УДК 546.15+661.18.7

ГАЗООБРАЗНЫЕ ПРОДУКТЫ ВЗАИМОДЕЙСТВИЯ СН₃I С Ag-СОДЕРЖАЩИМИ СОРБЕНТАМИ НА ОСНОВЕ СИЛИКАГЕЛЯ И ОКСИДА АЛЮМИНИЯ

© 2021 г. С. А. Кулюхин*, М. П. Горбачева, И. А. Румер

Институт физической химии и электрохимии им. А.Н. Фрумкина РАН, 119071, Москва, Ленинский пр., д. 31, корп. 4 *e-mail: kulyukhin@ipc.rssi.ru

Получена 28.08.2019, после доработки 17.10.2019, принята к публикации 24.10.2019

Исследованы ИК спектры газовой фазы, образующейся в процессах взаимодействия газообразного CH_3I с гранулированными сорбентами на основе SiO_2 и $g-Al_2O_3$, содержащими различные соединения Ag и Ni. Установлено, что основными газообразными продуктами, образующимися при взаимодействии CH_3I с исследованными сорбентами на основе SiO_2 , являются CH_3NO_3 , $CH_3CH_2NO_3$, CH_3OCH_3 , CO_2 и I_2 , а на основе $g-Al_2O_3 - CH_3NO_3$, $CH_3CH_2NO_3$, CH_3OCH_3 , CH_3OH_3 , CO_2 и I_2 . Возможно, что в продуктах взаимодействия также присутствует нитрометан CH_3NO_2 .

Ключевые слова: иодистый метил, серебро, сорбенты, ИК спектры, газовая фаза **DOI:** 10.31857/S0033831121010093

Одним из продуктов деления ядерного топлива, представляющим высокую экологическую опасность, является радиоактивный иод (далее – радиоиод). Многообразие химических форм и состояний окисления радиоиода требует специальных сложных систем для его локализации [1-3]. Среди летучих форм радиоиода наиболее труднолокализуемым соединением является иодистый метил (CH₃I), для локализации которого в условиях запроектных аварий на АЭС и на радиохимических производствах применяют неорганические сорбенты, содержащие в своем составе соединения серебра в количестве 8-12 мас% [4-6]. В работах [7, 8] исследована сорбция CH₃¹³¹I из паровоздушной среды на неорганических сорбентах «Физхимин», содержащих в своем составе нанометровые частицы соединений Ад или Ад и Ni. Установлено, что разработанные сорбенты, содержащие 5-6 мас% Ag или 2 мас% Ag + 4-10 мас% Ni, имеют высокую сорбционную эффективность в отношении СН₃¹³¹I (степень поглощения >99.9%). Эффективность сорбентов остается очень высокой (более 99.9%) при изменении различных параметров как сорбентов, так и среды.

Несмотря на широкий диапазон исследований по локализации радиоиода на неорганических сорбентах, содержащих различные соединения серебра, в настоящее время в литературе отсутствуют данные о возможных газообразных продуктах, которые могут образоваться в результате взаимодействия CH₃I с неорганическими сорбентами, содержащими соединения серебра. В работах [9, 10] отмечено, что в результате взаимодействия CH₃I с AgNO₃ образуется метилнитрат CH₃NO₃. В то же время присутствие других химических форм серебра в составе сорбентов может приводить к образованию других газообразных соединений. Данный вопрос особенно важен в условиях растворения нитридного топлива, когда может образоваться органическая форма радиоактивного иода, а именно, CH₃I, содержащая не только радионуклиды иода, но и ¹⁴С. При его локализации на композитных материалах в газовую фазу будут поступать различные органические соединения ¹⁴С, которые необходимо удалять из газовой фазы. В связи с этим представляет интерес выяснить состав газовой фазы, образующейся в процессах взаимодействия газообразного CH₃I с гранулированными сорбентами

КУЛЮХИН и др.

Conform	Содержание, мас%					
Сорбент	AgNO ₃	Ag ₂ O	Ag^0	NiO		
SiO ₂ -7AgA3	7.0 ± 0.3	_	_	_		
SiO ₂ -7Ag-Амк	_	3.0 ± 0.2	4.0 ± 0.4	_		
SiO ₂ -7AgГГ	1.7 ± 0.1	_	5.3 ± 0.4	_		
SiO ₂ -3.5AgГГ-3.5AgАз	4.2 ± 0.2	_	2.8 ± 0.3	_		
SiO ₂ -2Ag8Ni-NH ₃	1.0 ± 0.1	_	1.0 ± 0.1	8.0 ± 0.6		
Al ₂ O ₃ -7AgA3	7.0 ± 0.4	_	_	_		
Al_2O_3 -7AgΓΓ	2.1 ± 0.2	_	4.9 ± 0.5	_		
Al ₂ O ₃ -3.5AgГГ-3.5AgАз	4.0 ± 0.3	_	3.0 ± 0.3	_		
Al ₂ O ₃ -2Ag8Ni-NH ₃	1.0 ± 0.1	_	1.0 ± 0.1	8.0 ± 0.6		

