УДК 543.51+543.525+543.062

РАДИОХИМИЧЕСКИЙ АНАЛИЗ ОТРАБОТАВШЕГО ЯДЕРНОГО ТОПЛИВА РЕАКТОРА РБМК-1000

© 2021 г. В. Н. Момотов*, Е. А. Ерин, А. Ю. Волков, В. Н. Куприянов

Научно-исследовательский институт атомных реакторов, 433510, Димитровград Ульяновской обл., Западное шоссе, д. 9 *e-mail: momotov@niiar.ru

Получена 29.11.2019, после доработки 20.12.2019, принята к публикации 25.12.2019

Представлены результаты радиохимического анализа 12 образцов, подготовленных из тепловыделяющих элементов (твэлов) верхнего и нижнего пучков облученной тепловыделяющей сборки (OTBC), отработавшей до среднего выгорания топлива 35.7 МВт сут/кг U в реакторе РБМК-1000. Описаны процедуры радиохимического выделения и анализа нуклидов U, Pu, Am, Cm, Nd, Er, Cs с применением комплекса радиохимических и инструментальных методик, использующих ионный обмен, экстракционную хроматографию, альфа-, гамма-, масс-спектрометрию. Определены нуклидный состав, массовое содержания указанных нуклидов и величина выгорания топлива (методом тяжелых атомов и по накоплению мониторов выгорания ¹⁴⁵⁺¹⁴⁶Nd, ¹⁴⁸Nd).

Ключевые слова: уран-эрбиевое топливо, нуклидный состав, РБМК, химическое разделение элементов, изотопный состав, монитор выгорания, масс-спектрометрия, альфа-, гамма-спектрометрия

DOI: 10.31857/S0033831121020106

ВВЕДЕНИЕ

Экспериментальное исследование нуклидного состава и выгорания топлива имеет важное практическое значение. Эти данные необходимы для уточнения нейтронно-физических характеристик активных зон реакторов, тестирования и верификации расчетных кодов, оптимизации топливного цикла в целях повышения экономичности АЭС, анализа ядерной безопасности объектов с отработавшим ядерным топливом.

Целью данной работы является получение информации о нуклидном составе, массовом содержании U, Pu, Am, Cm, Nd, Cs, Er и величине выгорания топлива, облученного в реакторе РБМК.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Исходный образец уранового оксидного топлива содержал 2.6% ²³⁵U и 0.41% выгорающего поглотителя на основе оксида эрбия. Топливо облучалось до расчетного выгорания 35.7 МВт сут/кг U в реакторе РБМК-1000. Для проведения исследований были вырезаны 12 образцов из ТВЭЛов нижнего (1–6) и верхнего (7–12) пучков. Координаты образцов выбирали с учетом данных по выгоранию, предварительно полученных методом гамма-сканирования по ¹³⁷Cs с максимальным и средним выгоранием топлива, а также участки, соответствующие средней части топливного сердечника (табл. 1).

Нуклидный состав тяжелых атомов, продуктов деления и выгорание топлива определяли по схеме, представленной на рис. 1.

Схема радиохимического анализа включает следующие процедуры:

- взвешивание образца;
- растворение анализируемого образца;
- альфа-, гамма-спектрометрический анализ исходного раствора;
- химическое разделение U, Pu, Nd, Er, Am, Cm и Cs для масс-спектрометрических измерений изотопного состава;

Рис. 1. Схема анализа облученного топлива.

 повторное химическое разделение U, Pu, Nd в присутствии комплексной метки для измерения массового содержания элементов;

– аффинажную очистку фракций урана и плутония для определения массового содержания $^{232}{\rm U}$ и $^{236}{\rm Pu}.$

Растворение образца топлива проводили в конической колбе Эрленмейера в 200 мл 8 моль/л HNO₃ при температуре 90–95°С. Растворение проводили порционно: после 4 ч растворения раствор отделяли от нерастворенной части образца, заливали в колбу новую порцию кислоты и продолжали растворение в указанном режиме. Каждый раз очередную порцию раствора объединяли с предыдущей и упаривали, таких операций было 5. На конечной стадии раствор упаривали до влажных солей с последующим растворением их в в 200 мл 8 моль/л HNO₃ (исходный раствор) для последующих радиохимических исследований.

На финальной стадии проводили контрольное растворение. В колбу с оболочкой твэла залива-

РАДИОХИМИЯ том 63 № 2 2021

ли 100 мл 8 моль/л HNO₃, нагревали до 90–95°С и выдерживали в течение 2 ч. Полноту растворения топлива оценивали по отношению α -, γ -активности раствора при контрольном растворении оболочки к такой же активности исходного раствора. Радиометрический анализ показал, что остаточная α -активность для всех проанализированных образцов находилась в пределах (1–8)×10⁻⁴⁰%, γ -активность – (5–8)×10⁻²⁰%.

