УДК: 543.51+543.525+543.062

ПОСЛЕРЕАКТОРНЫЕ РАДИОХИМИЧЕСКИЕ ИССЛЕДОВАНИЯ ОТРАБОТАВШЕГО ЯДЕРНОГО ТОПЛИВА РЕАКТОРА ВВЭР-440

© 2021 г. В. Н. Момотов*, Е. А. Ерин, А. Ю. Волков, В. Н. Куприянов

Научно-исследовательский институт атомных реакторов, 433510, Димитровград Ульяновской обл., Западное шоссе, д. 9 * e-mail: momotov(@niiar.ru

Получена 19.11.2019, после доработки 20.12.2019, принята к публикации 25.12.2019

Приведены данные разрушающих радиохимических исследований изотопного состава, массового содержания и величин выгорания 12 образцов ядерного топлива, облученных в реакторе BBЭP-440. На основании полученных экспериментальных данных определены корреляционные зависимости массового содержания нуклидов от глубины выгорания топлива. Проведен сравнительный анализ полученных результатов с результатами других исследователей.

Ключевые слова: облученное ядерное топливо, ВВЭР-440, радиохимический анализ, кредит выгорания, хроматографическое разделение элементов, изотопный состав, массовое содержание нуклидов, монитор выгорания, величина выгорания ОЯТ, масс-спектрометрия, альфа-, гамма-спектрометрия.

DOI: 10.31857/S003383112102009X

ВВЕДЕНИЕ

Одной из существенных статей затрат современной ядерной энергетики является обращение с отработавшим ядерным топливом (ОЯТ) [1]. В настоящее время при анализе и обосновании ядерной безопасности систем обращения с ОЯТ содержание делящихся материалов в облученном ядерном топливе приравнивается к их содержанию в необлученном образце топлива [2]. В результате такого подхода расчетное значение реактивности системы получается завышенным, что в свою очередь приводит к сокращению количества тепловыделяющих сборок (ТВС), размещенных в хранилищах.

Для уменьшения консерватизма при обосновании безопасного размещения ОЯТ в хранилищах и транспортных контейнерах был предложен подход, учитывающий изменение нуклидного состава топлива в процессе выгорания, получивший название «кредит выгорания» [3–9].

Расчет нуклидного состава ОЯТ является довольно сложной задачей, при решении которой необходимо для каждой облученной сборки корректно учесть влияние множества параметров, таких как время облучения, положение TBC в активной зоне, движение стержней управления защитой (СУЗ) в течение топливной компании, время выдержки топлива после облучения и др. Для подтверждения правильности используемых методик расчета, определения систематических и статистических погрешностей необходимо проведение верификации расчетных методик и программных средств путем сравнения результатов расчетов с экспериментальными данными, полученными при проведении разрушающего радиохимического анализа ОЯТ.

Целью данной работы является получение экспериментальных данных по изотопному составу, массовому содержанию нуклидов и глубине выгорания ядерного топлива, облученного в реакторе ВВЭР-440, необходимых для верификации расчетных кодов, применяемых при обосновании безопасного размещения ОЯТ в хранилищах и транспортных контейнерах, разработке и модификации экспрессных неразрушающих методов контроля выгорания.

Номер твэла Н	Номер образца	Выгорание по результатам гамма-сканирования,	Координата от нижнего конца топливного сердечника, мм		
		МВт·сут/кг U _{исх}	нижняя точка	верхняя точка	
	53	59.3	825	836.5	
	189	53.9	314	326	
61	13	46.2	185	197	
	76	39.4	108	120	
	124	31.9	43	55	
(\mathbf{c})	165	39.4	107	118	
02	81	31.6	44	56	
	718	57.6	549	561	
	98	53.8	355	366	
96	63	46.5	196	207	
	169	39.2	109	120	
	5	33.5	66	77	

Таблица 1. Характеристики образцов, вырезанных из ТВЭЛов

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Радиохимическому анализу подверглась тепловыделяющая сборка, содержащая урановое оксидное топливо с начальным обогащением по ²³⁵U 4.4%, отработавшая в течение шести топливных циклов на третьем блоке Кольской АЭС.

Для определения изотопного состава и массового содержания нуклидов из трех твэлов вырезано 12 образцов. Величина выгорания топлива в анализируемых образцах предварительно определена методом гамма-сканирования по накоплению нуклида ¹³⁷Cs. Координаты отбора образцов по длине твэлов определены с погрешностью ±1 мм. Характеристики образцов, взятых для проведения разрушающего радиохимического анализа, представлены в табл. 1.

Радиохимические исследования образцов облученного топлива проводили по схеме, подробно описанной в работах [10–13].

Взвешивание образца проводили в соответствии со следующим алгоритмом. Вначале взвешивали пенал с образцом топлива (m_1) . После выгрузки образца из пенала определяли массу пустого пенала (m_2) . По завершении растворения топлива оболочку твэла извлекали, промывали, высушивали и взвешивали (m_3) . Массу топлива в образце (m) находили по разности $m = m_1 - (m_2 + m_3)$. Определение массы пенала с образцом и пустого пенала проводили на весах, установленных внутри защитной камеры, с погрешностью взвешивания ± 0.01 г. Определение

массы оболочки проводили на весах AX 205 (Mettler Toledo) с погрешностью взвешивания ± 0.25 мг.

