам [31, 32], длина связей U–S в структурах **c1** и **c2** (соответственно 2.712(6) и 2.724(6) Å) характерна для соединений, содержащих атомы U^{IV} с КЧ 6. Однако наши данные показывают, что R_{sd} атомов урана в **c1** и **c2** равны соответственно 1.729 и 1.737 Å и в пределах $2\sigma(R_{sd})$ совпадают со средней величиной R_{sd} для атомов U^{III} (1.698(24) Å, табл. 2), а не U^{IV} (1.656(20) Å), как считают авторы работ [31, 32]. Поэтому изоструктурным Ba_3RUS_6 (R = Fe или Mn), по нашим данным, отвечает формула (Ba^{2+})₃(R^{3+})(U^{3+})(S^{2-})₆,

В качестве последнего примера рассмотрим упомянутые выше кубические $R_6Cu_{12}U_2S_{15}$, где R = K, Rb, Cs. Согласно авторам [14, 15], которые первыми получили и изучили $K_6Cu_{12}U_2S_{15}$ {411001}, этот сульфид является соединением U^{5+} и ему соответствует формула $(K^+)_6(Cu^+)_{12}(U^{5+})_2(S^{2-})_{13}(S^-)_2$. В то же время, по данным другой группы исследователей [16], которые охарактеризовали $R_6Cu_{12}U_2S_{15}$ (R = K, Rb, Cs) {262933–262936} при разной температуре, семейство $R_6Cu_{12}U_2S_{15}$ с Z = 8 следует рассматривать как промежуточную сульфидную систему U^{5+}/U^{6+} из $(R^+)_6(Cu^+)_{12}(U^{5+})_2(S^{2-})_{13}(S^-)_2$

Рис. 2. Влияние степени окисления (*z*) атома урана на среднее значение их R_{sd} в октаэдрах UO₆ (*1*) и US₆ (*2*). Для октаэдров UO₆ [5] линии регрессии отвечает уравнение $R_{sd}(U^{z+}) = 1.5783 - 0.0464z$ с достоверностью аппроксимации $R^2 = 0.9919$. Для октаэдров US₆ линии регрессии соответствует уравнение $R_{sd}(U^{z+}) = 1.9053 - 0.0574z$ с достоверностью аппроксимации $R^2 = 0.9993$. Данные для октаэдров US₆ при z=4, 5 и 6 указаны в табл. 2. Для трех октаэдров US³⁺S₆ среднее $R_{sd} = 1.735$ Å, так как четвертый атом U³⁺ с КЧ 6 в сульфидах (табл. 2) имеет тригонально-призматическую координацию (структура U₃S₅ {651313}).

и $(R^+)_6(Cu^+)_{12}(U^{6+})_2(S^{2-})_{15}$. В отношении первой формулы, которая совпадает с указанной выше для $K_6Cu_{12}U_2S_{15}$, отметим, что она противоречит кристаллоструктурным данным. Так, в элементарных ячейках обсуждаемых кристаллов содержится по два кристаллографически неэквивалентных атома серы в соотношении 4 : 1 = 12 : 3, а не 13 : 2, как указывает формула. Более того, во всех этих сульфидах отсутствуют ионы S⁻, так как самое короткое расстояние между атомами серы равно 3.59 Å, что почти совпадает с удвоенным ван-дер-валаальсовым радиусом серы (3.60 Å [33]).

Для семи разных атомов урана в кристаллах $R_6Cu_{12}U_2S_{15}$ (R = K, Rb, Cs) в среднем R_{sd} равно 1.562(5) Å. При этом в трех надежно охарактеризованных сульфидах ($K_2Cu_3US_5$ {249533} [34], Ba_3AgUS_6 {238056} [31] и $Ag_{10}Ba_9U_4S_{24}$ {428190} [35]), содержащих только атомы U(V), среднее R_{sd} равно 1.618(12) Å (табл. 2). В связи с этим отме-