Таблица 1. Данные о содержании химических форм Ag и Ni в синтезированных сорбентах

на основе SiO_2 или g- Al_2O_3 , содержащими различные соединения серебра. Это и составило цель данной работы.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

В работе использовали крупнопористый гранулированный силикагель марки КСКГ (ГОСТ 3956-76) с размером гранул 1–3 мм и g-Al₂O₃ (ТУ 2163-004-81279872-01) в виде шариков диаметром 3–8 мм. Все соли, щелочи и кислоты, использовавшиеся в работе, были марки х.ч.

На основе КСКГ и g-Al₂O₃ были синтезированы следующие сорбенты: SiO₂-7AgA3, SiO₂-7AgГГ, SiO₂-7Ag-Aмк, SiO₂-3.5AgГГ-3.5AgA3, SiO₂-2Ag8Ni-NH₃, Al₂O₃-7AgA3, Al₂O₃-7AgГГ, Al₂O₃-3.5AgГГ-3.5AgA3 и Al₂O₃-2Ag8Ni-NH₃.

Сорбенты SiO_2 -7AgA3 и Al_2O_3 -7AgA3 синтезировали путем пропитки неорганических матриц водным раствором AgNO₃ с последующим кондиционированием на воздухе при 383 K в течение 4 ч.

Сорбент SiO_2 –7Ag–Амк получали путем однократной обработки матрицы аммиачным раствором AgNO₃ (объем жидкой фазы взят из расчета 60% объема твердой фазы), высушиванием при 297–303 К на воздухе и кондиционированием на воздухе при 573 К в течение 4 ч [11, 12].

Сорбенты $SiO_2-7Ag\Gamma\Gamma$ и $Al_2O_3-7Ag\Gamma\Gamma$ синтезировали путем пропитки неорганических матриц водным раствором AgNO₃, высушиванием на воздухе при 383 К в течение 4 ч, обработкой раствором 2 моль/л гидразин–гидрата и высушиванием на воздухе при 453 К в течение 8 ч. Сорбенты SiO₂–3.5AgГГ–3.5AgA3 и Al₂O₃– 3.5AgГГ–3.5AgA3 синтезировали в несколько стадий. На первой стадии матрицы первоначально пропитывали водным раствором AgNO₃, содержащим 50% от требуемого количества Ag, и затем высушивали на воздухе при 383 К в течение 4 ч. Затем полученные прекурсоры обрабатывали раствором 2 моль/л гидразин–гидрата и высушивали на воздухе при 453 К в течение 8 ч. На следующей стадии полученные прекурсоры пропитывали водным раствором AgNO₃, содержащим 50% от требуемого количества Ag, с последующим высушиванием на воздухе при 383 К в течение 4 ч.

Сорбенты SiO_2 -2Ag8Ni-NH₃ и Al₂O₃-2Ag8Ni-NH₃ синтезировали путем обработки неорганических матриц раствором нитратов Ag(I) и Ni(II), аммиаком и кондиционирования на воздухе при 573 К в течение 4 ч [13].

В табл. 1 приведены данные о содержании химических форм Ag и Ni в синтезированных сорбентах.

Для изучения состава газовой фазы, образующейся при взаимодействии газообразного CH_3I с вышеуказанными сорбентами в потоке Ar или воздуха, использовали установку, схема которой приведена на рис. 1. Установка состоит из ротаметра (1), гидрозатвора с глицерином (2), реакционной камеры (3), в которую вводят жидкий CH_3I (4), реактора (5), в который помещают исследуемый композиционный материал, печи шахтного типа (6), термопары (7) и накопительной емкости (8) для сбора продуктов реакций и непрореагировавшего CH_3I .