После растворения топлива из исходного раствора отбирали аликвоту и разбавляли ее в 100 раз, получая рабочий раствор. Проводили α -, γ -спектрометрический анализ рабочего раствора и по полученным результатам определяли суммарную α -активность нуклидов ^{239,240}Ри. Массовое содержание плутония оценивали как результат деления суммарной α -активности нуклидов ^{239,240}Ри на среднее значение удельной активности ²³⁹Ри и ²⁴⁰Ри, считая их отношение равным 1 : 1. Полученное значение содержания плутония является оценочным для опре-

МОМОТОВ и др.

Рис. 2. Схема радиохимического выделения элементов.

Номер	Координата от	Выгорание по
образца	наконечника, мм	¹³⁷ Cs, кг/т U
1	1273–1285	33.5
2	2125–2135	37.3
3	3363–3374	39.2
4	1202–1213	30.9
5	2120-2131	34.4
6	3109–3121	35.3
7	491–591	39.3
8	1492–1502	37.4
9	2363–2373	32.7
10	491–501	34.8
11	1490–1500	32.8
12	2232–2242	29.0

Таблица 1. Характеристики образцов твэлов, взятых для радиохимических исследований

деления объема аликвоты рабочего раствора при последующих радиохимических исследованиях.

Выделение и очистку элементов проводили, используя комбинацию катионо-, анионообменного и экстракционно-хроматографического методов. За основу выделения и очистки нуклидов взяты методы, разработанные в НИИАР [1–3]. На рис. 2 приведена схема радиохимического выделения U, Pu, Am, Cm, Cs, Nd и Er.

Разделение элементов проводили в три стадии. На первой стадии осуществляли разделение U, Pu от Am, Cm, ∑РЗЭ и Cs. Разделение проводили на колонке 1 с анионитом Dowex-1×8. На стадии сорбции элементов из раствора 8 моль/л HNO₃ сорбируются уран и плутоний. Америций, кюрий, цезий и ΣРЗЭ проходят в фильтрат и домываются из колонки промывкой 8 моль/л HNO₃. Элюирование урана проводили дополнительной промывкой колонки раствором 8 моль/л HNO₃, элюирование Pu – промывкой 0.3 моль/л HNO₃. Полученные фракции урана и плутония делили на две части. Одну часть упаривали и передавали на масс-спектральное измерение изотопного состава. Другую часть элюатов урана и плутония подвергали аффинажной очистке с целью определения массовогго содержания ²³²U и ²³⁶Ри (рис. 3). Элюаты нуклидов упаривали до влажных солей и затем растворяли в 9 моль/л HCl. После сорбции урана и плутония колонку последовательно промывали растворами HCl и HNO₃. Десорбцию фракции урана осуществляли дополнительной промывкой раствором 8 моль/л, а плутония – 0.3 моль/л

HNO₃. Аликвоты полученных элюатов наносили на подложки и передавали на α-спектрометрические измерения [4].

На второй стадии фракцию фильтрата и промывки, содержащую Am, Cm, Cs и ΣРЗЭ, упаривали и корректировали по кислотности 0.1 моль/л HNO₃. Разделение Cs и Am, Cm, ΣРЗЭ проводили на колонке 2, заполненной сорбентом LN-Resin, которая представляет собой калиброванные гранулы полисорба, содержащие 40 мас% Д2ЭГФК [5]. Цезий вымывали на стадии сорбции и промывки колонки 0.1 моль/л HNO₃. Фракцию Am, Cm и ΣРЗЭ десорбировали 1 моль/л HNO₃. Фракцию цезия упаривали досуха и передавали на масс-спектральные измерения изотопного состава.

На третьей стадии элюат, содержащий тетраду Am–Cm, Nd и Er, упаривали до влажных солей, затем растворяли в 0.05 моль/л HNO₃. Проводили разделение тетрады на колонке с катионитом Dowex 50×8 в аммонийной форме. На стадии фильтрации раствора Am–Cm, Nd и Er сорбируются на катионите. Затем колонку промывали раствором 0.1 моль/л NH₄NO₃ и на финальной части процесса проводили последовательное селективное выделение фракций Er, Am–Cm, Nd с использованием α -оксиизобутирата аммония (α -HIB) при pH 5.0. Полученные фракции Er, Am–Cm, Nd упаривали до влажных солей и передавали на масс-спектральные измерения.

Для определения содержания радионуклидов в исходном растворе облученного топлива и в отдельных фракциях использовали методы альфа- и гамма-спектрометрии, подробно изложенные в работе [2].

Определение изотопного состава выделенных элементов проводили масс-спектрометрически проводя не менее трех измерений по семь масс-спектров в каждом.

Для количественного определения содержания элементов готовили комплексную метку из отраслевых стандартных образцов на основе азотнокислых растворов ²³³U, ²⁴²Pu, ²⁴³Am, произведенных и аттестованных в Радиевом институте им. В.Г. Хлопина, раствор ¹⁴⁶Nd получали растворением навески ¹⁴⁶Nd₂O₃ (АО «Изотоп») в HNO₃ марки ос.ч. Изотопные составы и концентрация элементов в стандартных растворах приведены в табл. 2.

При приготовлении растворов комплексных меток использовали весовой пробоотбор.