тим, что в соединениях, содержащих комплексы AnO_n (An = U [5], Np [6], Pu [7] или Am [8]), при увеличении степени окисления An на единицу при 14 разных переходах $\operatorname{An}^{z^+} \to \operatorname{An}^{(z+1)^+} (3 \le Z \le 6)$ $R_{\rm sd}$ атома An уменьшается в среднем на 0.051 Å. В кристаллах, содержащих комплексы AnSe_n (An = Th, U или Np [10]), при четырех аналогичных переходах $\operatorname{An}^{z+} \to \operatorname{An}^{(z+1)+} (3 \le Z \le 4) R_{sd}$ атома Ап уменьшается в среднем на 0.059 Å. Поскольку в кристаллах $R_6Cu_{12}U_2S_{15}$ (R = K, Rb, Cs) R_{sd} атомов урана на 0.056 Å меньше, чем $R_{sd}(U^{5+})$. По нашему мнению, этот факт дает основание утверждать, что в кристаллах R₆Cu₁₂U₂S₁₅ присутствуют исключительно атомы U⁶⁺ (табл. 2). Заметим также, что при четырех охарактеризованных переходах $An^{z+} \rightarrow An^{(z+1)+}$ (An = U или Np, $3 \le Z \le 5$, табл. 2) в сульфидах $R_{\rm sd}$ атома An уменьшается в среднем на 0.050 Å. Кроме того, независимым и важным кристаллохимическим аргументом в поддержку мнения о наличии в структурах $R_6Cu_{12}U_2S_{15} =$ (R⁺)₆(Cu⁺)₁₂(U⁶⁺)₂(S²⁻)₁₅ только атомов U(VI) служит однотипный линейный характер уменьшения $R_{\rm sd}$ атомов урана с ростом их степени окисления в ряду U³⁺ \rightarrow U⁴⁺ \rightarrow U⁵⁺ \rightarrow U⁶⁺ в октаэдрах UO₆ и US₆ (рис. 2).

Полиэдры ВД 296 атомов An, образующих комплексы AnS_n, в сумме имеют 3188 граней, 2217 из которых соответствует химическим связям An-S (табл. 2). На зависимости телесных углов (Ω), под которыми грани "видны" из ядра атома An или S, от межатомных расстояний An-S (рис. 3), связям An–S соответствуют грани с Ω в области от 19 до 6% полного телесного угла, равного 4π ср. Грани с Ω < 6% отвечают невалентным взаимодействиям An/Z. В роли атомов Z чаще всего выступают атомы An или S (соответственно 243 и 128 граней), а также некоторые неметаллы (Р, С, Н - соответственно 159, 42 и 36 граней). Остальные 363 грани с $\Omega < 6\%$ отвечают невалентным контактам An/R, где R – внешнесферные катионы, компенсирующие заряд ацидокомплексов [An_nS_a]^{z-}. Смещение ядер атомов An из центра тяжести их полиздров ВД $(D_{\rm A})$ составляет 0.038(34) Å и в пределах 2 σ равно нулю. Безразмерный второй момент инерции (G_3), характеризующий степень сферичности полиэдров ВД, для 296 атомов An в среднем равен 0.0818(12).

Полиэдры ВД атомов серы. В структурах рассмотренных соединений содержится 933 кристаллографически разных атома серы. Большинство из них (914 атомов) можно рассматривать как ионы S^{2–}, а остальные 19–как ионы S[–]. Полиэдры ВД ионов S^{2–} и S[–] в среднем имеют соответственно 16(3)

РАДИОХИМИЯ том 62 № 6 2020

Рис. 3. Зависимость телесных углов Ω (выражены в % от 4 π ср.) 2345 граней полиэдров ВД 296 атомов An от межатомных расстояний d(An–S), соответствующих этим граням.

и 14(2) граней. Радиусы сферических доменов R_{sd} ионов S^{2–} и S[–] равны соответственно 1.81(10) и 1.78(8) Å и совпадают в пределах $\sigma(R_{sd})$. С позиций СМСК примерное постоянство R_{sd} ионов S^{2–} и S[–] объясняется тем, что они образуют однотипную устойчивую 8-электронную валентную оболочку. Принципиальное различие ионов S^{2–} и S[–] заключается в том, что ионы S^{2–} образуют такую оболочку за счет гетероатомных химических связей S–An и/ или S–R. В то же время ионы S[–] кроме связей S– An обязательно образуют от 1 до 4 гомоатомных ковалентных связей S–S. Поэтому более низкое по сравнению с S^{2–} значение R_{sd} ионов S[–] объясняется тем, что связи S–S, как правило, короче, чем S–An или S–R.