Эксперимент проводили следующим образом. В реакционную камеру (3) объемом 65 см³ помещали 0.7 мл CH₃I (~1600 мг), а в специально скон-

струированный реактор (5) объемом 100 см³ – 50 г исследуемого сорбента. Жидкий CH₃I вносили в реакционную камеру (3) либо на воздухе, либо в специальном герметичном боксе, заполненном Ar. Реакционную камеру (3) подсоединяли к гидрозатвору с глицерином (2) и реактору, помещенному в печь шахтного типа (б). В экспериментах с атмосферой Ar к ротаметру, установленному перед гидрозатвором, подсоединяли емкость с Ar. Выход из реактора (5) первоначально соединяли с форвакуумным насосом и при закрытых кранах А и В проводили откачивание воздуха из реактора в течение 2-3 мин. Затем закрывали кран Б, отсоединяли форвакуумный насос и подсоединяли к системе накопительную емкость (8) объемом 1400 см³ для сбора продуктов реакций и непрореагировавшего CH₃I,. Накопительная емкость перед экспериментом вакуумировали с помощью форвакуумного насоса.

После подсоединения накопительной емкости сорбент нагревали до необходимой температуры. Помещали реакционную камеру в водяную баню с температурой 343-353 К. После достижения требуемой температуры сорбента открывали краны А, В и Б. В результате открытия кранов газовый поток, содержащий CH₃I, проходил через реактор с исследуемым сорбентом в накопительную емкость. Скорость газового потока регулировали краном А и поддерживали на уровне 0.2-0.3 л/мин. Через некоторое время скорость газового потока постепенно снижалась. При достижении в системе атмосферного давления опыт прекращали. Закрывали краны А и Б, отсоединяли накопительную емкость и убирали водяную баню из-под реакционной камеры. Зная общее время эксперимента и объем всей системы, рассчитывали среднюю скорость газового потока. Она находилась в диапазоне 0.15-0.2 л/мин.

Проводили отбор газовой фазы из накопительной емкости в кюветы для измерения ИК спектров. Спектрометрические газовые кюветы с окнами из КВг имели объем 125 см³ и длину оптического пути 100 мм. Помимо отбора проб из накопительной емкости также отбирали пробы газовой фазы в ИК спектрометрические кюветы непосредственно из системы. Перед измерением ИК спектров газовой фазы из накопительной емкости и системы проводили контрольную регистрацию фоновых ИК спектров используемых кювет. ИК спектры измеряли на спектрометре «Specord M 80». Перед измерением

Рис. 1. Принципиальная схема установки, предназначенной для изучения состава газовой фазы, образующейся в процессе взаимодействия с сорбентами газообразного CH₃I в потоке Ar или воздуха 1 – ротаметр, 2 – гидрозатвор с глицерином, 3 – реакционная камера, 4 – жидкий CH₃I, 5 – реактор, 6 – печь шахтного типа, 7 – термопара, 8 – накопительная емкость для сбора продуктов реакций и непрореагировавшего CH₃I.

ИК спектров давление в газовых кюветах доводили до атмосферного с помощью газообразного азота.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

В процессе локализации CH₃I на исследуемых Ад-содержащих сорбентах возможны следующие реакции:

$$CH_3I + AgNO_3 \rightarrow AgI + CH_3NO_3,$$
 (1)

$$2CH_3I + Ag_2O \rightarrow 2AgI + CH_3OCH_3, \qquad (2)$$

$$2CH_{3}I + Ag_{2}O + H_{2}O \rightarrow 2AgI + 2CH_{3}OH.$$
(3)

При этом считается, что основным продуктом взаимодействия CH_3I с неорганическими сорбентами, содержащими AgNO₃, является метилнитрат CH_3NO_3 , образование которого описывается реакцией (1) [9, 10].

Кроме того, практически все сорбенты, за исключением SiO_2 –7AgA3 и Al_2O_3 –7AgA3, содержат нанометровые частицы Ag^0 . Данные частицы могут способствовать протеканию следующей реакции:

$$CH_{3}I \xrightarrow{Ag^{0}} I^{\bullet} + CH_{3}^{\bullet}.$$
(4)

В результате реакции образуются радикальные частицы CH₃[·]. Данные частицы могут вступать во взаимодействие с органическими продуктами реакций (1)–(3) с образованием более сложных соедине-

Рис. 2. ИК спектр газообразного CH₃I [14–16].

ний. Например, взаимодействие CH_3 с CH_3NO_3 или CH_3OH может привести к образованию этилнитрата $CH_3CH_2NO_3$ или этанола. Кроме того, взаимодействие данных радикальных частиц с кислородом воздуха может привести к образованию формальдегида. Таким образом, в результате взаимодействия CH_3I с сорбентами на основе SiO_2 или $g-Al_2O_3$, содержащими соединения Ag, в газовой фазе могут присутствовать метилнитрат CH_3NO_3 , этилнитрат $CH_3CH_2NO_3$, нитрометан CH_3NO_2 , метанол, этанол, диметиловый эфир CH_3OCH_3 , формальдегид и другие органические соединения. Кроме того, разложение органических соединений при высоких температурах в присутствии исследованных сорбентов может привести к появлению в газовой фазе CO_2 .