		, I ,	1 1 1		1 '
Изотоп	Массовая доля, %	Концентрация, мкг/г раствора	Изотоп	Массовая доля, %	Концентрация, мкг/г раствора
²³³ U	99.584±0.015	99.9039	¹⁴² Nd	0.374±0.002	175.3
²³⁴ U	0.378±0.010		¹⁴³ Nd	0.353±0.002	
²³⁵ U	0.0029 ± 0.0002		¹⁴⁴ Nd	1.136±0.004	
²³⁶ U	_		¹⁴⁵ Nd	0.764±0.003	
²³⁸ U	$0.0353{\pm}0.002$		¹⁴⁶ Nd	96.646±0.019	
²³⁸ Pu	(1.8±0.22)×10 ⁻⁵	34.9054	¹⁴⁸ Nd	0.592±0.007	
²³⁹ Pu	$0.014{\pm}0.001$		¹⁵⁰ Nd	0.135±0.002	
²⁴⁰ Pu	$0.098 {\pm} 0.009$		²⁴¹ Am	0.18±0.020	4.0527
²⁴¹ Pu	0.350±0.030		²⁴³ Am	99.82±0.020	
²⁴² Pu	99.530±0.040				
²⁴⁴ Pu	$0.0070 {\pm} 0.0009$				

Таблица 2. Изотопный состав и концентрация элементов в растворах отраслевых стандарных образцов

Таблица 3. Используемые ядерные константы

Нуклид, параметр	Число нейтронов на акт деления, v _i [9]	Отношение сечения захвата к сечению деления, α_i [9]	Y _{145+146_{Nd},% [8]}	<i>Y</i> 148 _{Nd} , % [6]	σ _i , барн [9]
²³⁵ U	2.425(3)	0.1687(7)	6.646(33)	0.0167312(6)	582.6
²³⁸ U	2.788(15)	0.0909(9)	7.151(50)	0.02094(10)	
²³⁹ Pu	2.877(6)	0.3598(16)	5.400(27)	0.016422(8)	748.1
²⁴¹ Pu	2.937(7)	0.3544(28)	6.014(30)	0.0193209(10)	1011.1
²³⁶ U	_	_	_	_	85.0
3			1.012 [8]		
λ_1, c		1.	53×10 ⁻⁹ [8]		

Таблица 4. Изотопный состав урана (мас%)

Номер образца	²³⁴ U*	²³⁵ U	²³⁶ U	²³⁸ U
1	0.0095(3)	0.25(1)	0.44(1)	99.31(1)
2	0.0096(3)	0.13(1)	0.47(1)	99.38(1)
3	0.0091(3)	0.16(3)	0.47(4)	99.37(6)
4	0.0097(3)	0.20(2)	0.38(2)	99.42(4)
5	0.0097(3)	0.17(2)	0.47(1)	99.36(2)
6	0.0098(2)	0.16(2)	0.46(2)	99.38(3)
7	0.0089(3)	0.12(1)	0.44(1)	99.44(2)
8	0.0085(4)	0.08(1)	0.42(1)	99.50(2)
9	0.0100(3)	0.28(1)	0.43(1)	99.28(2)
10	0.0094(2)	0.19(1)	0.45(1)	99.35(2)
11	0.0090(4)	0.16(1)	0.42(1)	99.41(1)
12	0.0105(3)	0.39(2)	0.38(1)	99.23(2)

* Результаты получены методом α-спектрометрии; то же в табл. 5–7 и 11.

Для определения выгорания методом тяжелых атомов (МТА) использовали алгоритм расчета, приведенный в международном стандарте ASTM E244-80 [6]. В соответствии с этим алгоритмом полное выгорание F_T равно сумме выгораний всех делящихся нуклидов. Поскольку делящимися нуклидами являются ²³⁵U, ²³⁸U, ²³⁹Pu, ²⁴¹Pu, то

$$F_T = F_5 + F_8 + F_9 + F_1, \tag{1}$$

где F_5 , F_8 , F_9 , F_1 – выгорание ²³⁵U, ²³⁸U, ²³⁹Pu, ²⁴¹Pu соответственно, отн.ед.

При определении выгорания по накоплению продуктов деления (ПД) в качестве мониторов выгорания использовали суммарное накопление изотопов ^{145,146}Nd, а также накопление ¹⁴⁸Nd [7]. Эти изотопы не входят в химический состав необлученного топлива, а их предшественники в цепочке радиоактивного распада являются короткоживущими нуклидами. В расчетах не учитывали влияния радиационного захвата нейтронов на убыль мониторов