Растворение образца ОЯТ проводили в 8 моль·л⁻¹ HNO₃ при нагревании. Из исходного раствора отбирали аликвоту, разбавляли ее в 100 раз, получая рабочий раствор.

Проводили выделение фракций U, Pu, Am, Cm, Cs и суммы редкоземельных элементов (∑РЗЭ) из аликвоты рабочего раствора анионообменным методом на колонке, заполненной анионитом Dowex 1×8 [10, 13]. Полученные фракции U и Pu упаривали досуха, измеряли их изотопный состав масс-спектрометрическим методом.

На второй стадии проводили разделение Cs и Am–Cm–∑РЗЭ на колонке с сорбентом на основе Д2ЭГФК [14]. Фракцию Cs и половину объема фракции Am–Cm–∑РЗЭ упаривали до влажных солей и проводили измерения изотопного состава Cs, Am, Cm и Nd.

На третьей стадии вторую половину фракции Am-Cm-∑P3Э упаривали до влажных солей, растворяли в 0.05 моль·л⁻¹ HNO₃ и проводили разделение Sm, Eu, Gd на колонке с катионитом Dowex 50×8. Фракции Sm, Eu, Gd упаривали до влажных солей и передавали на масс-спектрометрические измерения изотопного состава [12].

Количественное определение содержания U, Pu, Nd, Eu, Sm, Gd проводили, повторяя процедуру их выделения в присутствии комплексной метки мето-

Номер образца	Масса пенала с образцом (<i>m</i> ₁), г	Масса пустого пенала (<i>m</i> ₂), г	Масса оболочки (<i>m</i> ₃), г	Масса топлива (<i>m</i>), г
53	76.41	70.47	1.2649	4.6751
189	73.97	68.22	1.3082	4.4418
13	76.41	70.45	1.2919	4.6681
76	75.17	69.28	1.2752	4.6148
124	75.07	69.02	1.2826	4.7674
165	75.86	70.02	1.3120	4.5280
81	71.95	66.22	1.3035	4.4265
718	72.37	66.2	1.2999	4.8701
98	75.57	69.77	1.3128	4.4872
63	73.32	67.32	1.2924	4.7076
169	76.6	70.97	1.2975	4.3325
5	72.17	66.25	1.3016	4.6184

Таблица 2. Результаты взвешивания образцов топлива

дом изотопного разбавления с масс-спектрометрическим окончанием.

В состав комплексной метки входили отраслевые стандартные образцы на основе азотнокислых растворов ²³³U, ²⁴²Pu, изготовленные и аттестованные в Радиевом институте им. В. Г. Хлопина, раствор ¹⁴⁶Nd получали растворением навески ¹⁴⁶Nd₂O₃ (AO «Изотоп») в HNO₃ марки ос.ч. Растворы Sm, Eu и Gd готовили путем растворения оксидов элементов природного изотопного состава марки х.ч. в HNO₃ марки ос.ч. Для приготовления комплексной метки использовали весовой пробоотбор, взвешивание аликвот проводили с использованием аналитических весов Mettler Toledo AX-205.

Рис. 1. Зависимость массы оболочки твэла от времени растворения.

При определении массовых долей ²³⁸Pu, ²⁴¹Am, ²⁴²Cm и ²⁴⁴Cm использовали альфа-спектрометрию в сочетании с масс-спектрометрическими измерениями изотопного состава. Массовую долю ¹³⁷Cs измеряли гамма-спектрометрическим методом без химического выделения из исходного раствора ОЯТ. Содержание Np определяли спектрофотометрическим методом после его выделения из раствора ОЯТ [10, 15, 16].

Расчет глубины выгорания топлива проводили с использованием метода тяжелых атомов (МТА) и по накоплению продуктов деления (ПД). В качестве мониторов выгорания использовали накопление ¹⁴⁸Nd и суммарное накопление ¹⁴⁵Nd и ¹⁴⁶Nd [10, 12].

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Для учета влияния убыли массы оболочки твэла в процессе растворения ОЯТ на точность определения массы растворенного топлива проведен следующий эксперимент. Оболочку, оставшуюся после растворения образца № 76, подвергали дополнительному растворению с периодическим определением ее массы. Контрольное растворение оболочки твэла проводили в течение 13 ч в тех же экспериментальных условиях, что и растворение образца ОЯТ. Время растворения топлива в образце № 76 составляло 16 ч. Экстраполяцией данных по убыли массы оболочки твэла в процессе растворения на нулевое время рассчитывали исходную массу оболочки. Полученные данные представлены на рис. 1.

Видно, что масса оболочки твэла в процессе растворения линейно уменьшается, при этом расчетная убыль массы за 16 ч растворения ОЯТ составила 0.04%. Установленную величину убыли массы вводили в качестве поправки при расчете массы оболочки всех проанализированных образцов. Результаты взвешивания образцов с учетом поправочного коэффициента приведены в табл. 2.

