УДК536.422.621.039

СРАВНИТЕЛЬНЫЙ АНАЛИЗ ФАЗОВОГО СОСТАВА ОБЛУЧЕННОГО УРАН-ПЛУТОНИЕВОГО НИТРИДА ПРИ СОВМЕСТНОМ ВЛИЯНИИ ПРИМЕСЕЙ УГЛЕРОДА, КИСЛОРОДА И ^{β-}-РАСПАДЕ НЕКОТОРЫХ ПРОДУКТОВ ДЕЛЕНИЯ

© 2021 г. Д. Ю. Любимов^{*a*,*}, Г. С. Булатов^{*b*,**}, К. Э. Герман^{*b*,***}

^а Научно-исследовательский институт НПО «Луч», 142100, Подольск Московской обл., Железнодорожная ул., д. 24; ^б Институт физической химии и электрохимии им. А. Н. Фрумкина РАН, 119071, Москва, Ленинский пр., д. 31, корп.4 e-mail: *dlubimov46@gmail.com; **bulatov-gs@yandex.ru; ***guerman_k@mail.ru

Получена 28.08.2019, после доработки 30.08.2020, принята к публикации 31.08.2020

Термодинамическое моделирование показало, что накопление продуктов деления при облучении уранплутониевого нитрида с примесью углерода и кислорода ($U_{0.8}Pu_{0.2}$)($N_{0.9475}O_{0.02625}C_{0.02625}$) приводит к формированию многокомпонентного оксикарбонитридного твердого раствора, содержащего U, Pu, Am, Np, Zr, Y и лантаниды, а также отдельных оксидных (BaUO₃, SrPuO₃), карбидных (URu₃C_{0.7}, Mo₂C), нитридных (U_2N_3) фаз и интерметаллидов U(Rh,Pd)₃. β^- -Распад металлических радионуклидов в отдельных оксидных и карбидных фазах ОЯТ приводит к изменению их химических и фазовых составов. Рассчитана кинетика превращения отдельных фаз⁹⁹Mo₂C $\rightarrow 1/3^{99}$ Tc₆C + 2/3C, ¹⁴⁰BaUO₃ $\rightarrow 1/2^{140}$ Ce₂UO₆+1/2U.

Ключевые слова: ядерное топливо, нитрид, уран, плутоний, примесь, кислород, углерод

DOI: 10.31857/S0033831121010032

Переработка анодных шламов электрорафинирования отработанного нитрида урана и плутония [1], содержащего примеси кислорода и углерода, требует предварительного проведения термодинамического моделирования химического и фазового составов топлива и определения наиболее устойчивых химических форм продуктов деления с примесями. Термодинамическое моделирование позволяет предсказать концентрацию фаз в зависимости от выгорания и температуры и осуществить выбор соединений для экспериментального исследования их электрохимических свойств.

Настоящая статья является продолжением ранее выполненных нами исследований [1] и посвящена термодинамическому моделированию совместного влияния примесей кислорода и углерода в облученном быстрыми нейтронами нитриде урана и плутония на фазовый состав при температуре 600 К и выгорании 80 ГВт·сут/т (9.05% тяжелых атомов), а также оценке влияния β^- -распада радионуклидов ⁹⁹Mo, ¹⁴⁰Ва на кинетику изменения состава образовавшихся включений отдельных фаз отработанного ядерного топлива (ОЯТ).

Термодинамическое моделирование фазового состава уран-плутониевого нитрида, содержащего примеси углерода и кислорода

При термодинамическом моделировании фазового состава облученного быстрыми нейтронами нитридного топлива необходимо знать концентрации продуктов деления, основных и примесных компонентов при заданных температуре, давлении и выгорании. С этой целью в модельных расчетах изменения химического и фазового составов уран-плутониевых нитридов $(U_{0.8}Pu_{0.2}N_{0.9475}C_{0.0525})$, $(U_{0.8}Pu_{0.2}N_{0.9475}O_{0.0525})$ и $(U_{0.8}Pu_{0.2})(N_{0.9475}O_{0.02625}C_{0.02625})$ использовали данные работ [2, 3] для $U_{0.8}Pu_{0.2}N$. Расчет проводили с помощью программного комплекса АСТРА-4 [4]. База данных программного комплекса АСТРА-4 была дополнена термодинамическими данными конденсированных веществ: UC, PuC, ZrC, BaC₂, SrC₂, UMoC₂, URu₃C_{0.7}, BaUO₃, SrUO₃, SrPuO₃ и др.