В структурах кристаллов КЧ ионов S^{2-} и S^- совпадает и равно 4(1). Одновременно на один ион S^{2-} приходится в среднем 12, а на $S^- - 10$ невалент-

Рис. 4. Схематическое строение группировок, содержащих ионы S⁻, в структурах соединений An. a – димер, δ – квадратная сетка 4⁴ [36]. Короткие (в области 2.0–2.6 Å) контакты S–S указаны сплошной линией, а более длинные (в интервале 2.6–2.8 Å) – пунктиром.

ных взаимодействий S/Z. Степень сферичности полиэдров ВД ионов S^{2–} и S[–] принципиально не различается [$G_3 = 0.0862(44)$ и 0.0849(29) соответственно]. Смещение ядер атомов серы из центра тяжести их полиэдров ВД (D_A) для S^{2–} и S[–] равно соответственно 0.24(16) и 0.21(14) Å. Ионы S[–] присутствуют в структурах 14 соединений, во всех случаях они сосуществуют с ионами S^{2–} (табл. 3). В отличие от ионов S^{2–}, связанных только с атомами An и/или R, ионы S[–] обязательно имеют связи S–S, за счет которых реализуют в сульфидах An двухатомные (0D) или слоистые (2D) группировки, содержащие только атомы серы (рис. 4).

Принципиальное различие кристаллохимической роли S^{2–} и S[–] наглядно проявляется на распределениях (Ω , d) для граней полиэдров ВД, которые соответствуют взаимодействиям между атомами серы (рис. 5). Так, полиэдры ВД ионов S^{2–} в сум-

Puc. 5. Зависимость телесных углов Ω (в % от 4π ср) граней полиэдров ВД атомов S от межатомных расстояний d(S–S), соответствующих этим граням. a – 8280 граней S–S в 882 полиэдрах ВД ионов S^{2–}, 6 – 191 грань S–S в 19 полиэдрах ВД ионов S[–].

РАДИОХИМИЯ том 62 № 6 2020

	· r	/ 1 -	, FJ JF F						
Соединение	An CO/ KY	R _{sd} (An), Å	Атомы, образующие связи S–S	d(S−S), Å	k _{S-S}	Рефкод	Литература		
Димеры (S–S) ^{2–}									
$Th_2S_5 = Th_2(S^{2-})_3(S_2)^{2-}$	4/10	1.671	S2–S2	2.110	0.96	651159	[42]		
$Th_2S_5 = Th_2(S^{2-})_3(S_2)^{2-}$	4/10	1.671	S2–S2	2.116	0.95	35088	[43]		
$Th_2S_5 = Th_2(S^{2-})_3(S_2)^{2-}$	4/10	1.671	S3–S3	2.116	0.95	654032	[43]		
$Ba_2Th(S_2)_2S_2$	4/8	1.669	S1-S1	2.098	0.97	248873	[44]		
$Ba_2U(S_2)_2S_2$	4/8	1.637	S1-S1	2.082	0.99	248874	[44]		
$RbU_2SbS_4(S_2)_2$	4/8	1.654	S3–S4	2.096	0.98	87804	[45]		
$US_3 = US(S_2)$	4/8	1.662	S2–S3	2.070	1.01	651310	[46]		
$US_3 = US(S_2)$	4/8	1.680	S2–S3	2.111	0.96	651344	[47]		
$US_3 = US(S_2)$	4/8	1.644	S2–S3	2.086	0.99	171417	[48]		
$U_2S_5 = U_2(S^{2-})_3(S_2)^{2-}$	4/10	1.636	S2–S2	2.066	1.01	651315	[42]		
$NiU_8S_{17} =$	3/7	1.717	S3–S6	2.554	0.38	646402	[30]		
$Ni^{2+}(U^{3+})_4(U^{4+})_4(S^{2-})_{13}(S_2^{2-})_2$	4/8	1.642							
	4/8	1.655							
Сетки 4 ⁴ из атомов S ⁻									
$PuS_2 = Pu^{III}S^{2-}S^{-}$	3/9	1.666	$\cdot\cdot$ S3 $\cdot\cdot\cdot$ S3 $\cdot\cdot\cdot$ (×4)	2.788	0.306	27094	[49]		
$AmS_2 = Am^{III}S^{2-}S^{-}$	3/9	1.670	\cdots S1 \cdots S1 \cdots (×4)	2.785	0.32 ⁶	609807	[50]		
$CmS_2 = Cm^{III}S^{2-}S^{-}$	3/9	1.666	\cdots S1 \cdots S1 \cdots (×4)	2.776	0.36 ⁶	622417	[51]		

Таблица 3. Некоторые характеристики соединений, в структурах кристаллов которых имеются связи S-S^a

^а СО – степень окисления, КЧ – координационное число. Номера атомов S в четвертой колонке соответствуют указанным в базе данных [17].