Номер образца	²³² U×10 ⁷ *	²³⁴ U*	²³⁵ U	236U	²³⁸ U
1	7.6(8)	0.091(3)	2.4(1)	4.2(1)	950.0(1)
2	8.8(10)	0.092(3)	1.2(1)	4.5(1)	946.8(1)
3	8.8(10)	0.087(3)	1.5(3)	4.5(4)	945.0(6)
4	5.7(6)	0.093(3)	1.9(2)	3.6(2)	954.2(4)
5	7.0(7)	0.093(3)	1.6(2)	4.5(1)	949.3(2)
6	8.2(7)	0.093(2)	1.5(2)	4.3(2)	947.4(3)
7	8.2(10)	0.085(3)	1.1(1)	4.2(1)	944.5(2)
8	8.8(13)	0.081(4)	0.8(1)	4.0(1)	944.4(2)
9	7.3(7)	0.096(3)	2.7(1)	4.1(1)	950.1(1)
10	8.9(7)	0.090(3)	1.8(1)	4.3(1)	947.3(2)
11	10.0(15)	0.086(4)	1.5(1)	4.0(1)	949.8(1)
12	6.3(6)	0.101(3)	3.7(2)	3.7(1)	954.0(2)

Таблица 5. Массовое содержание изотопов урана (кг/т U)

Таблица 6. Изотопный состав плутония (мас%)

Номер образца	²³⁸ Pu*	²³⁹ Pu	²⁴⁰ Pu	²⁴¹ Pu	²⁴² Pu
1	2.303(8)	37.41(2)	38.17(2)	8.67(1)	13.45(2)
2	2.455(8)	35.17(3)	38.20(4)	8.55(2)	15.60(4)
3	2.637(9)	34.24(3)	38.79(3)	8.56(2)	15.73(1)
4	2.000(7)	40.43(7)	38.01(28)	9.50(22)	10.07(13)
5	2.719(9)	37.40(12)	38.99(9)	8.62(8)	12.27(6)
6	2.325(8)	36.28(7)	39.93(11)	8.49(5)	12.93(4)
7	2.697(9)	34.17(2)	38.63(2)	9.04(1)	15.47(2)
8	2.740(9)	33.57(18)	38.59(13)	8.88(8)	16.22(17)
9	2.289(8)	39.80(5)	37.75(9)	9.43(6)	10.72(8)
10	2.468(8)	35.89(2)	40.67(5)	8.50(3)	12.47(2)
11	2.518(9)	36.46(4)	41.24(9)	7.53(10)	12.25(6)
12	1.926(6)	43.23(13)	38.60(9)	8.58(2)	7.56(6)

Таблица	7. N	Лассовое	содержание	изотопов	плутония	(кг/т ≀	U))
---------	------	----------	------------	----------	----------	---------	----	---

Номер образца	²³⁶ Pu×10 ⁷ *	²³⁸ Pu*	²³⁹ Pu	²⁴⁰ Pu	²⁴¹ Pu	²⁴² Pu
1	0.4(2)	0.129(1)	2.31(1)	2.36(1)	0.54(1)	0.83(1)
2	0.5(2)	0.150(1)	2.15(1)	2.24(1)	0.52(1)	0.96(2)
3	0.5(2)	0.168(2)	2.18(1)	2.47(1)	0.54(1)	1.00(1)
4	0.3(1)	0.103(1)	2.47(1)	2.33(1)	0.58(11)	0.62(7)
5	0.5(2)	0.165(2)	2.26(1)	2.36(1)	0.52(5)	0.74(4)
6	0.7(3)	0.150(2)	2.35(1)	2.58(1)	0.55(3)	0.84(3)
7	0.7(3)	0.176(2)	2.27(1)	2.56(1)	0.60(1)	1.03(1)
8	0.6(2)	0.166(2)	2.31(1)	2.65(1)	0.61(5)	1.11(11)
9	0.5(2)	0.153(2)	2.43(1)	2.30(1)	0.58(4)	0.65(5)
10	0.6(2)	0.158(2)	2.33(1)	2.64(1)	0.55(2)	0.81(1)
11	0.6(2)	0.146(2)	2.33(1)	2.64(1)	0.48(6)	0.78(4)
12	0.5(2)	0.126(2)	2.53(1)	2.26(1)	0.50(1)	0.44(4)

Рис. 3. Схема аффинажа фракций урана и плутония для определения содержания ²³²U и ²³⁶Pu.

выгорания вследствие малого значения сечений захвата нейтронов.

Выгорание топлива *F* в кг/т исходного урана рассчитывают по формуле

$$F = \frac{1000 R_{\rm M/U}}{Y_{\rm spp}} \left(\frac{1}{1 + R_{\rm Pu/U} + R_{\rm Am/U} + R_{\rm Cm/U} + R_{\rm M/U} / Y_{\rm spp}} \right),$$
(2)

где $R_{Pu/U}$, $R_{Am/U}$, $R_{Cm/U}$, $R_{M/U}$ – атомные отношения Pu, Am, Cm и монитора выгорания к U в топливе образца; $Y_{3\phi\phi}$ – эффективный выход монитора выгорания. Значения использованных ядерных констант приведены в табл. 3.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Результаты измерения изотопного состава, массового содержания нуклидов и расчета выгорания топлива в иследованнных образцах приведены в табл. 4–15. В скобках указаны значения суммарной абсолютной погрешности в единицах последнего разряда результата для доверительной вероятности 0.95.