Радикальные частицы І могут вступать в реакции либо между собой с образованием I₂, либо с соединениями Ag с образованием AgI. Действительно, в

ряде экспериментов с SiO₂–7AgГГ, SiO₂–3.5AgГГ– 3.5AgA3, SiO₂–2Ag8Ni–NH₃, Al₂O₃–7AgГГ, Al₂O₃– 3.5AgГГ–3.5AgA3 и Al₂O₃–2Ag8Ni–NH₃ в газовой фазе присутствовали пары I₂. В таких экспериментах в накопительной емкости визуально наблюдали фиолетовое окрашивание газовой фазы.

Следует отметить, что пары I₂ также наблюдались при взаимодействии CH_3I с g-Al₂O₃, не содержащим соединения Ag и нагретым до 423 К. Аналогичного эффекта с SiO₂ не наблюдалось.

Таким образом, в результате взаимодействия CH_3I с сорбентами на основе SiO_2 или $g-Al_2O_3$, содержащими соединения Ag и Ni, а также чистым $g-Al_2O_3$, не содержащим соединений Ag и Ni, в газовой фазе могут быть идентифицированы различные органические и неорганические соединения.

На рис. 2 приведен ИК спектр газообразного CH_3I [14–16]. В спектре присутствуют две интенсивные полосы при 2980 и 1264 см⁻¹.

На рис. 3 и 4 приведены ИК спектры газовой фазы, образующейся в атмосфере Ar или воздуха после взаимодействия газообразного CH₃I с гранулированными SiO₂ и g-Al₂O₃, а также Ag-содержащими сорбентами на их основе. Температура сорбентов SiO₂ и g-Al₂O₃ составляла 423 К.

Анализ ИК спектров, приведенных на рис. 3, показал, что при пропускании газового потока, содержащего CH₃I, через слой гранулированного SiO₂, нагретого до ~423 K, в газовой фазе регистрируются только полосы, характерные для CH₃I (рис. 3, а, б, спектры 1а и 1б). икаких дополнительных газообразных продуктов не образуется.

Рис. 3. ИК спектры газовой фазы, образующейся в атмосфере Ar (a) или воздуха (б) после взаимодействия газообразного CH₃I с сорбентами на основе SiO₂. $1 - SiO_2$, $2 - SiO_2$ –7AgГГ, $3 - SiO_2$ –7AgAмк, $4 - SiO_2$ –3.5AgГГ–3.5AgA3, $5 - SiO_2$ –2Ag8Ni–NH₃, $6 - SiO_2$ –7AgA3.

Рис. 4. ИК спектры газовой фазы, образующейся в атмосфере Ar (a) или воздуха (б) после взаимодействия газообразного CH_3I с гранулированными Ag-содержащими сорбентами на основе $g-Al_2O_3$. $1 - Al_2O_3$, $2 - Al_2O_3 - 7AgA3$, $3 - Al_2O_3 - 7Ag\Gamma\Gamma$, $4 - Al_2O_3 - 3.5Ag\Gamma\Gamma - 3.5Ag\Gamma\Gamma - 3.5AgA3$.

В то же время в отличие от SiO₂, не содержащего соединения Ag, при пропускании газового потока, содержащего CH₃I, через слой гранулированного g-Al₂O₃, не содержащего Ag и нагретого до ~423 K, в газовой фазе регистрируются полосы пропускания не только CH₃I, но и других соединений. При этом полосы пропускания в диапазоне 3040–2750 и 1220–900 см⁻¹ также присутствуют в ИК спектрах, зарегистрированных в опытах с Ag-содержащими сорбентами на основе g-Al₂O₃ (рис. 4).

Учитывая возможность терморазложения CH_3I при пропускании газового потока через слой нагретого g-Al₂O₃, не содержащего соединения Ag, нельзя исключать участия продуктов терморазложения CH_3I в процессах образования различных газообразных соединений также и при взаимодействии CH_3I с Agсодержащими сорбентами на основе g-Al₂O₃.

Пропускание газового потока, содержащего CH_3I , через слой сорбентов на основе SiO_2 или g- Al_2O_3 , содержащих соединения Ag, приводит к образованию газообразных продуктов, полосы пропускания которых отчетливо видны на ИК спектрах (рис. 3, а, б, спектры 2–6; рис. 4, а, б, спектры 2–4). При этом из рис. 3 и 4 видно, что как в Ar, так и в воздухе ИК-спектры во всех случаях содержат практически одинаковый набор полос пропускания, включая полосы CH_3I .