⁶ Суммарная кратность четырех идентичных связей S····S, образованных каждым ионом S⁻ в идеальной сетке 4⁴.

ме имеют 8280 граней S/S (рис. 5, а), которые отвечают невалентным взаимодействиям. Для этих граней максимальное $\Omega(S/S) < 16\%$, расстояния d(S-S) лежат в диапазоне 2.80–6.84 Å, а среднее межатомное расстояние 3.8(5) Å превышает удвоенный ван-дер-валаальсов радиус серы (3.6 Å [33]). В рамках СМСК важной характеристикой любого межатомного контакта является ранг грани (РГ), соответствующей такому контакту. В обшем случае целочисленные значения РГ (0, 1, 2, ..., N) указывают минимальное число химических связей, соединяющих в структуре кристалла атомы, полиэдры ВД которых имеют общую грань. Согласно работе [37], все грани с $P\Gamma = 0$ отвечают только межмолекулярным контактам, грани с РГ = 1 соответствуют химическим связям, а любые грани с РГ > 1 являются внутримолекулярными контактами. В структурах обсуждаемых сульфидов 8280 контактам S^{2-}/S^{2-} отвечают грани с РГ = 0, 2 или 4, количество которых равно соответственно 7629, 644 и 7.

У полиэдров ВД 19 анионов S⁻ имеется 191 грань S/S (рис. 5, б), ранг которых изменяется от 0 до 4, а число граней с $P\Gamma = 0, 1, 2, 3$ и 4 равно соответственно 40, 16, 123, 4 и 8. Грани с $P\Gamma = 1$ отвечают химическим связям S–S. Для 16

таких граней максимальное и среднее $\Omega(S/S)$ равно соответственно 23.3 и 21(2)%, а среднее d(S-S) =2.15(16) Å. Для межмолекулярных (грани с РГ = 0) и внутримолекулярных (грани с РГ = 2, 3 и 4) взаимодействий максимальное $\Omega(S/S) < 13$ %, а среднее d(S-S) = 3.7(4) Å, т.е. больше удвоенного ван-дер-ваальсова радиуса S.

Кратность связей S–S в сульфидах An. Отметим, что для 99 граней с $d(S^--S^-) < 3.6$ Å, 16 из которых соответствуют химическим связям S–S, а остальные – специфическим или ван-дер-ваальсовым взаимодействиям [22], с достоверностью аппроксимации $R^2 = 0.894$ выполняется линейная зависимость

$$\Omega(S^{-}-S^{-}) = 45 (1) - 11.4(4)d(S^{-}-S^{-}), \tag{1}$$

где Ω – телесный угол (выражен в % от 4 π ср), под которым общая грань полиэдров ВД двух атомов серы «видна» из ядра любого из них. С позиций СМСК существование зависимости (1) свидетельствует о возможности количественной оценки кратности (k_i) связи S–S на основании данных о межатомном расстоянии между атомами серы.

Как известно, в рамках метода пересекающих сфер [22] для связи S–S максимальная возможная длина равна сумме $r_s(S) + R_{sd}(S)$, где $r_s(S) - слейтеровский радиус атома серы, а <math>R_{sd}(S)$ – радиус сфе-

рического домена атома серы. В качестве $R_{sd}(S)$ примем среднюю величину R_{sd} (1.8 Å) 933 ионов S^{2-} и S⁻ в обсуждаемых сульфидах. Поскольку $r_s(S) = 1$ Å [38], то связи с $k_i = 0$ соответствует d(S-S) = 2.8 Å. В качестве характеристики связи с $k_i = 1$ примем среднее d(S-S) = 2.046(5) Å ~ 2.05 Å для молекул S₈ в пяти разных кристаллах ромбической серы ({200453–200455} [39] и {63082–63083} [40]). Постулируя, что $k_i(S-S)$ линейно уменьшается от 1 до 0 при увеличении $d_i(S-S)$ от 2.05 до 2.80 Å, получим, что в общем случае

$$k_i(S-S) \sim 3.7 - 1.3d_i(S-S).$$
 (2)

Согласно выражению (2), для десяти кристаллографически неэквивалентных гантелеподобных дианионов S_2^{2-} в рассмотренных сульфидах (табл. 3) k(S–S) изменяется от 0.95 до 1.01 и в среднем равно 0.98(2). В структуре NiU₈S₁₇ {646402} для связи S3–S6 с d = 2.554 Å величина k(S–S) равна 0.38.