Массовое содержанию изотопов ²⁴⁵Cm, ²⁴⁶Cm определяли исходя из изотопного состава кюрия с учетом массового содержания ²⁴⁴Cm, определенного методом α-спектрометрии.

Результаты, представленные в табл. 13, получены по результатам γ-спектрометрического анализа исходного раствора с учетом данных по изотопному составу, полученных методом масс-спектрометри.

Данные, полученнные в настоящей работе, сопоставлены с экспериментальными результатами, приведенными в работе [10]. Характеристики проанализированных образцов ОЯТ представлены в табл. 16.

Зависимости накопления нуклидов U и Pu от глубины выгорания облученного ядерного топли-

Номер образия	¹⁴² Nd	¹⁴³ Nd	¹⁴⁴ Nd	¹⁴⁵ Nd	¹⁴⁶ Nd	¹⁴⁸ Nd	¹⁵⁰ Nd
помер образца	1.0.7(0)	10 00(1)		1.5 (0(0))	110		110
1	1.95(3)	12.08(4)	39.26(6)	15.68(3)	17.65(5)	8.93(3)	4.45(2)
2	1.25(1)	9.47(5)	41.45(7)	15.75(3)	18.35(2)	9.18(4)	4.55(2)
3	4.21(9)	11.01(3)	39.17(10)	14.96(2)	17.49(6)	8.81(2)	4.34(1)
4	1.81(3)	13.87(3)	37.84(5)	16.12(5)	17.22(3)	8.85(2)	4.29(2)
5	0.54(6)	12.06(5)	40.06(15)	16.08(5)	18.19(6)	8.93(5)	4.14(4)
6	0.91(4)	12.16(8)	39.85(9)	15.93(3)	17.75(5)	9.03(3)	4.36(4)
7	3.12(1)	11.09(4)	39.40(5)	15.22(3)	17.74(3)	8.99(2)	4.45(3)
8	1.39(8)	10.77(14)	40.63(8)	15.40(5)	18.22(5)	9.09(8)	4.50(10)
9	0.97(2)	14.43(1)	37.50(2)	16.30(1)	17.39(2)	9.06(1)	4.36(1)
10	3.41(2)	12.84(3)	37.67(4)	14.99(3)	18.00(3)	8.66(3)	4.43(4)
11	3.50(1)	12.27(5)	37.94(6)	15.13(5)	17.79(5)	8.81(2)	4.55(2)
12	0.97(1)	16.60(1)	35.92(1)	16.54(1)	16.89(2)	8.87(2)	4.21(2)

Таблица 8. Изотопный состав неодима (мас%)

Таблица 9. Массовое содержание изотопов неодима (кг/т U)

Номер образца	¹⁴² Nd	¹⁴³ Nd	¹⁴⁴ Nd	¹⁴⁵ Nd	¹⁴⁶ Nd	¹⁴⁸ Nd	¹⁵⁰ Nd
1	0.092(1)	0.571(2)	1.854(3)	0.740(2)	0.833(1)	0.422(2)	0.210(1)
2	0.057(1)	0.430(2)	1.884(4)	0.716(2)	0.834(1)	0.418(2)	0.207(1)
3	0.189(14)	0.494(2)	1.755(5)	0.670(1)	0.784(2)	0.395(1)	0.194(1)
4	0.080(1)	0.611(2)	1.667(3)	0.710(3)	0.759(1)	0.390(1)	0.189(1)
5	0.025(1)	0.550(3)	1.827(8)	0.734(3)	0.830(2)	0.407(3)	0.189(2)
6	0.042(1)	0.564(4)	1.847(5)	0.738(2)	0.823(1)	0.419(2)	0.202(2)
7	0.065(3)	0.503(7)	1.897(4)	0.719(3)	0.851(1)	0.425(4)	0.210(6)
8	0.065(3)	0.503(7)	1.897(4)	0.719(3)	0.851(1)	0.425(4)	0.210(6)
9	0.039(1)	0.585(1)	1.520(1)	0.660(1)	0.705(1)	0.367(1)	0.177(1)
10	0.155(1)	0.543(3)	1.678(3)	0.669(3)	0.787(1)	0.390(1)	0.201(1)
11	0.155(1)	0.543(3)	1.678(3)	0.669(3)	0.787(1)	0.390(1)	0.201(1)
12	0.034(1)	0.576(1)	1.247(1)	0.574(1)	0.586(1)	0.308(1)	0.146(1)

Таблица 10. Изотопный состав америция и кюрия (мас %)

Номер образца	²⁴¹ Am	²⁴³ Am	²⁴⁴ Cm	²⁴⁵ Cm	²⁴⁶ Cm
1	62.1(1)	37.7(1)	96.10(7)	3.0(4)	0.9(5)
2	56.2(1)	43.7(1)	96.33(8)	2.8(1)	0.9(1)
3	53.8(1)	46.2(1)	95.63(9)	3.4(1)	1.0(1)
4	70.5(1)	29.3(1)	96.05(7)	3.0(1)	0.9(1)
5	64.4(2)	35.6(2)	95.69(7)	3.4(1)	0.9(1)
6	61.7(1)	38.3(1)	96.14(5)	3.0(1)	0.9(1)
7	55.0(1)	45.0(1)	94.83(10)	3.9(1)	1.2(1)
8	51.8(1)	48.2(1)	95.44(4)	3.4(1)	1.2(1)
9	67.4(1)	32.5(1)	95.43(8)	3.7(1)	0.8(1)
10	60.6(1)	39.3(1)	95.06(11)	3.7(1)	1.3(2)
11	61.6(1)	38.2(1)	95.56(4)	3.3(1)	1.1(1)
12	75.4(1)	24.6(1)	94.79(25)	4.0(1)	1.2(1)