Результаты определения изотопного состава и массового содержания нуклидов в образцах ОЯТ представлены в табл. 3–16, величина выгорания топлива представлена в табл. 17. В скобках указаны значения суммарной абсолютной погрешности в единицах последнего разряда результата для доверительной вероятности 0.95. Полученные, при про-

Номер образца	²³⁴ U	²³⁵ U	236U	²³⁸ U
53	0.030(7)	0.61(1)	0.75(2)	98.61(3)
189	0.020(2)	0.75(2)	0.70(3)	98.53(4)
13	0.020(7)	1.08(1)	0.67(2)	98.23(3)
76	0.050(2)	1.36(2)	0.72(3)	97.87(4)
124	0.020(7)	1.73(3)	0.55(2)	97.70(4)
165	0.030(5)	1.47(2)	0.61(1)	97.89(3)
81	0.030(6)	1.76(3)	0.57(2)	97.64(4)
718	0.030(5)	0.65(2)	0.73(1)	98.59(3)
98	0.030(10)	0.72(4)	0.72(2)	98.53(5)
63	0.030(4)	1.14(2)	0.67(2)	98.16(4)
169	0.020(6)	1.35(4)	0.63(2)	98.00(5)
5	0.020(7)	1.64(2)	0.57(1)	97.77(3)

Таблица 3. Изотопный состав урана (мас%)

Таблица 4. Массовое содержание изотопов урана – (кг/т U_{исх})

	Номер образца	²³⁴ U	²³⁵ U	²³⁶ U	²³⁸ U
_	53	0.30(3)	5.70(11)	6.70(33)	919.1 (9)
	189	0.19(2)	7.01(6)	6.54(19)	921.0(9)
	13	0.19(2)	10.18(11)	6.31(19)	925.6(10)
	76	0.50(5)	12.92(26)	6.80 (34)	930.2(9)
	124	0.27(2)	16.59(33)	5.30(27)	936.7(9)
	165	0.29(2)	14.00(13)	5.81(17)	932.5(11)
	81	0.30(3)	16.90(34)	5.50(28)	937.3(9)
	718	0.30(3)	6.10(12)	6.80(34)	920.5(9)
	98	0.28(3)	6.74(7)	6.74(20)	922.6(9)
	63	0.28(3)	10.81(9)	6.30(19)	927.2(10)
	169	0.19(2)	12.86(14)	6.00(18)	933.2(11)
	5	0.25(2)	15.69(31)	5.50(27)	934.5(9)

Таблица 5. Изотопный состав плутония (мас%)

Номер образца	²³⁸ Pu	²³⁹ Pu	²⁴⁰ Pu	²⁴¹ Pu	²⁴² Pu
53	4.79(9)	49.22(9)	25.59(9)	10.78(8)	9.62(7)
189	4.37(2)	52.54(2)	24.74(2)	10.13(2)	8.22(1)
13	3.76(9)	54.50(9)	24.83(9)	10.44(8)	6.47(7)
76	2.71(2)	59.94(2)	22.81(2)	9.70(2)	4.84(1)
124	1.78(7)	64.59(7)	21.94(7)	8.33(4)	3.36(3)
165	2.29(6)	61.30(6)	22.49(5)	9.31(6)	4.61(5)
81	1.63(4)	65.20(7)	21.58(7)	8.35(5)	3.23(3)
718	5.01(7)	49.92(11)	25.25(11)	10.65(10)	9.17(7)
98	4.29(8)	54.53(8)	23.57(8)	9.72(5)	7.89(7)
63	4.07(7)	53.24(11)	26.18(11)	9.49(10)	7.02(7)
169	2.74(8)	60.60(8)	22.56(8)	9.32(6)	4.48(4)
5	2.16(7)	63.80(7)	21.68(6)	8.68(6)	3.68(2)

Таблица 6. Массовое содержание изотопов плутония (кг/т $U_{\rm нcx})$

Номер образца	²³⁸ Pu	²³⁹ Pu	²⁴⁰ Pu	²⁴¹ Pu	²⁴² Pu
53	0.601(60)	6.177(31)	3.212(16)	1.353(7)	1.210(6)
189	0.516(38)	6.200(30)	2.919(14)	1.195(6)	0.971(5)
13	0.404(35)	5.850(28)	2.665(13)	1.121(6)	0.694(4)
76	0.277(28)	6.126(30)	2.331(12)	0.991(5)	0.495(2)
124	0.146(15)	5.303(26)	1.801(9)	0.684(3)	0.276(1)
165	0.215(15)	5.744(27)	2.107(11)	0.872(4)	0.432(2)
81	0.136(14)	5.444(27)	1.802(9)	0.697(4)	0.269(1)
718	0.601(60)	5.990(30)	3.030(15)	1.278(6)	1.100(6)
98	0.485(45)	6.170(31)	2.667(12)	1.100(5)	0.893(5)
63	0.455(42)	5.950(30)	2.926(15)	1.060(5)	0.785(4)
169	0.246(16)	5.448(27)	2.028(9)	0.838(4)	0.403(2)
5	0.197(20)	5.819(30)	1.977(10)	0.792(4)	0.336(2)