Квадратные сетки 4⁴ [36] из атомов серы (рис. 4) присутствуют в тетрагональных кристаллах AnS_2 , где An = Pu, Am или Cm, охарактеризованных примерно полвека назад. Как видно из табл. 3, суммарное значение k(S-S) для четырех связей, сходящихся на каждом атоме S⁻ такой сетки, в соответствии с выражением (2) изменяется от 0.30 (PuS₂ {27094}) до 0.36 (CmS₂ {622417}). В связи с этим заметим, что существование идеальных квадратных сеток 4⁴ в дихалькогенидах Ln или An не согласуется как с имеющимися теоретическими результатами [41], так и с экспериментальными данными ряда электроно- и рентгенодифракционных исследований. В частности, на примере полителлуридов и полиселенидов Ln было установлено существование в сетках 4⁴ из атомов Х⁻ модулированных сверхструктур, обусловленных волнами зарядовой плотности [13], или появлением в таких сетках вакансий и анионов Х²⁻ [12], понижающих симметрию кристаллов. Поэтому, по аналогии с дителлуридами Ln [13], дисульфиды An можно, на наш взгляд, упрощенно охарактеризовать едини ниц вотоле, $(An^{III}S)^+(S)^{(1-\Delta)-}(\Delta \bar{e})$, где параметр Δ $(0 \le \Delta \le 1)$ учитывает степень локализации электронной плотности в квазиквадратных сетках из атомов серы. Например, в предельных случаях при $\Delta = 1$ или 0 для AnS₂ получим соответственно $(An^{III}S)^+(S)(\bar{e})$ или $(An^{III}S)^+(S)^-$. Реальное значение Δ , связанное с k(S–S), по-видимому, зависит как от природы актинида, так и от термодинамических условий (Р, Т) образования сульфида.

ФОНДОВАЯ ПОДДЕРЖКА

Исследование выполнено при финансовой поддержке Российского фонда фундаментальных исследований в рамках научного проекта № 19-03-00048 а.

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют об отсутствии конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- Gaunt A.J., Reilly S.D., Enriques A.E., Scott B.L., Ibers J.A., Sekar P., Ingram K.I.M., Kaltsoyannis N., Neu M.P. // Inorg. Chem. 2008. Vol. 47, N 1. P. 29. doi 10.1021/ ic701618a
- Hudson M.J., Harwood L.M., Laventine D.M., Lewis F.W. // Inorg. Chem. 2013. Vol. 52. P. 3414. doi 10.1021/ic3008848
- Behrle A.C., Kerridge A., Walensky J.R. // Inorg. Chem. 2015. Vol. 54, N 24. P. 11625. doi 10.1021/acs. inorgchem.5b01342
- Serezhkina L.B., Savchenkov A.V., Serezhkin V.N. // Russ. J. Inorg. Chem. 2017. Vol. 62, N 5. P. 633. doi 10.1134/S0036023617050217
- Serezhkin V.N., Savchenkov A.V., Pushkin D.V., Serezhkina L.B. // Appl. Solid State Chem. 2018. Vol. 2, N 3. P. 2. doi 10.18572/2619-0141-2018-2-3-2-16
- Serezhkin V.N., Serezhkina L.B. // Radiochemistry. 2018. Vol. 60, N 1. P. 1. doi 10.1134/S1066362218010010
- Serezhkin V.N., Pushkin D.V., Serezhkina L.B. // Radiochemistry. 2018. Vol. 60, N 3. P. 221. doi 10.1134/ S1066362218030013
- Serezhkin V.N., Serezhkina L.B. // Radiochemistry. 2018. Vol. 60, N 4. P. 335. doi 10.1134/S106636221804001X
- Serezhkina L.B., Serezhkin V.N. // Radiochemistry. 2018. Vol. 60, N 5. P. 488. doi 10.1134/S106636221805003X
- Serezhkin V.N., Albakajaji M., Pushkin D.V., Serezhkina L.B. // Radiochemistry. 2020. Vol. 62, № 4. P. 454. doi 10.1134/S1066362220040025
- Vologzhanina A.V., Pushkin D.V., Serezhkin V.N. // Acta Crystallogr. Sect. B. 2006. Vol. 62, N 5. P. 754. doi 10.1107/S0108768106018726
- Serezhkin V.N., Albakajaji M., Serezhkina L.B. // Russ. J. Inorg. Chem. 2019. Vol. 64, N 8. P. 984. doi 10.1134/ S0036023619080126
- Serezhkin V.N., Albakajaji M., Serezhkina L.B. // Russ. J. Phys. Chem. 2019. Vol. 93, N 2. P. 288. doi 10.1134/ S003602441902050
- 14. Sutorik A.C., Patschke R., Schindler J., Kannewurf C.R., Kanatzidis M.G. // Chem.-Eur. J. 2000. Vol. 6, N 9. P. 1601. doi 10.1002/ (SICI)1521-3765(20000502)6:9<1601::AID-CHEM1601>3.0.CO;2-D
- Schilder H., Speldrich M., Lueken H., Sutorik A.C., Kanatzidis M.G. // J. Alloys Compd. 2004. Vol. 374. P. 249. doi 10.1016/j.jallcom.2003.11.113