РАДИОХИМИЯ том 63 № 2 2021

Номер образца	²⁴¹ Am	²⁴³ Am	²⁴² Cm×10 ⁶ *	²⁴⁴ Cm*	²⁴⁵ Cm×10 ³	²⁴⁶ Cm×10 ³
1	0.214(1)	0.130(1)	≤ 1.9	0.031(1)	1.0(1)	0.3(2)
2	0.180(1)	0.140(1)	≤ 2.1	0.041(1)	1.2(1)	0.4(1)
3	0.198(1)	0.170(1)	≤ 3.5	0.052(1)	1.8(1)	0.5(1)
4	0.192(1)	0.080(1)	≤ 1.4	0.023(1)	0.5(1)	0.2(1)
5	0.199(1)	0.110(1)	\leq 4.8	0.027(1)	1.0(1)	0.3(1)
6	0.145(1)	0.090(1)	≤ 3.6	0.033(1)	1.0(1)	0.3(1)
7	0.245(1)	0.200(1)	≤ 2.6	0.050(1)	2.6(1)	0.8(1)
8	0.204(1)	0.190(1)	≤ 3.2	0.033(1)	0.8(1)	0.3(1)
9	0.332(1)	0.160(1)	≤ 2.7	0.032(1)	2.2(1)	0.5(1)
10	0.226(1)	0.140(1)	≤ 2.4	0.037(1)	1.4(1)	0.5(1)
11	0.093(1)	0.060(1)	≤ 2.7	0.033(1)	0.5(1)	0.2(1)
12	0.398(1)	0.130(1)	≤ 4.5	0.024(1)	1.5(1)	0.5(1)

Таблица 11. Массовое содержание изотопов америция и кюрия (кг/т U)

Таблица 12. Изотопный состав цезия (мас%)

Номер образца	¹³³ Cs	¹³⁴ Cs	¹³⁵ Cs	¹³⁷ Cs
1	46.69(13)	0.48(1)	13.65(17)	39.18(18)
2	44.64(1)	0.52(1)	13.68(1)	41.16(1)
3	44.83(5)	0.58(1)	13.55(6)	41.04(3)
4	59.04(20)	0.24(3)	11.06(9)	29.66(17)
5	45.01(9)	0.47(1)	14.49(6)	40.03(10)
6	44.90(6)	0.49(1)	14.35(4)	40.26(8)
7	44.65(9)	0.63(2)	13.86(4)	40.86(10)
8	44.76(10)	0.62(7)	13.47(2)	41.15(7)
9	45.00(6)	0.47(1)	15.61(5)	38.92(4)
10	44.11(3)	0.49(1)	15.06(2)	40.34(3)
11	44.28(2)	0.55(1)	14.60(4)	40.57(1)
12	44.24(7)	0.39(3)	17.38(5)	38.00(3)

Таблица 13. Массовое содержание изотопов цезия (кг/т U)

-				
Номер образца	¹³³ Cs	¹³⁴ Cs	¹³⁵ Cs	¹³⁷ Cs
1	1.02(8)	0.0105(8)	0.30(2)	0.86(7)
2	1.02(8)	0.0119(9)	0.31(2)	0.94(7)
3	1.08(8)	0.0140(11)	0.33(3)	0.99(8)
4	1.76(14)	0.0072(6)	0.33(3)	0.89(7)
5	1.02(8)	0.0107(9)	0.33(3)	0.91(7)
6	0.82(6)	0.0089(7)	0.26(2)	0.73(6)
7	1.32(10)	0.0187(15)	0.41(3)	1.21(9)
8	1.02(8)	0.0141(11)	0.31(2)	0.94(7)
9	1.80(14)	0.0188(15)	0.63(5)	1.56(12)
10	1.10(8)	0.0122(10)	0.38(3)	1.01(8)
11	0.51(4)	0.0064(5)	0.17(1)	0.47(4)
12	1.59(12)	0.0140(11)	0.62(5)	1.36(10)

Таблица 14. Изотопный состав эрбия (мас%)