Близость ИК спектров газовой фазы для всех Ag-содержащих сорбентов на определенной матрице указывает на то, что во всех случаях в опытах с определенной матрицей образуются газообразные продукты, содержащие близкие функциональные группы.

РАДИОХИМИЯ том 63 № 1 2021

Для идентификации в газовой фазе возможных продуктов взаимодействия CH_3I с Ag-содержащими сорбентами на основе SiO_2 или g- Al_2O_3 было проведено сравнение полученных ИК спектров с ИК спектрами химических соединений, которые могут образовываться в процессе взаимодействия [14, 15]. Перед проведением сравнения в экспериментальных спектрах были исключены полосы, принадлежащие CH_3I (рис. 5, 6).

Необходимо отметить, что ИК спектры газовой фазы, полученные после взаимодействия CH₃I с гранулированными Ag-содержащими сорбентами на основе g-Al₂O₃, практически совпадают со спектрами, полученными для газовой фазы, образовавшейся после взаимодействия CH₃I с гранулированными Ag-содержащими сорбентами на основе SiO₂. Единственное различие в ИК спектрах заключается в интенсивности полос пропускания.

ИК спектры газовой фазы для Ag-содержащих сорбентов на основе SiO₂ или g-Al₂O₃ помимо полос поглощения в диапазоне 3060-2750 и 1220-900 см⁻¹ также содержат полосы в областях 2390-2290, 1720-1560, 1520-1390, 1340-1260, 890-780 и 740-530 см⁻¹ (рис. 5, 6).

На рис. 7 приведены ИК спектры $CH_3CH_2NO_3$ [14], CH_3NO_3 [9] и газовой фазы, образующейся в атмосфере воздуха после взаимодействия газообразного CH_3I с сорбентами SiO_2 –2Ag8Ni–NH₃, Al_2O_3 –7AgГГ и Al_2O_3 –2Ag8Ni–NH₃. Как видно из рис. 7, ИК спектр газовой фазы, образующейся после взаимодействия газообразного CH_3I с сорбентами SiO_2 –2Ag8Ni–NH₃ и Al_2O_3 –2Ag8Ni–NH₃, содержит основное количество полос поглощения $CH_3CH_2NO_3$ и CH_3NO_3 , за исключением области 2300–2350 см⁻¹.

Рис. 5. ИК спектры газовой фазы, образующейся в атмосфере Ar (a) или воздуха (б) после взаимодействия газовобразного CH₃I с Ag-содержащими сорбентами на основе SiO₂. (после вычитания полос пропускания CH₃I. $1 - \text{SiO}_2 - 7\text{Ag}\Gamma\Gamma$, $2 - \text{SiO}_2 - 7\text{Ag}\text{Amk}$, $3 - \text{SiO}_2 - 3.5\text{Ag}\Gamma\Gamma - 3.5\text{Ag}\text{A}3$, $4 - \text{SiO}_2 - 2\text{Ag}8\text{Ni} - \text{NH}_3$, $5 - \text{SiO}_2 - 7\text{Ag}\text{A}3$.

Рис. 6. ИК спектры газовой фазы, образующейся в атмосфере Ar (a) или воздуха (б) после взаимодействия газообразного CH_3I с гранулированными сорбентами на основе $g-Al_2O_3$, как содержащими Ag, так и без него (после вычитания полос пропускания CH_3I). $I - Al_2O_3$, $2 - Al_2O_3 - 7AgA3$, $3 - Al_2O_3 - 7Ag\Gamma\Gamma$, $4 - Al_2O_3 - 3.5Ag\Gamma\Gamma - 3.5AgA3$.

Рис. 7. ИК спектры $CH_3CH_2NO_3$ (*1*) [14] и газовой фазы, образующейся в атмосфере воздуха после взаимодействия газообразного CH_3I с сорбентами SiO_2 –2Ag8Ni–NH₃ (*2*), Al_2O_3 –7Ag Γ (*3*) и Al_2O_3 –2Ag8Ni–NH₃ (*4*).