Основные конденсированные фазы, включенные в расчет системы (U_{0.8}Pu_{0.2})N с продуктами деления, без примесей описаны в работе [2], с примесью углерода – в работе [1], кислорода – в работе [3]. Углерод и кислород в таком топливе в зависимости от концентрации и температуры растворяются в твердом растворе, образуя смешанный оксикарбонитрид урана и плутония, в котором растворены Zr, Nb, Y и лантаниды, и выделяются в виде отдельных карбидных и оксидных фаз [5-8]. В расчеты были включены оксиды и карбиды бария и стронция, а также сложные оксиды и карбиды типа BaUO₃, SrUO₃, SrPuO₃, UMoC₂, U₂(Ru,Rh) С2, U(Ru,Rh)₃C_{1-x}. Расчеты проводили при постоянном давлении 0.101 МПа. Плотность 14.32 г/см³ принята как теоретическая для U_{0.8}Pu_{0.2}N [9]. Исходное содержание углерода и кислорода в нитридах U_{0.8}Pu_{0.2}N_{0.9475}C_{0.0525} и U_{0.8}Pu_{0.2}N_{0.9475}O_{0.0525} принимали равным соответственно 0.25 и 0.33 мас%. Результаты расчетов состава и концентрации основных конденсированных фаз в U_{0.8}Pu_{0.2}N, $U_{0.8}$ Ри_{0.2}N_{0.9475}C_{0.0525} и $U_{0.8}$ Ри_{0.2}N_{0.9475}O_{0.0525} при выгорании 80 ГВт сут/т (9.05% тяжелых атомов) и температуре 600 К приведены в табл. 1. Из расчетов следует, что содержание матричного твердого раствора (U,Pu,Np,Am,Me)(N $_{\nu}C_{1-\nu})_{z}$, где Me = Zr + Y + лантаниды, в топливе с выгоранием 80 ГВтсут/т при 600 К существенно зависит от наличия или отсутствия примесей. Присутствие примеси углерода приводит к увеличению доли матричного твердого раствора (до 95.105 мас%) в топливе и существенному снижению доли полуторного нитрида (до 0.05 мас%) по сравнению с топливом, не содержащим примесей. Вместо нитридов щелочноземельных металлов Ba_3N_2 и Sr_3N_2 образуются карбиды BaC_2 и SrC_2 . Концентрации интерметаллидов UPd₃, URh₃ не изменяется, так же как иодида цезия в присутствии примеси углерода в топливе. Следует отметить выделение фазы сложного карбида $URu_3C_{0.7}$, карбида молибдена Mo_2C . Отсутствие фазы интерметаллида CeRu₂ говорит о том, что церий остается в твердом растворе (U,Pu,Me) $N_{1-y}C_y$. В присутствии примеси углерода вместо отдельной фазы ВаТе выделяется фаза Cs₂Te. Необходимо обратить внимание на то, что цезий находится в топливе в жид-ком состоянии.

Наличие отдельной примеси кислорода в топливе также приводит к увеличению доли матричного твердого раствора (до 87.069 мас%) и снижению доли полуторного нитрида (до 6.08 мас%) по сравнению с топливом, не содержащим примеси. Однако это снижение не так сильно, как в случае с примесью углерода. Щелочноземельные продукты деления выделяются в виде отдельных фаз уранатов и плутонатов: BaUO₃, SrPuO₃. Необходимо отметить, что при температуре 600 К происходит выделение отдельных фаз оксидов неодима и лантана, а также диоксида урана.