РАДИОХИМИЯ том 63 № 2 2021

Номер образца	²⁴⁴ Cm	²⁴⁵ Cm	²⁴⁶ Cm	²⁴¹ Am	^{242m} Am	²⁴³ Am
53	88.2 (4)	9.9(3)	1.9(2)	67.7(3)	0.28(1)	32.0(3)
189	89(1)	9(1)	2.0(5)	73(2)	0.30(4)	26.7(15)
13	90(6)	8(2)	2(6)	79.7(6)	0.50(4)	19.8(3)
76	92.0(9)	7.5(9)	0.5(4)	84.3(9)	0.5(4)	15.3(9)
124	93.7(9)	5.9(7)	0.39(5)	89.9(2)	0.45(3)	9.66(17)
165	92.0(6)	7.5(5)	0.5(3)	85.5(3)	0.60(11)	13.9(3)
81	92.6(9)	6.9(7)	0.49(4)	89.9(4)	0.46(6)	9.6(4)
718	88.3(5)	9.9(4)	1.8(3)	69.2(2)	0.30(2)	30.46(18)
98	90.7(5)	8.8(2)	0.5(4)	72.7(4)	0.30(4)	27.0(4)
63	90.9(6)	9.0(5)	0.1(2)	78.9(3)	0.30(3)	20.8(3)
169	91.6(3)	7.7(2)	0.7(3)	85.4(3)	0.40(7)	14.2(3)
5	93.0(5)	6.5(4)	0.5(3)	88.7(2)	0.47(10)	10.81(16)

Таблица 7. Изотопный состав америция и кюрия (мас%)

Таблица 8. Массовое содержание изотопов америция, кюрия, нептуния, гадолиния (кг/т U_{нсх})

Номер образца	²⁴² Cm×10 ⁶	²⁴⁴ Cm	²⁴⁵ Cm×10 ³	²⁴⁶ Cm×10 ⁴	²⁴¹ Am	242m Am $\times 10^2$	²⁴³ Am	²³⁷ Np	¹⁵⁵ Gd
53	5.4(3)	0.188(12)	21.1(11)	40.5(20)	0.83(4)	0.34(2)	0.54(3)	1.57(8)	0.011(1)
189	8.0(4)	0.116(6)	11.7(6)	26.1(13)	0.70(3)	0.29(1)	0.30(1)	1.16(6)	0.0110(5)
13	6.2(3)	0.057(3)	5.1(3)	12.7(6)	0.58(2)	0.36(2)	0.196(8)	1.04(5)	0.0080(1)
76	7.7(4)	0.028(2)	2.3(1)	1.5(1)	0.64(3)	0.38(2)	0.140(7)	0.68(3)	0.051(5)
124	4.9(3)	0.0082(5)	0.5(1)	0.3(1)	0.40(2)	0.20(1)	0.064(3)	0.51(2)	0.0027(3)
165	5.0(3)	0.020(1)	1.6(1)	1.1(1)	0.52(2)	0.36(2)	0.096(4)	0.85(4)	0.0050(3)
81	2.50(13)	0.01(5)	0.7(1)	0.5(1)	0.45(2)	0.23(1)	0.064(3)	0.48(2)	0.0040(4)
718	9.4(5)	0.16(8)	17.9(9)	32.6(16)	0.70(4)	0.30(2)	0.35(2)	1.25(6)	0.012(1)
98	7.8(4)	0.097(5)	9.4(5)	15.3(10)	0.65(3)	0.27(2)	0.250(10)	1.14(6)	0.0104(3)
63	6.6(3)	0.065(3)	6.4(3)	17.0(10)	0.60(2)	0.23(2)	0.248(9)	1.00(5)	0.0078(1)
169	5.6(3)	0.018(1)	1.5(1)	1.4(1)	0.52(2)	0.24(2)	0.094(4)	0.86(4)	0.0056(4)
5	5.8(3)	0.011(5)	0.8(1)	0.6(1)	0.53(3)	0.28(2)	0.100(5)	0.665(3)	0.0030(3)

Таблица 9. Изотопный состав неодима (мас%)

Номер образца	¹⁴² Nd	¹⁴³ Nd	¹⁴⁴ Nd	¹⁴⁵ Nd	¹⁴⁶ Nd	¹⁴⁸ Nd	¹⁵⁰ Nd
53	0.82(1)	16.26(16)	35.34(11)	15.09(10)	18.57(11)	9.24(13)	4.68(5)
189	0.64(1)	18.76(1)	29.69(3)	17.48(1)	19.56(1)	10.10(1)	3.77(1)
13	0.59(2)	19.07(14)	32.30(10)	15.98(9)	18.39(13)	9.37(17)	4.30(8)
76	0.51(4)	20.23(19)	32.22(15)	16.61(22)	17.20(18)	8.98(15)	4.25(10)
124	0.35(2)	21.83(11)	31.15(9)	17.08(11)	16.45(18)	8.88(6)	4.26(3)
165	0.43(1)	20.92(2)	27.94(3)	17.10(2)	19.57(2)	10.12(2)	3.92(1)
81	0.37(2)	21.89(10)	31.11(7)	17.18(8)	16.52(10)	8.83(8)	4.10(7)
718	0.54(2)	16.49(10)	35.20(8)	15.28(10)	18.58(10)	9.26(7)	4.65(6)
98	0.64(2)	18.52(2)	30.56(2)	16.60(2)	19.40(2)	10.32(2)	3.96(1)
63	0.64(1)	17.18(1)	35.33(2)	15.38(1)	17.50(1)	9.19(2)	4.78(1)
169	0.44(1)	20.50(2)	27.65(3)	17.88(2)	20.06(2)	9.81(1)	3.66(1)
5	0.41(4)	21.44(2)	31.40(3)	16.97(2)	16.73(2)	8.90(2)	4.15(3)