В ИК спектре газовой фазы, образованной после взаимодействия CH₃I с сорбентами SiO₂-2Ag8Ni-NH₃ и Al₂O₃-2Ag8Ni-NH₃, а также Al₂O₃-7AgГГ, также присутствуют полосы в диапазоне 2300-2350 см⁻¹. Не исключено, что наличие данных полос может быть связано с частичным попаданием СО₂ из воздуха в кюветы для измерения ИК спектров. Однако следует отметить, что интенсивность пиков в данной области для сорбентов на основе SiO₂ и g-Al₂O₃ различна. Для сорбентов на g-Al₂O₃ наблюдаются более интенсивные пики по сравнению с аналогичными данными для сорбентов на основе SiO₂. Присутствие интенсивных пиков для сорбентов на основе g-Al₂O₃ позволяет предположить, что образование СО2 в системе может быть связано с термическим разложением продуктов взаимодействия CH₃I с Ад-содержащими сорбентами.

Таблица 2. Основные полосы пропускания (см⁻¹) в экспериментальном ИК спектре газовой фазы, образующейся в результате взаимодействия CH₃I с Al₂O₃-7AgГГ, (получен в данной работе) и ИКспектрах предполагаемых органических соединений

Экспериментальный спектр	CH ₃ NO ₃ [17]	CH ₃ NO ₃ [18]	CH ₃ NO ₂ [14]	CH ₃ CH ₂ NO ₃ [15]	CH ₃ OCH ₃ [15]	CH ₃ OH [15]	C ₂ H ₅ OH [15]
3888, 3856, 3831, 3809, 3736 						3695, 3674* 3655	3663*
3620, 3604, 3596, 3588 - 3007 2996 2090*	2996*	3006		3298 3007 *	3011	2020*	2988*
2980 2959* 2948 2924*		2950	2958*	2940*		2980 2940 2925	2007*
					2890*	2868, 2851	2906
2832 2823*, 2804			2767	2567	2809	2830	
_ 			2477	2007	2411		
				1747	2090	2085, 2067	
1678 1656 * 1647 1638 1624	1676*	1678		1673 1648*			
_			1592*, 1575*	1560			
1540 			1516 1483			1480	
1464 1456 1444	1440*		1452	1459*	1450*	1457	1450
1432 1420		1433	1414				1409 1394*
_			1382*	1380*		1377, 1363*,	1381
1300* 1292* 1284	1304*	1290		1295 1283*		1323	1040*
1192* 1180 * 1171*	1184*	1177			1170*		1249*, 1230
1117* 1104* 1089			1087*	1120 1094	1091		
			1007	1029*	10/1	1054* 1036*	1076, 1066* 1056 1029
1016 * 952, 944	1008*	1018		1020		1014	1027

РАДИОХИМИЯ том 63 №1 2021

Экспериментальный спектр	CH ₃ NO ₃ [17]	CH ₃ NO ₃ [18]	CH ₃ NO ₂ [14]	CH ₃ CH ₂ NO ₃ [15]	CH ₃ OCH ₃ [15]	CH ₃ OH [15]	C ₂ H ₅ OH [15]
937			932*	01.4*	930*		
			918 906	914			
_							893 [*] , 883,
864*		853		856*			8/4
844* _	844*			764*			
_ 720	732		720	,			
693 693			120	702*			
683 676			672*				676
668 [*] 656		655	662*				
650	644*	055	647*	645*			
- 568 549, 520, 472, 432, 424	568		607	569			

Таблица 2 (продолжение)

* Отмечены пики с поглощением более 40%.

Подтверждением данного предположения служит близость ИК спектров газовой фазы, образованной в Ar или воздухе после взаимодействия CH₃I с сорбентами SiO₂–2Ag8Ni–NH₃ и Al₂O₃–7AgГГ (рис. 5, 6). Присутствие полос поглощения в области 2300–2350 см⁻¹, характерных для CO₂ [14–16], в ИК спектрах газовой фазы, образующейся как в Ar, так и в воздухе после взаимодействия CH₃I с исследованными сорбентами, позволяет сделать вывод о том, что в условиях эксперимента происходит разложение органических соединений с образованием CO₂.

Рис. 8. ИК спектры CH₃OH (*1*), C₂H₅OH (*2*), CH₃NO₂ (*3*), CH₃OCH₃ (*4*), CH₃CH₂NO₃ (*5*) и CH₃NO₃ (*6*) [9, 14–16] и газовой фазы, образующейся в атмосфере воздуха после взаимодействия CH₃I с Al₂O₃–7AgГГ (*7*).

Как отмечалось выше, для Ag-содержащих сорбентов на основе g-Al₂O₃, за исключением Al₂O₃-2Ag8Ni-NH₃, после взаимодействия с CH₃I в газовой фазе помимо CH₃NO₃ и CH₃CH₂NO₃ присутствуют другие органические соединения.