РАДИОХИМИЯ том 62 № 6 2020

- 16. Malliakas C.D., Yao J., Wells D.M., Jin G.B., Skanthakumar S., Choi E.S., Balasubramanian M., Soderholm L., Ellis D.E., Kanatzidis M.G., Ibers J.A. // Inorg. Chem. 2012. Vol. 51, N 11. P. 6153. doi 10.1021/ ic300172k
- 17. Inorganic Crystal Structure Database. Gmelin-Inst. für Anorganische Chemie & FIC Karlsruhe, 2018.
- 18. Cambridge Structural Database System. Cambridge Crystallographic Data Centre, 2018.
- Damien D., Wojakowski A., Muller W. // Inorg. Nucl. Chem. Lett. 1978. Vol. 12. P. 533. doi 10.1016/0020-1650(76)80017-7
- Arliguie T., Thuery P., Le Floch P., Mézailles N., Ephritikhine M. // Polyhedron. 2009. Vol. 28. P. 1578. doi 10.1016/j.poly.2009.03.027
- Serezhkin V.N., Medvedkov Ya.A., Serezhkina L.B., Pushkin D.V. // Russ. J. Phys. Chem. A. 2015. T. 89, N 6. P. 1018. doi 10.1134/S0036024415060254
- 22. Сережкин В.Н., Михайлов Ю.Н., Буслаев Ю.А. // ЖНХ. 1997. Т. 42, N 12. С. 2036.
- Suski W., Wojakowski A., Blais A., Salmon P., Fournier J.M., Mydlarz T. // J. Magn. Magn. Mater. 1976. Vol. 3. P. 195. doi 10.1016/0304-8853(76)90032-9
- 24. Уэллс А. Структурная неорганическая химия. В 3-х т. М.: Мир, 1987–1988. [*Wells A.F.* Structural Inorganic Chemistry. New York: Clarendon, 1984. 5th ed.]
- Rogers E., Dorenbos P., Van der Kolk E. // New J. Phys. 2011. Vol. 13. P. 093038. doi 10.1088/1367-2630/13/9/093038
- Serezhkin V.N., Savchenkov A.V., Pushkin D.V., Serezhkina L.B. // Radiochemistry. 2016. Vol. 58, N. 6. P. 561. doi 10.1134/S1066362216060011
- Moore K.T., Van der Laan G. // Rev. Mod. Phys. 2009. Vol. 81, N 1. P. 235. doi 10.1103/RevModPhys.81.235
- Haire R.G., Baybarz R.D. // J. Inorg. Nucl. Chem. 1974. Vol. 36. P. 1295. doi 10.1016/0022-1902(74)80067-9
- Zachariasen W.H. // J. Inorg. Nucl. Chem. 1975. Vol. 37, N 6. P. 1441. doi 10.1016/0022-1902(75)80787-1
- 30. Noel H. // C. R. Acad. Sci. C. 1973. Vol. 277. P. 463.
- Mesbah A., Malliakas C.D., Lebègue S., Sarjeant A.A., Stojko W., Koscielski L.A., Ibers J.A. // Inorg. Chem. 2014. Vol. 53, N. 6. P. 2899. doi 10.1021/ic4026574
- Mesbah A., Prakash J., Beard J.C., Pozzi E.A., Tarasenko M.S., Lebègue S., Malliakas C.D., Van Duyne R.P., Ibers J.A. // Inorg. Chem. 2015. Vol. 54, N 6. P. 2851. doi 10.1021/ic5029806
- 33. Bondi A. // J. Phys. Chem. 1964. Vol. 68, N 3. P. 441.
- 34. Gray D.L., Backus L.A., von Nidda H.A.K.,