Номер образца	¹⁶² Er	¹⁶⁴ Er	¹⁶⁶ Er	¹⁶⁷ Er	¹⁶⁸ Er	¹⁷⁰ Er
1	0.17(2)	1.57(8)	31.40(15)	0.80(3)	51.82(15)	14.23(8)
2	0.14(3)	1.45(7)	29.15(22)	0.63(3)	53.83(28)	14.80(21)
3	0.16(5)	1.45(4)	28.99(11)	0.83(4)	53.93(20)	14.64(11)
4	0.17(2)	1.40(6)	30.12(20)	0.87(5)	52.78(13)	14.66(4)
5	0.14(2)	1.40(5)	29.52(20)	0.76(4)	51.50(49)	16.68(16)
6	0.13(1)	1.40(3)	29.01(2)	0.65(2)	54.07(10)	14.75(5)
7	0.14(5)	1.56(13)	29.33(31)	0.66(8)	53.74(21)	14.56(29)
8	0.15(9)	1.57(7)	29.09(23)	0.69(2)	53.79(22)	14.72(7)
9	0.17(3)	1.43(2)	30.11(11)	0.70(4)	52.87(7)	14.72(4)
10	0.16(2)	1.40(2)	29.48(6)	0.61(4)	53.59(10)	14.76(4)
11	0.17(2)	1.44(2)	29.29(15)	0.59(1)	53.78(10)	14.73(9)
12	0.14(2)	1.41(4)	30.99(20)	0.76(3)	51.93(43)	14.78(14)

РАДИОХИМИЯ том 63 № 2 2021

MTA ПЛ Номер суммарное 235TI 238_{I I} ²³⁹Pu ²⁴¹Pu F145+146Nd $F_{^{148}Nd}$ образца выгорание 37.9(15) 39.1 (16) 1 17.2 0.6 16.2 2.1 36.1 (4) 38.7(15) 40.5 (17) 2 18.1 0.7 18.5 2.6 39.9 (4) 41.6(16) 40.7 (17) 3 18.2 0.7 19.7 2.8 41.4(4)33.6(13) 36.2 (15) 4 17.4 13.5 1.5 33.0(3) 0.6 37.7(15) 40.8 (17) 5 18.1 0.7 16.5 2.0 37.3 (4) 41.1 (17) 38.7(16) 18.1 2.2 6 0.7 17.6 38.6 (4) 41.2(16) 44.3 (18) 7 18.6 0.8 20.1 2.8 42.3 (4) 39.4(16) 39.2 (16) 8 18.3 0.7 19.0 2.7 40.7 (4) 34.1(14) 36.5 (15) 9 17.8 0.6 1.8 35.8 (4) 15.6 39.2(15) 41.0 (17) 10 18.0 0.7 17.4 2.1 38.2 (4) 39.8 (16) 36.2(15) 11 18.0 0.7 16.3 2.0 37.0 (4) 31.6(13) 30.8 (13) 12 17.4 0.5 12.6 1.2 31.7 (3)

Таблица 15. Выгорание изотопов ²³⁵U, ²³⁸U, ²³⁹Pu, ²⁴¹Pu и полное выгорание топлива, определенное методом тяжелых атомов (МТА) и по накоплению продуктов деления (ПД), кг/т U

Таблица 16. Основные характеристики анализируемых образцов

Работа	Начальное содержание ²³⁵ U в образце топлива, %	Условное обозначение на рис. 4–12	Примечание
Данная	2.6	Ромбики	Содержание выгорающего поглотителя на
работа			основе Er ₂ O ₃ 0.41%
[10]	1.8	Кружки	_
	2.0	Треугольники	_
	2.02	Крестики	Регенерированное урановое топливо с начальным содержанием ²³⁶ U 0.135%
	2.09	Квадратики	Регенерированное урановое топливо с начальным содержанием ²³⁶ U 0.38%

Рис. 4. Зависимость содержания 232 U в ОЯТ от величины выгорания топлива. Условные обозначения см. табл. 16; то же для рис. 5–12.

Рис. 5. Зависимость содержания ²³⁴U в ОЯТ от величины выгорания топлива.

РАДИОХИМИЯ том 63 № 2 2021

Рис. 6. Зависимость содержания ²³⁵U в ОЯТ от величины выгорания топлива.

Рис. 8. Зависимость содержания ²³⁸U в ОЯТ от величины выгорания топлива.

Рис. 10. Зависимость содержания ²³⁹Ри в ОЯТ от величины выгорания топлива.

Рис. 7. Зависимость содержания ²³⁶U в ОЯТ от величины выгорания топлива.

Рис. 9. Зависимость содержания ²³⁸Ри в ОЯТ от величины выгорания топлива.

Рис. 11. Зависимость содержания ²⁴⁰Ри в ОЯТ от величины выгорания топлива.

Рис. 12. Зависимость содержания ²⁴²Ри в ОЯТ от величины выгорания топлива.

ва представлены на рис. 4–12. Видно, что данные, полученнные в настоящей работе, дополняют корреляционные кривые в области бо́льших величин глубины выгорания ОЯТ. Кроме того, представленнные экспреиментальные результаты хорошо согласуются с расчетными даннными, приведенными в работах [11, 12].