В табл. 2 приведены результаты термодинамического моделирования фазового состава уран-плутониевого нитрида ($U_{0.8}Pu_{0.2}$)($N_{0.9475}O_{0.02625}C_{0.02625}$), содержащего примеси углерода (0.125 мас% С) и кислорода (0.166 мас%), при облучении быстрыми нейтронами. Видно, что накопление продуктов деления в результате облучения быстрыми нейтронами нитрида урана и плутония с примесями С и О приводит к формированию многокомпонентного оксикарбонитридного твердого раствора, содержащего U, Pu, Am, Np, Zr, Y и лантаниды, а также отдельных карбидных (URu₃C_{0.7}, Mo₂C), оксидных (BaUO₃, SrPuO₃, Nd₂O₃) и нитридной (U_2N_3) фаз, а также интерметаллидов U(Rh,Pd)₃. Карбиды щелочноземельных продуктов деления в этом случае не образуются.

Влияние примесей углерода и кислорода на кинетику превращения фаз в облученном быстрыми нейтронами уран-плутониевом нитриде при β⁻-распаде продуктов деления

С течением времени β^- распад металлических радионуклидов в отдельных карбидных и оксидных фазах ОЯТ приводит к изменению их химических и фазовых составов. В данной работе были рассмотрены следующие цепочки β^- -распада важнейших продуктов деления в составе отдельных включений в отработанном нитридном ядерном топливе с периодом полураспада более суток [10, 11]:

Рис. 1. Кинетика превращения для реакции ⁹⁹Mo₂C \rightarrow 1/3^{99m}Tc₆C + 2/3C \rightarrow 1/3^{99m}Tc₆C + 2/3C: $1 - {}^{99}Mo_2C$, $2 - {}^{99m}Tc_6C$, $3 - {}^{99}Tc_6C$.

Рассмотрим превращения радионуклидов, находящихся в отдельных фазах. Расчет кинетики превращения соединений радионуклидов проводили по системе уравнений β⁻-распада для выгорания 80 ГВт·сут/т.

$$\frac{dy_i(t)}{dt} = -\delta_i \cdot \lambda_i \cdot y_i(t) + \eta_{i-1} \cdot \lambda_{i-1} \cdot y_{i-1}(t),$$
$$y_i(0) = y_i^0,$$

где $y_i(t)$ – концентрация фазы, содержащей *i*-й радионуклид, $y_{i-1}(t)$ – концентрация фазы, содержащей предшествующий по цепочке β^- распада радионуклид, λ_i – постоянная β^- распада *i*-ого радионуклида, δ_i и η_i – стехиометрические коэффициенты химических реакций превращения фаз, t – время, y_i^0 – начальные концентрации соединений радионуклидов.

Начальные концентрации соединений радионуклидов рассчитывали с учетом их относительных кумулятивных выходов при делении ²³⁸U и ²³⁹Pu быстрыми нейтронами [12].

Расчет кинетики превращения отдельных фаз карбидов и оксидов ⁹⁹Mo₂C \rightarrow ⁹⁹Tc₂C \rightarrow 2⁹⁹Ru + C, U¹⁰³Ru₃C_{0.7} \rightarrow U¹⁰³Rh₃C_{0.7}, 2¹⁴⁰BaUO₃ \rightarrow ¹⁴⁰La₂UO₆ + U \rightarrow ¹⁴⁰Ce₂UO₆ + U показал, что U¹⁰³Ru₃C_{0.7} переходит в фазу U¹⁰³Rh₃C_{0.7} за 280 сут [13], a¹⁴⁰BaUO₃ В ¹⁴⁰Ce₂UO₆ – за 2000 ч. ⁹⁹Mo₂C переходит в ⁹⁹Tc₂C за 470 ч, однако эта фаза является при данных условиях углерод-избыточной [14], а ее структурная мо-

Рис. 2. Кинетика превращения для реакции ¹⁴⁰BaUO₃ \rightarrow 1/2¹⁴⁰La₂UO₆ + 1/2U \rightarrow 1/2¹⁴⁰Ce₂UO₆ + 1/2U: *I* – ¹⁴⁰BaUO₃, 2 – ¹⁴⁰La₂UO₆, 3 – ¹⁴⁰Ce₂UO₆, 4 – U.