Skanthakumar S., Loidl A., Soderholm L., Ibers J.A. // Inorg. Chem. 2007. Vol. 46, N 17. P. 6992. doi10.1021/ ic700774g

- Mesbah A, Stojko W., Lebegue S., Malliakas C.D., Frazer L., Ibers J.A. // J. Solid State Chem. 2015. Vol. 221. P. 398. doi 10.1016/j.jssc.2014.10.014
- 36. *Pearson W.B.* The Crystal Chemistry and Physics of Metals and Alloys. Wiley–Interscience, 1972.
- Serezhkin V.N., Pushkin D.V., Serezhkina L.B. // Crystallogr. Rep. 2010. Vol. 55, N 4. P. 554. doi 10.1134/S1063774510040048
- Современная кристаллография. Т. 2: Вайнштейн Б.К., Фридкин В.М., Инденбом В.Л. Структура кристаллов. М.: Наука, 1979. 359 с.
- Coppens P., Yang Y.W., Blessing R.H., Copper W.F., Larsen F.K. // J. Am. Chem. Soc. 1977. Vol. 99. P. 760. doi 10.1021/ja00445a017
- Rettig S.J., Trotter J. // Acta Crystallogr. Sect. C. 1987. Vol. 43, N 12. P. 2260. doi 10.1107/ S0108270187088152.
- 41. *Tremel W., Hoffmann R.* // J. Am. Chem. Soc. 1987. Vol. 109, N 1. P. 124. doi 10.1021/ja00235a021.
- Noel H. // J. Inorg. Nucl. Chem. 1980. Vol. 42. P. 1715. doi 10.1016/0022-1902(80)80146-1
- Noel H., Potel M. // Acta Crystallogr. Sect. B. 1982. Vol. 38. P. 2444. doi 0567-7408/82/092444-02501.00
- Mesbah A., Ringe E., Lebègue S., Van Duyne R.P., Ibers J.A. // Inorg. Chem. 2012. Vol. 51, N 24. P. 13390. doi 10.1021/ic302223m
- 45. *Choi K.-S., Kanatzidis M.G.* // Chem. Mater. 1999. Vol. 11. P. 2613. doi 10.1021/cm9903201
- Grønvold F., Haraldsen H., Thurmann-Moe T., Tufte T. // J. Inorg. Nucl. Chem. 1968. Vol. 30, N 8. P. 2117. doi 10.1016/0022-1902(68)80206-4
- Janus B., Suski W., Blaise A. Crystalline Electric Field Effects in f-Electron Magnetism /Eds P. Guertin, W. Suski. New York: Plenum, 1982. P. 539. doi10.1007/978-1-4684-8646-9_62
- Kwak J.E., Gray D.L., Yun H., Ibers J.A. // Acta Crystallogr. Sect. E. 2006. Vol. 62. P. i86. doi 10.1107/ S1600536806007409
- Marcon J.P., Pascard R. // J. Inorg. Nucl. Chem. 1966. Vol. 28. P. 2551. doi 10.1016/0022-1902(66)80379-2
- Damien D., Jove J. // Inorg. Nucl. Chem. Lett. 1971. Vol. 7, N 7. P. 685. doi 10.1016/0020-1650(71)80055-7
- Damien D., Charvillat J.P., Muller W. // Inorg. Nucl. Chem. Lett. 1975. Vol. 11. P. 451. doi 10.1016/0020-1650(75)80017-1