На рис. 8 представлены ИК спектры CH₃OH, C₂H₅OH, CH₃OCH₃, CH₃NO₂, CH₃NO₃ и CH₃CH₂NO₃, а также для сравнения ИК-спектр газовой фазы, образующейся в атмосфере воздуха после взаимодействия CH₃I с Al₂O₃–7AgГГ. Как видно из рис. 8, спектр газовой фазы, образующейся в атмосфере воздуха после взаимодействия CH₃I с Al₂O₃–7AgГГ (спектр 5), достаточно сложен и включает полосы пропускания, характерные для CH₃NO₃, CH₃OCH₃, CH₃CH₂NO₃, CO₂, CH₃OH и CH₃NO₂ [14–16].

Для сравнения в табл. 2 приведены основные полосы поглощения с интенсивностью более 5% в экспериментальном ИК спектре газовой фазы, образующейся в результате взаимодействия CH_3I с Al_2O_3 –7AgГГ (получен в данной работе), и спектрах предполагаемых газообразных органических соединений. Жирным шрифтом выделены полосы соединений, наблюдаемые в экспериментальном ИК спектре. Следует отметить, что не все интенсивные полосы, характерные для индивидуальных соединений, присутствуют в экспериментальном ИК спектре. Так, для $CH_3CH_2NO_3$ из 12 полос пропускания с интенсивностью более 40% [15] в экспериментальном спектре присутствует 9 полос, для CH₃OH из 5 полос – 3 [15], для C₂H₅OH из 7 полос – 2 [15] и для CH₃NO₂ из 9 полос – 6 [14]. Для CH₃NO₃ и CH₃OCH₃ в экспериментальном спектре присутствует все полосы поглощения с интенсивностью более 40% [15, 17, 18].

Сравнение экспериментальных ИК спектров со спектрами предполагаемых органических соединений, приведенными в работах [9, 14, 15], показало, что газовая фаза, образованная в результате взаимодействия CH₃I с Ад-содержащими сорбентами на основе SiO₂ и g-Al₂O₃, содержит сложную смесь газообразных продуктов, таких как метилнитрат CH₃NO₃, этилнитрат CH₃CH₂NO₃, диметиловый эфир CH₃OCH₃, CH₃OH и, возможно, CH₃NO₂ [9, 14, 15]. Отсутствие большого количества интенсивных полос С₂Н₅ОН в экспериментальном ИК спектре позволяет сделать ввод об его отсутствии в продуктах взаимодействия CH₃I с Ад-содержащими сорбентами. Таким образом, можно утверждать, что основными газообразными продуктами взаимодействия CH₃I с Ад-содержащими сорбентами на основе SiO₂ и g-Al₂O₃ являются CH₃NO₃, CH₃OCH₃ и CH₃CH₂NO₃ [9, 14]. Анализ относительного содержания продуктов взаимодействия CH₃I с Ад-содержащими сорбентами в газовой фазе может составить цель отдельного исследования.

Поскольку сорбенты, предназначенные для локализации CH₃I, должны сохранять свою эффективность в широком интервале температур, нами на примере SiO₂–2Ag8Ni–NH₃ был исследован состав газовой фазы, которая образуется в атмосфере воздуха при взаимодействии CH₃I с исследуемыми сорбентами в интервале температур 293–423 К.

На рис. 9 приведены ИК спектры газовой фазы, образующейся в атмосфере воздуха после взаимодействия газообразного CH₃I с SiO₂–2Ag8Ni–NH₃, в зависимости от температуры сорбента. Перед анализом спектров было произведено вычитание полос пропускания CH₃I. Как видно из рис. 9, ИК спектры, полученные в экспериментах с SiO₂–2Ag8Ni–NH₃, имеющего температуру в диапазоне 343–423 К, близки между собой, хотя и наблюдаются некоторые различия, Так с увеличением температуры SiO₂– 2Ag8Ni–NH₃ до 423 К в ИК спектрах появляются новые полосы в области 2300 см⁻¹, которые могут быть отнесены к CO₂ [16].

Рис. 9. ИК спектры газовой фазы, образующейся в атмосфере воздуха при взаимодействии CH_3I с SiO_2 –2Ag8Ni–NH₃, в зависимости от температуры сорбента (после вычитания полос пропускания CH_3I). 1 - 293 K, 2 - 343 K, 3 - 383 K, 4 - 423 K.