дификация, описанная в работе [15], в условиях невысокого давления и высокого радиационного фона не может быть стабильной. Удельный объем ячейки, измеренный в эксперименте [14] (15.756 Å³), отлично согласуется с прогнозируемым [15] удельным объемом ячейки Тс₆С, и он не увеличивается с содержанием С (выше 17 ат%). Эти результаты показывают, что образование карбидов Тс зависит от содержания С, а максимальная концентрация С, связанного с Тс, составляет около 17 ат%, что соответствует Тс₆С. Таким образом, Тс₂С, образующийся при β-распаде молибдена в условиях реакторного облучения, переходит в более устойчивый кубический Тс₆С [14, 16] с освобождением небольшого количества углерода, который может повторно участвовать в образовании указанных выше карбидных фаз. В связи с этим мы рассмотрели кинетику превращения карбида молибдена по реакции

$$^{99}Mo_2C \rightarrow 1/3^{99m}Tc_6C + 2/3C \rightarrow 1/3^{99}Tc_6C + 2/3C.$$

Результаты расчета кинетики β^- -распада ⁹⁹Mo₂C приведены на рис. 1.

На рис. 2 приведены результаты расчета кинетики превращения для реакции

$$^{140}\text{BaUO}_3 \rightarrow 1/2^{140}\text{La}_2\text{UO}_6 + 1/2\text{U} \rightarrow 1/2^{140}\text{Ce}_2\text{UO}_6 + 1/2\text{U}.$$

Данные по изменению химического и фазового составов вследствие β^- -распада ряда других соединений, находящихся в табл. 1 и 2, представлены в работах [17, 18].

Следует отметить, что кинетика β⁻-распада металлов в металлических, карбидных и оксидных фа-

Таблица 1. Состав и концентрации сновных конденсированных фаз в уран-плутониевом нитриде $(U_{0,8}Pu_{0,2})N$, карбонитриде $(U_{0.8}Pu_{0.2})(N_{0.9475}C_{0.0525})$ и оксинитриде $(U_{0.8}Pu_{0.2})(N_{0.9475}O_{0.0525})$ при выгорании 80 ГВт·сут/т и температуре 600 К

(U _{0.8} Pu _{0.2})N		$(U_{0.8}Pu_{0.2})(N_{0.9475}C_{0.0525})$		$(U_{0.8}Pu_{0.2})(N_{0.9475}O_{0.0525})$	
конденсированная фаза	концен- трация, мас%	конденсированная фаза	концен- трация, мас%	конденсированная фаза	концентрация, мас%
Твердый раствор (U,Pu,Me)N _z	84.878	Твердый раствор (U,Pu,Me)N _{1-y} C _y	95.105	Твердый раствор (U,Pu,Me)N _{1-y} O _y	87.069
U_2N_3	10.472	U ₂ N ₃	0.050	U ₂ N ₃	6.080
CeRu ₂	1.165	URu ₃ C _{0,7}	1.280	CeRu ₂	1.164
UPd ₃	0.877	UPd ₃	0.878	UPd ₃	0.877
URh ₃	0.359	URh ₃	0.359	URh ₃	0.359
URu ₃	0.032	URu ₃	<10-4	URu ₃	0.032
Мо	0.690	Mo ₂ C	0.738	Мо	0.690
ВаТе	0.305	Cs ₂ Te	0.454	Cs ₂ Te	0.453
CsI	0.150	CsI	0.149	CsI	0.150
Cs	0.789	Cs	0.492	Cs	0.491
Ba ₃ N ₂	0.165	BaC ₂	0.367	BaUO ₃	0.962
Sr_3N_2	0.111	SrC ₂	0.128	Nd ₂ O ₃	0.866
				La ₂ O ₃	0.273
				UO ₂	0.099
				SrPuO ₃	0.436