Отдельно стоит отметить хорошую сходимость результатов по массовому содержанию ²³²U в ОЯТ (рис. 4). Накопление этого нуклида является одним из ограничивающих факторов при рециклировании облученного ядерного топлива, поскольку в цепочке распада ²³²U образуется ²⁰⁸Tl, испускающий у-кванты с энергией 2.6 МэВ [13, 14]. Для оценки радиационной безопасности и дозовой нагрузки на персонал при работе с регенирированным ядерным топливом, установления возможного числа рециклов необходимо знание зависимости накопления ²³²U от величины выгорания. Кроме того, содержание ²³²U в ОЯТ невелико и находится на уровне 0.1-1 мг/т, вследствие чего его количественное определение основано на многостадийной процедуре выделния [5].

Разница в накоплении нуклидов ²³⁴U, ²³⁶U (рис. 5 и 7), вероятна, связана с анализом в работе [10] регенирированного ОЯТ, в котором изначально содержался нуклид ²³⁶U. Основным источником накопления ²³⁶U в ОЯТ является захват нейтрона ядром ²³⁵U [12], поэтому с ростом величины начального обогащения уранового оксидного топлива содержание ²³⁶U в нем будет возрастать. Кроме того, при обогащении оксидного уранового топлива помимо накопления ²³⁵U происхо-

РАДИОХИМИЯ том 63 № 2 2021

дит накопление изотопа 234 U. Поскольку образец ОЯТ, проанализированный в данной работе, имел более высокую величину начального обогащения по 235 U, содержание 234 U в облученном образце совпало с его содержанием, полученным в работе [10] для регенерированного уранового топлива с начальным содержанием 236 U 0.135%.

Корреляционные зависимости накопления нуклидов плутония от глубины выгорания ядерного топлива, представленные на рис. 9–12, свидетельствуют о сходимости результатов радиохимического анализа, полученных в настоящей работе и работе [10]. Вместе с тем, эксприментальные данные по массовому содержанию ²³⁸Ри выше расчетных значений, представленных в работе [11].

ЗАКЛЮЧЕНИЕ

Проведен радиохимический анализ 12 образцов облученного ядерного топлива РБМК-1000. Определены изотопный состав, массовое содержание нуклидов U, Pu, Am, Cm, Nd, Cs. Рассчитана величина выгорания методом тяжелых атомов и по накоплению продуктов деления. Сопоставление полученных данных с экспериментальными и расчетными результатами, приведенными в других рабтах, подверждает хорошую сходимость массового содержания нуклидов U и Pu от величины выгорания ОЯТ.

Результаты, представленные в настоящей работе, могут быть использованы при разработке экспресных неразрушающих методов контроля выгорания, оценки нуклидного состава ОЯТ, для уточнения топливных и трансмутационных кодов, сечения образования минорных актинидов, обоснования безопасности переработки и хранения ОЯТ.

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют об отсутствии конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- 1. Ерин Е.А., Куприянов В.Н., Незговоров Н.Ю. и др. // Тез. докл. VII Рос. конф. «Радиохимия-2012». Димитровград, 15–19 октября 2012 г. С. 427.
- 2. Ерин Е.А., Момотов В.Н., Волков А.Ю. и др. //

Радиохимия. 2017. Т. 59, № 4. С. 325-330.

- Ерин Е.А., Момотов В.Н., Волков А.Ю. // Тез. докл. IX Рос. конф. с международным участием «Радиохимия 2018». СПб., 17–21 сентября 2018 г. С. 188.
- Момотов В.Н., Ерин Е.А., Волков А.Ю., Баранов А.Ю. // Радиохимия, 2020, том 62, № 1. С. 66–72
- 5. Ерин Е.А., Момотов В.Н., Баранов А.А. др. // Радиохимия. 2017. Т. 59, № 1. С. 53–58.
- 6. ASTM E 244–80: Standard Test Method for Atom Percent Fission in Uranium and Plutonium Fuel (Mass Spectrometric Method). 1995.
- 7. ASTM E 321-96: Standard Test Method for Atom Percent Fission in Uranium and Plutonium Fuel (Neodymium-148 Method).

- Koyama Sh., Osaka M., Sekine T. // J. Nucl. Sci. Technol. 2003. Vol. 40, N 12. P. 998–1013.
- 9. Галанин А.Д. Введение в теорию ядерных реакторов на тепловых нейтронах. М.: Энергоиздат, 1990.
- 10. *Макарова Т.П., Бибичев Б.А., Домкин В.Д.* // Радиохимия. 2008. Т. 50, № 4. С. 361–370.
- 11. Barkauskas V., Plukienė R., Plukis A., Remeikis V. // Lithuan. J. Phys. 2017. Vol. 57, N 1. P. 42–53.
- Murphy B.D. ORIGEN–ARP: Cross Section Libraries for the RBMK-1000 System: ORNL/TM-2006/139. Oak Ridge, Tenn.: Oak Ridge National Laboratory, Nov. 2006.
- 13. *Матвеев Л.В., Центер Э.М.* Уран-232 и его влияние на радиационную обстановку в ядерном топливном цикле. М.: Энергоатомиздат, 1985. 72 с.
- Kang J., Hippel F.N. // Sci. Global Secur. 2001. Vol. 9. P. 1–32.