Номер образца	¹⁴² Nd×10 ²	¹⁴³ Nd	¹⁴⁴ Nd	¹⁴⁵ Nd	¹⁴⁶ Nd	¹⁴⁸ Nd	¹⁵⁰ Nd
53	5.06(6)	1.202(1)	2.6123(2)	1.115(1)	1.372(1)	0.683(6)	0.346(3)
189	3.99(3)	1.170(6)	1.8520(2)	1.090(5)	1.220(6)	0.630(3)	0.235(3)
13	3.31(3)	1.068(5)	1.8098(2)	0.895(4)	1.030(5)	0.525(3)	0.241(3)
76	2.65(2)	1.052(1)	1.6756(1)	0.8637(8)	0.8944(8)	0.467(4)	0.221(3)
124	1.42(1)	0.8863(8)	1.2663(1)	0.6934(6)	0.6678(6)	0.361(4)	0.173(2)
165	1.91(1)	0.930(4)	1.2424(1)	0.760(4)	0.870(4)	0.450(2)	0.174(2)
81	1.47(1)	0.8734(8)	1.2402(1)	0.6855(6)	0.6592(6)	0.352(3)	0.163(2)
718	3.90(3)	1.191(1)	2.5431(2)	1.103(1)	1.341(1)	0.669(6)	0.336(4)
98	3.98(3)	1.150(4)	1.8982(2)	1.030(5)	1.205(6)	0.641(3)	0.246(3)
63	3.91(3)	1.050(5)	2.1606(2)	0.940(5)	1.070(5)	0.562(3)	0.292(3)
169	2.02(2)	0.940(5)	1.2683(1)	0.820(4)	0.920(5)	0.450(2)	0.168(2)
5	1.78(1)	0.9305(9)	1.3618(1)	0.7365(7)	0.726(7)	0.386(4)	0.180(2)

Таблица 10. Массовое содержание изотопов неодима (кг/т U_{исх})

Таблица 11. Изотопный состав цезия (мас%)

Номер образца	¹³³ Cs	¹³⁴ Cs	¹³⁵ Cs	¹³⁷ Cs
53	40.59(7)	0.39(1)	19.93(7)	39.09(10)
189	41.87(7)	0.32(3)	20.90(6)	36.91(10)
13	41.14(7)	0.30(1)	21.48(7)	37.08(10)
76	41.52(7)	0.240(3)	23.09(6)	35.15(10)
124	41.39(14)	0.19(1)	24.19(15)	34.23(20)
165	41.92(6)	0.210(7)	21.42(6)	36.45(9)
81	41.58(7)	0.170(5)	24.45(8)	33.80(10)
718	40.80(10)	0.390(8)	20.02(9)	38.79(14)
98	41.95(7)	0.33(1)	20.85(6)	36.87(9)
63	41.87(10)	0.320(8)	20.93(9)	36.88(14)
169	42.40(8)	0.250(5)	20.65(8)	36.70(11)
5	41.67(8)	0.210(6)	24.01(11)	34.11(11)

Таблица 13. Изотопный состав самария (мас%)

Номер образца	¹⁴⁷ Sm	¹⁴⁸ Sm	¹⁴⁹ Sm	¹⁵⁰ Sm	¹⁵¹ Sm	¹⁵² Sm	¹⁵⁴ Sm
53	22.75(18)	25.39(15)	0.74(3)	32.15(17)	1.04(4)	10.83(17)	7.10(10)
189	23.26(11)	26.68(14)	0.31(2)	30.90(22)	1.29(3)	11.75(9)	5.81(4)
13	27.39(9)	20.86(7)	0.44(1)	34.76(8)	1.86(1)	10.49(5)	4.20(2)
76	29.98(11)	18.73(6)	0.61(1)	30.13(6)	4.11(8)	11.77(3)	4.67(2)
124	35.58(14)	15.64(9)	0.77(2)	29.20(25)	1.37(2)	13.13(15)	4.31(7)
165	35.10(26)	18.02(45)	0.61(3)	32.99(24)	1.10(3)	8.97(24)	3.21(6)
81	35.78(18)	15.87(15)	0.55(3)	29.71(17)	1.47(4)	12.66(17)	3.96(10)
718	24.86(12)	25.43(5)	0.21(1)	33.67(5)	1.09(2)	9.99(6)	4.75(5)
98	27.40(15)	17.66(11)	0.26(2)	35.32(10)	2.29(2)	11.64(11)	5.43(8)
63	30.03(56)	17.00(42)	0.47(10)	38.21(61)	1.33(13)	9.17(23)	3.79(10)
169	31.28(99)	16.25(51)	0.54(11)	37.04(85)	1.30(18)	9.78(45)	3.81(28)
5	34.25(15)	17.09(7)	0.36(1)	30.48(10)	1.55(5)	12.22(7)	4.05(15)