Таблица 2. Состав и концентрации основных конденсированных фаз в уран-плутониевом нитриде, содержащем примеси углерода и кислорода $(U_{0.8}Pu_{0.2})(N_{0.9475}O_{0.02625}C_{0.02625})$ при выгорании 9% и температуре 600 К

Конденсированная фаза	Концентрация, мас%		
Твердый раствор (U,Pu,Me)	91.723		
$N_{1-y-y1}O_yC_{y1}$			
U ₂ N ₃	2.498		
URu ₃ C _{0,7}	1.283		
BaUO ₃	0.965		
Mo ₂ C	0.736		
SrPuO ₃	0.437		
Nd ₂ O ₃	0.039		
UPd ₃	0.879		
URh ₃	0.359		
Cs	0.485		
Cs ₂ Te	0.447		
CsI	0.148		

зах одинакова, но в последних возможно изменение не только химического, но и фазового состава. Происходящее с течением времени изменение химического состава фаз и структуры топлива приводит к изменению мольного объема фаз, возникновению напряжений, а также к изменению электрохимических свойств ОЯТ [19], что, в свою очередь, может влиять на технологию переработки анодных шламов. Косвенные данные, показывающие подобные изменения электрохимических свойств при изменении относительного содержания Тс и Ru, содержатся в работах [20, 21].

Таким образом, полученные результаты свидетельствуют о необходимости учета указанных превращений при хранении и переработке отработанного ядерного топлива.

ЗАКЛЮЧЕНИЕ

С использованием программного комплекса АСТРА-4 выполнен термодинамический анализ химического и фазового составов облученного

быстрыми нейтронами уран-плутониевого нитрида с примесями углерода и кислорода (U_{0.8}Pu_{0.2})(N_{0.9475}O_{0.02625}C_{0.02625}) при температуре 600 К и выгорании 9% тяжелых атомов. Показано, что накопление продуктов деления приводит к формированию многокомпонентного оксикарбонитридного твердого раствора. содержащего U, Pu, Am, Np, Zr, Y и лантаноиды, а также отдельных оксидных (BaUO₃, SrPuO₃), карбидных (URu₃C₀₇, Mo₂C), нитридных (U₂N₃) фаз, интерметаллидов U(Rh, Pd)₃, Cs и его соединений Cs₂Te, CsI. Рассчитано количество этих фаз при указанных температуре и выгорании. β−-распад Установлено, ЧТО металлических радионуклидов в отдельных фазах ОЯТ приводит к изменению их химических и фазовых составов. Показано, что 99 Тс₂С, образующийся первоначально из ⁹⁹Мо₂С при β⁻-распаде ⁹⁹Мо, будет освобождать лишний углерод, стабилизируясь в виде фазы ⁹⁹Тс_сС Рассчитана кинетика превращения фаз: ⁹⁹Мо₂С переходит в 1/3⁹⁹Тс₆С + 2/3С за 470 ч, а¹⁴⁰ВаUO₃ в 1/2¹⁴⁰Се₂UO₆ + 1/2U – за 2000 ч.