Важно отметить, что в экспериментах с сорбентом, имеющим комнатную температуру (293 К), в ИК спектрах газовой фазы также присутствуют полосы новых газообразных соединений. Таким образом, независимо от температуры сорбента на основе SiO_2 , содержащего соединения Ag, основным продуктом его взаимодействия с CH₃I является не только CH₃NO₃, но и CH₃CH₂NO₃. Кроме того, в газовой фазе могут присутствовать CO₂ и пары молекулярного I₂. В случае сорбентов на основе g-Al₂O₃ помимо CH₃NO₃, CH₃CH₂NO₃ и CO₂ в газовой фазе также могут присутствовать CH₃OH и CH₃OCH₃.

Поскольку CH₃OCH₃, CH₃OH, CH₃NO₃, CH₃CH₂NO₃ и CO₂ могут содержать ¹⁴C, то необходима их локализация. Для локализации CO₂ и CH₃OH можно использовать сорбционные методы, причем в качестве поглотителей можно применять как твердые сорбенты, так и жидкие среды.

Для локализации CH_3NO_3 и $CH_3CH_2NO_3$ можно использовать барботеры с различными водными растворами. Известно, что гидролиз CH_3NO_3 протекает с образованием CH_3OH и HNO_3 [19]. Можно предположить по аналогии, что гидролиз $CH_3CH_2NO_3$ будет приводить к образованию C_2H_5OH и HNO_3 . Образование спиртов при гидролизе CH_3NO_3 и $CH_3CH_2NO_3$ позволит локализовать ¹⁴C в растворе.

В заключение следует отметить, что системы очистки газовой фазы при переработке ОЯТ должны включать различные сорбционные модули, предназначенные для локализации как летучих соединений радиоиода, так и продуктов взаимодействия CH₃I с Ag-содержащими сорбентами.

СПИСОК ЛИТЕРАТУРЫ

- Iodine Pathways and Off-Gas Stream Characteristics for Aqueous Reprocessing Plants—A Literature Survey and Assessment: Report INL/EXT-13-30119. 2013. 39 p.
- Agrawal S.K., Chauhan A., Mishra A. // Nucl. Eng. Des. 2006. Vol. 236. P. 812.
- Behaviour of Iodine Project: Report NEA/CSNI. 2011, N R11. 51 p.
- 4. *Кулюхин С.А.* // Успехи химии. 2012. Т. 81, № 10. С. 960.
- State of the Art Report on Iodine Chemistry: Report NEA/ CSNI. 2007, N R1. 60 p.
- Insights into the Control of the Release of Iodine, Cesium, Strontium and Others Fission Products in the Containment by Severe Accident Management: Report NEA/CSNI. 2000, N R9. P. 43–75.
- 7. *Кулюхин С.А., Мизина Л.В., Коновалова Н.А. и др.* // Радиохимия. 2014. Т. 56, № 4. С. 353.
- Кулюхин С.А., Мизина Л.В., Коновалова Н.А. и др. // Радиохимия. 2015. Т. 57, № 3. С. 227.
- Sakurai T., Takahashi A. // J. Nucl. Sci. Technol. 1988. Vol. 25, N 9. P. 753.
- 10. Гаспарян М.Д. Локализация летучих радионуклидов

на керамических высокопористых блочно-ячеистых материалах в процессах обращения с РАО и ОЯТ: Автореф. дис. ... д.т.н. М.: РХТУ им. Д.И.Менделеева, 2016. 33 с.

- 11. Кулюхин С.А., Мизина Л.В., Коновалова Н.А. и др. Патент RU 2479347. Зарег. 20.04.2013. Приоритет от 19.03.2012.
- 12. Кулюхин С.А., Мизина Л.В., Коновалова Н.А., Румер И.А. Патент RU 2346347.
- 13. Кулюхин С.А., Михеев Н.Б., Каменская А.Н. и др. Патент RU 2346346.
- База данных ИК спектров SDBSWeb. https://sdbs. db.aist.go.jp (National Institute of Advanced Industrial Science and Technology). Дата посещения: 05.10.2019.
- 15. База данных NIST Standard Reference Database Number 69. http://webbook.nist.gov/chemistry/. Дата посещения: 05.10.2019.
- База данных ИК спектров IR-Spektrensammlung der ANSYCO GmbH. http://www.ansyco.de. Дата посещения: 05.10.2019 г.
- Advances in Inorganic Chemistry and Radiochemistry / Eds H.J. Emeleus, A.G. Sharpe. New York: Academic, 1964. Vol. 6. P. 99.
- Korolevich M.V., Sivchik V.V., Zhbankov R.G., Lastochkina V.A. // J. Appl. Spectrosc. 1986. Vol. 45, N 6. P. 1275–1280.
- 19. Эмануэль М.Н., Кнорре Д.Г. Курс химической кинетики (гомогенные реакции). М.: Высш. шк., 1969. С. 159.