Таблица 12. Массовое содержание изотопов цезия (кг/т $U_{\mu cx}$)

O_{uex}				
Номер образца	¹³³ Cs	¹³⁴ Cs	¹³⁵ Cs	¹³⁷ Cs
53	1.802(18)	0.0170(2)	0.8848(9)	1.736(8)
189	1.95(6)	0.0150(5)	0.974(28)	1.72(5)
13	1.62(5)	0.0120(4)	0.846(25)	1.46 (4)
76	1.403(14)	0.0081(1)	0.7804(8)	1.188(8)
124	0.9706(9)	0.0046(1)	0.5673(6)	0.8027(7)
165	1.38(4)	0.0070(2)	0.705(21)	1.20(4)
81	1.141(10)	0.0047(1)	0.6712(6)	0.9278(8)
718	2.020(19)	0.0190(2)	0.9910(10)	1.9201(10)
98	1.91(6)	0.0150(5)	0.950(29)	1.68(5)
63	1.68(5)	0.0120(4)	0.840(25)	1.48(4)
169	1.46(4)	0.0086(3)	0.711(21)	1.26(4)
5	1.341(13)	0.0068(4)	0.7724(7)	1.097(7)

Номер образца	¹⁴⁷ Sm	¹⁴⁸ Sm	¹⁴⁹ Sm	¹⁵⁰ Sm	¹⁵¹ Sm	¹⁵² Sm	¹⁵⁴ Sm
53	0.274(5)	0.306(5)	0.0089(3)	0.3871(9)	0.0125(4)	0.130(2)	0.0855(4)
189	0.380(8)	0.436(5)	0.0050(1)	0.505(10)	0.0210(4)	0.192(4)	0.0949(4)
13	0.457(9)	0.348(4)	0.0074(2)	0.580(11)	0.0200(4)	0.175(4)	0.0701(3)
76	0.363(7)	0.227(3)	0.0074(2)	0.365(7)	0.0497(1)	0.142(3)	0.0565(3)
124	0.391(8)	0.172(3)	0.0085(2)	0.321(6)	0.0150(3)	0.144(3)	0.0474(3)
165	0.415(8)	0.213(4)	0.0072(1)	0.390(8)	0.0130(3)	0.106(2)	0.0380(2)
81	0.390(8)	0.173(3)	0.0060(2)	0.324(7)	0.0160(3)	0.138(3)	0.0432(3)
718	0.118(2)	0.121(3)	0.0010(3)	0.160(3)	0.0052(1)	0.148(1)	0.0225(2)
98	0.419(7)	0.270(4)	0.0040(1)	0.540(10)	0.0190(4)	0.178(4)	0.0830(4)
63	0.452(9)	0.256(4)	0.0070(1)	0.575(11)	0.0160(3)	0.138(3)	0.0570(3)
169	0.435(8)	0.226(4)	0.0075(2)	0.515(10)	0.0150(3)	0.136(3)	0.0530(3)
5	0.228(5)	0.114(3)	0.0029(1)	0.248(5)	0.0126(3)	0.099(2)	0.0270(2)

Таблица 14. Массовое содержание изотопов самария (кг/т U_{исх})

Таблица 15. Изотопный состав европия (мас%)

				-
Номер образца	¹⁵¹ Eu	¹⁵³ Eu	¹⁵⁴ Eu	¹⁵⁵ Eu
53	0.74(4)	85.51(8)	11.62(7)	2.13(4)
189	0.63(1)	83.29(6)	13.42(5)	2.66(2)
13	1.18(2)	85.83(2)	11.10(3)	1.89(1)
76	9.23(17)	80.37(20)	9.0(2)	1.42(10)
124	3.89(15)	85.2(3)	9.03(16)	1.93(2)
165	1.86(5)	86.13(15)	10.25(17)	1.76(7)
81	7.7(3)	82.2(4)	8.1(3)	1.96(12)
718	1.75(7)	84.70(13)	11.29(13)	2.26(4)
98	0.84(5)	83.68(20)	12.97(8)	2.51(19)
63	1.08(8)	86.18(15)	10.95(12)	1.79(7)
169	1.61(2)	86.41(25)	10.37(8)	1.61(2)
5	3.43(8)	86.02(17)	8.94(9)	1.61(9)

Таблица 16. Массовое содержание изотопов европия (кг/т $U_{\text{исх}}$)