СПИСОК ЛИТЕРАТУРЫ

- 1. Булатов Г.С., Гедговд К.Н., Масленников А.Г., Любимов Д.Ю. //Радиохимия. 2017. Т. 59. №1. С. 50–52.
- Любимов Д.Ю., Андросов А. В., Булатов Г.С., Гедговд К.Н. // Атом. энергия. 2013. Т. 114. Вып. 4. С. 198– 202.
- Любимов Д.Ю., Дерябин И.А., Булатов Г.С., Гедговд К. Н. // Атом. энергия. 2015. Т. 118. Вып. 1. С. 24–29.
- Синярев Г.Б., Ватолин Н.А., Трусов Б.Г., Моисеев Г.К. Применение ЭВМ для термодинамических расчетов металлургических процессов. М.: Наука, 1982. 264 с.
- 5. Булатов Г.С., Гедговд К.Н., Любимов Д.Ю. // Материаловедение. 2006. № 10 (115). С.34–37.
- Булатов Г.С., Гедговд К.Н., Любимов Д.Ю. // Материаловедение. 2007. № 7 (124). С. 11–13.
- Deryabin I.A., Lyubimov D.Yu. // J. Phys.: Conf. Ser. 2017, Vol. 891. Paper 012184.
- Булатов Г.С., Гедговд К.Н., Любимов Д.Ю. // Материаловедение. 2008. № 5 (134). С. 2–6.

- Бобков В.П., Блохин А.И., Забудько Л.М., Казанцев Г.Н. Румянцев В.Н., Смогалев И.П., Соловьев В.А., Тарасиков В.П. Справ. по свойствам материалов для перспективных реакторных технологий / Под общ. ред. В.М. Поплавского. М.: ИздАТ, 2014. Т. 6. 368 с.
- Никифоров А.С., Куличенко В.В., Жихарев М.И. Обезвреживание жидких радиоактивных отходов. М.: Энергоатомиздат, 1985. 184 с.
- 11. *Гусев Н.Г., Дмитриев П.П.* Радиоактивные цепочки: Справ. М.: Энергоатомиздат, 1988. 2-е изд. 112 с.
- Горбачев В.М., Замятин Ю.С., Лбов А.А. Взаимодействие излучений с ядрами тяжелых элементов и деление ядер: Справ. М.: Атомиздат, 1976. 464 с.
- Бондаренко Г.Г., Булатов Г.С., Гедговд К.Н., Любимов Д.Ю. Якункин М.М. // Металлы. 2009. №5. С. 69– 73.
- German K.E., Peretrukhin V.F., Gedgovd K.N., Grigoriev M.S., Tarasov A.V., Plekhanov Yu.V., Maslennikov A.G., Bulatov G.S., Tarasov V.P., Lecomte M. // J. Nucl. Radiochem. Sci. 2005. Vol. 6. N 3. P. 211–214.
- Wang Y.X. // Phys. Status Solidi (RRL). 2008. Vol. 2, N 3. P. 126–128. DOI 10.1002/pssr.200802051.
- Wang Q., German K.E., Oganov A.R., Dong H., Feya O.D., Zubavichus Ya.V., Murzin V.Yu. // RSC Adv. 2016. N 6. P. 16197–16202. https://doi.org/10.1039/ C5RA24656C.
- 17. Бондаренко Г.Г., Булатов Г.С., Гедговд К.Н., Любимов Д.Ю., Якункин М.М. // Металлы. 2011. № 6. С. 59–64.
- 18. Бондаренко Г.Г., Любимов Д.Ю., Булатов Г.С., Гедговд К.Н. // Металлы. 2018. №3. С. 68–72.
- Заварзин С.В., Масленников А.Г., Заварзин С.В., Масленников А.Г., Гедгодв К. Н., Булатов Г., Власова И. Э. // Радиохимия. 2016. Т. 58. № 5. С. 403–408.
- Пуано Ф., Кури Д.Дж., Бертуа Дж., Колман Д.Г., Маусольф Э.Дж., Гофф Дж.С., Ким Э., Ярвинен Г., Герман К.Э., Червинский К.Р. // Радиохимия. 2017. Т. 59. № 1. С. 39–44.
- Перетрухин В.Ф., Муази Ф., Масленников А.Г., Сержант К., Герман К.Э., Давид Ф., Фурест Б., Симонофф М., Цивадзе А.Ю. Леконт М. // ЖРХО им. Д.И. Менделеева. 2007. Т. 51. № 6. С. 12–24.