Номер образца	¹⁵¹ Eu	¹⁵³ Eu	¹⁵⁴ Eu	¹⁵⁵ Eu
53	0.0013 (1)	0.145 (3)	0.0198(10)	0.00362(18)
189	0.0014(1)	0.185(4)	0.0298(12)	0.0059(2)
13	0.0032(1)	0.232(5)	0.0300(10)	0.0051(2)
76	0.0260(13)	0.225 (5)	0.0251(13)	0.00398(20)
124	0.0050 (3)	0.110(2)	0.0117(6)	0.00249(13)
165	0.0042(1)	0.195(4)	0.0232(9)	0.0040(2)
81	0.0120 (6)	0.127 (3)	0.0126(6)	0.00304(15)
718	0.0011(1)	0.053 (1)	0.00700(4)	0.00140(7)
98	0.0020(1)	0.200(4)	0.0310(12)	0.0060(2)
63	0.0030(1)	0.240(5)	0.0305(12)	0.0050(2)
169	0.0040(1)	0.215(4)	0.0258(10)	0.0040(2)
5	0.0050(3)	0.125(3)	0.0130(7)	0.00233(12)

Таблица 17. Выгорание топлива (кг/т U_{исх})

TT	Выгорание, кг/т U _{исх}							Флюенс, Поток 10 ²¹ од ⁻²	Поток
Номер	MTA					ПД			нейтронов,
ооразца	²³⁵ U	²³⁸ U	²³⁹ Pu	²⁴¹ Pu	суммарное выгорание	¹⁴⁵⁺¹⁴⁶ Nd	¹⁴⁸ Nd		10^{13} см ⁻² ·с ⁻¹
53	30.70	6.80	16.70	3.00	57.20	56.50	56.60	3.58	2.21
189	29.90	6.10	13.40	2.25	51.65	51.50	51.62	3.24	2.00
13	27.00	5.60	13.00	1.90	47.50	47.60	47.40	2.60	1.60
76	23.30	4.60	9.60	1.20	38.70	36.50	36.10	2.12	1.31
124	21.40	3.90	4.10	4.20	33.60	35.10	34.10	1.69	1.04
165	23.70	4.35	8.20	1.00	37.25	38.80	39.90	2.01	1.24
81	20.90	3.70	6.50	0.60	31.70	33.30	32.90	1.67	1.03
718	30.50	6.60	16.10	2.80	56.00	56.00	56.30	3.47	2.14
98	30.00	5.75	11.40	1.90	49.05	49.30	49.90	3.31	2.04
63	26.40	5.80	14.70	2.20	49.10	49.00	50.10	2.48	1.53
169	24.70	4.50	8.10	1.00	38.30	40.70	40.40	2.17	1.34
5	22.40	4.00	7.40	0.80	34.60	35.40	35.90	1.96	1.21

Рис. 2. Зависимость содержания ²³⁵U от глубины выгорания топлива (здесь и на рис. 3–25: источник данных см. табл. 18).

Рис. 3. Зависимость содержания ²³⁶U от глубины выгорания топлива.

Рис. 5. Зависимость содержания ²³⁸Ри от глубины выгорания топлива.

РАДИОХИМИЯ том 63 № 2 2021

Таблица 18. Начальное обогащение по ²³⁵U образцов ОЯТ

Работа	Начальное со- держание ²³⁵ U в образце топлива, %	Номер корреляционной зависимости
Данная работа	4.4	1
[12]	3.6	2
Образец SF-98 [17]	3.4	3
Образец SF-99 [17]	3.9	4
[18]	_	5
[19]	4.0	6
[20]	3.6	7

Рис. 4. Зависимость содержания ²³⁸U от глубины выгорания топлива.

Рис. 6. Зависимость содержания ²³⁹Ри от глубины выгорания топлива.

Рис. 7. Зависимость содержания ²⁴⁰Pu от глубины выгорания топлива.

Рис. 9. Зависимость содержания ²⁴²Ри от глубины выгорания топлива.

Рис. 11. Зависимость содержания ¹⁴³Nd от глубины выгорания топлива.

Рис. 8. Зависимость содержания ²⁴¹Ри от глубины выгорания топлива.

Рис. 10. Зависимость содержания ¹⁴²Nd от глубины выгорания топлива.

Рис. 12. Зависимость содержания ¹⁴⁴Nd от глубины выгорания топлива.

Рис. 13. Зависимость содержания ¹⁴⁵Nd от глубины выгорания топлива.

Рис. 15. Зависимость содержания ¹⁴⁸Nd от глубины выгорания топлива.

Рис. 17. Зависимость содержания ²³⁷Np от глубины выгорания топлива.

Рис. 14. Зависимость содержания ¹⁴⁶Nd от глубины выгорания топлива.

Рис. 16. Зависимость содержания ¹⁵⁰Nd от глубины выгорания топлива.

Рис. 18. Зависимость содержания ²⁴¹Am от глубины выгорания топлива.

РАДИОХИМИЯ том 63 № 2 2021

Рис. 19. Зависимость содержания ²⁴³Am от глубины выгорания топлива.

Рис. 21. Зависимость содержания ²⁴⁵Cm от глубины выгорания топлива.

Рис. 23. Зависимость содержания ¹³⁵Cs от глубины выгорания топлива.

Рис. 20. Зависимость содержания ²⁴⁴Сm от глубины выгорания топлива.

Рис. 22. Зависимость содержания ²⁴⁶Ст от глубины выгорания топлива.

Рис. 24. Зависимость содержания ¹³⁷Cs от глубины выгорания топлива.

Рис. 25. Зависимость содержания ¹³⁷Cs от глубины выгорания топлива.

ведении радиохимических исследований данные по массовому содержанию нуклидов в ОЯТ представлены в виде корреляционных зависимостей от глубины выгорания топлива (рис. 2–25). Для сравнения приведены корреляционные зависимости, полученные по результатам других исследований. Все образцы ОЯТ, взятые для сравнения, представляют собой урановое оксидное топливо, облученное в водо-водяном реакторе. Начальное обогащение по ²³⁵U образцов топлива, взятых для сравнения, ссылки на источники и номера корреляционных зависимостей представлены в табл. 18.

Корреляционные зависимости накопления нуклидов U, Pu, Nd, Am, Cm, Cs и Sm от величины выгорания топлива согласуются в пределах одного порядка, что является убедительным доказательством правильности результатов, полученных в настоящей работе, и отсутствия грубых промахов.

Представленный массив объединенных экспериментальных данных может быть использован для повышения точности расчетных программ, экспрессных неразрушающих методик анализа облученного ядерного топлива, обоснования безопасности хранения и транспортировки ОЯТ.

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют об отсутствии конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

1. Гордеев Б.К. Введение в экономику ядерного топливного цикла атомной энергетики. М.: ЦНИИ

РАДИОХИМИЯ том 63 № 2 2021

атоминформ, 2001. 128 с.

- 2. Аникин А.Ю., Курындин А.В., Курындина Л.А., Строганов А.А. // Ядерн. и радиац. безопасность. 2009. № 3. С. 38–43.
- 3. Внуков В.С., Куликов В.И., Чкуасели Л.И. // Изв. вузов. Ядерн. энергетика. 2015. № 2. С. 108–116.
- Wolf S.F., Bowers D. L, Cunnane J.C. // J. Radioanal Nucl. Chem. 2005. Vol. 263, N 3. P. 581–586.
- Guoshun Y., Chunming Z., Xinyi P. // Procedia Eng. 2012. Vol. 43. P. 297–301.
- 6. Kanda K. // Nucl. Eng. 1994. Vol. 40. N 3. P. 9-10.
- Advances in Application of Burnup Credit to Enhance Spent Fuel Transportation, Storage, Reprocessing and Disposition: Proc. Technical Committee Meet. Held in London, Aug. 29–Sept. 2, 2005: IAEA-TEC-DOC-1547. May 2007.
- Neuber J.C. // Workshop on Criticality Safety/Burnup Credit (BUC) in Spent Fuel Handling and Storage. Prague: State Office for Nuclear Safety, March 19–23, 2007.
- Barkauskas V., Plukiene R., Plukis A. // Nucl. Eng. Des. 2016. Vol. 307. P. 197–204.
- 10. Ерин Е.А., Момотов В.Н., Волков А.Ю. и др.// Радиохимия. 2017. Т. 59, № 4. С. 325–330.
- 11. Момотов В.Н, Ерин Е.А., Волков А.Ю. // Радиохимия. 2019. Т. 61, № 5. С. 415–419.
- 12. *Момотов В.Н, Ерин Е.А.*, Волков А.Ю. Куприянов В.Н. //Радиохимия, 2020. том 62, № 5. С. 428–437
- Момотов В.Н., Ерин Е.А., Волков А.Ю. // Тез. докл. IX Рос. конф. с международным участием «Радиохимия 2018». СПб., 17–21 сентября 2018 г. С. 188.
- Ерин Е.А., Момотов В.Н., Баранов А.А., Нагайцева Л.В., Коновалова Ю.С., Галина Ю.А. // Радиохимия. 2017. Т. 59, № 1. С. 53–58.
- Момотов В.Н., Ерин Е.А., Волков А.Ю. Патент RU 2647837. Заявл. 22.02.2017. Опубл. 19.03.2018.
- 16. Момотов В.Н., Ерин Е.А., Волков А.Ю. // Радиохимия. 2019. Т. 61, № 4. С. 339–343.
- Mertyurek U., Francis M.W., Gauld I.C., Analysis of BWR Spent Nuclear Fuel Isotopic Compositions for Safety Studies: ORNL/TM-2010/286. Dec. 2010. 103 p.
- Grady-Raap M.C., Talbert R.J. Compilation of Radiochemical Analyses of Spent Nuclear Fuel Samples: PNNL-13677. Sept. 2001. 38 p.
- Wolf S.F., Bowers D.L., Cunnane J.C. // J. Radioanal. Nucl. Chem. 2005. Vol. 263, N 3. P. 581–586.
- 20. *Макарова Т.П., Бибичев Б.А., Домкин В.Д.* // Радиохимия. 2008. Т. 50, № 4. С. 361–370.