УДК 548.736

# СИНТЕЗ И РЕНТГЕНОСТРУКТУРНОЕ ИССЛЕДОВАНИЕ ДИОКСАЛАТНЫХ КОМПЛЕКСОВ УРАНИЛА И ПЛУТОНИЛА С КАРБАМИДОМ

© 2021 г. Л. Б. Сережкина<sup>*a*,\*</sup>, М. С. Григорьев<sup>6</sup>, Е. Ф. Рогалева<sup>*a*</sup>, А. М. Федосеев<sup>6</sup>, В. Н. Сережкин<sup>*a*</sup>

<sup>а</sup> Самарский национальный исследовательский университет им. акад. С. П. Королева, 443011, Самара, ул. Акад. Павлова, д. 1; <sup>б</sup> Институт физической химии и электрохимии им. А. Н. Фрумкина РАН, 119071, Москва, Ленинский пр., д. 31, корп. 4 \*e-mail: lserezh@samsu.ru

Получена 27.02.2020, после доработки 18.05.2020, принята к публикации 25.05.2020

Проведено рентгеноструктурное исследование кристаллов двух оксалатсодержащих комплексов уранила:  $(NH_4)_2UO_2(C_2O_4)_2$ ·Urea·H<sub>2</sub>O (I), Rb<sub>2</sub>UO<sub>2</sub>(C<sub>2</sub>O<sub>4</sub>)<sub>2</sub>·Urea·H<sub>2</sub>O (II) и нового комплекса плутонила  $(NH_4)_2PuO_2(C_2O_4)_2$ ·Urea·H<sub>2</sub>O (III), где Urea – карбамид. Кристаллы I–III содержат островные комплексы  $[AnO_2(C_2O_4)_2(Urea)]^{2-}$  (An = U или Pu), принадлежащие к группе  $AB_2^{01}M^1$  (A =  $UO_2^{2+}$  или  $PuO_2^{2+}$ ,  $B^{01} = C_2O_4^{2-}$ ,  $M^1 =$  Urea). Установлена изоструктурность I–III. С помощью метода молекулярных полиэдров Вороного–Дирихле обсуждено влияние природы внешнесферных катионов на особенности межмолекулярных взаимодействий в структурах кристаллов.

Ключевые слова: комплексы, оксалаты, уранил, плутонил, рентгеноструктурный анализ, полиэдры Вороного–Дирихле, ИК-спектры

DOI: 10.31857/S0033831121030047

Оксалаты актинидов давно и сравнительно широко используются в разнообразных технологических процессах. В частности, оксалат уранила и его производные применяют для очистки и получения металлического урана и его оксидов, а также при переработке и утилизации ядерного топлива [1]. Оксалат-ионы совместно с некоторыми другими представителями гомологического ряда [ООС–(CH<sub>2</sub>)<sub>n</sub>–СОО]<sup>2–</sup> дианионов алифатических а, $\omega$ -дикарбоновых кислот часто используются в качестве линкеров, связывающих атомы металлов в структурах гибридных металлоорганических каркасов (в том числе и уранорганических [2–12]), которые активно изучаются в последние десятилетия.

Оксалатсодержащие соединения U(VI) чаще всего принадлежат к классу гетеролигандных комплексов, в которых оксалат-ионы сосуществуют с ацидо- или электронейтральными лигандами разной природы [13–18]. Так, более полувека известна группа оксалатокомплексов состава  $R_2UO_2(C_2O_4)_2$ ·Urea·H<sub>2</sub>O (R = Na, K, Rb, Cs, NH<sub>4</sub>) [19, 20], однако до настоящего времени установлено строение только калиевого производного [21]. Данная работа предпринята с целью выяснения влияния природы внешнесферных одновалентных катионов и металла-комплексообразователя на строение кристаллов  $R_2UO_2(C_2O_4)_2$ ·Urea·H<sub>2</sub>O (R = NH<sub>4</sub> (I) или Rb (II), Urea – карбамид) и (NH<sub>4</sub>)<sub>2</sub>PuO<sub>2</sub>(C<sub>2</sub>O<sub>4</sub>)<sub>2</sub>·Urea·H<sub>2</sub>O (III).

## ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Соединения I и II синтезировали по ранее описанным [19, 20] методикам.

Новый комплекс  $(NH_4)_2PuO_2(C_2O_4)_2$ ·Urea·H<sub>2</sub>O (III) получали по следующей методике. Аликвоту 0.1 мл раствора <sup>239</sup>Pu(NO<sub>3</sub>)<sub>4</sub> (0.02 ммоль) в трехмолярной азотной кислоте упаривали с концентри-

рованной хлорной кислотой. Полученный сухой остаток растворяли в 0.2 мл воды, добавляли 0.1 мл насыщенного при комнатной температуре раствора оксалата аммония (0.04 ммоль) и 0.2 мл одномолярного раствора карбамида (0.2 ммоль). Исходные мольные соотношения реагентов составляли 1 : 2 : 10. Полученный раствор выдерживали при 6°С в течение нескольких часов до появления кристаллов **III**.

Рентгеноструктурный анализ. Рентгенодифракционные эксперименты проведены на автоматическом четырехкружном дифрактометре Bruker Карра Арех II. Параметры элементарных ячеек уточнены по всему массиву данных по программе SAINT-Plus [22]. В экспериментальные интенсивности рефлексов внесены поправки на поглощение с использованием программы SADABS [23]. Структуры расшифрованы прямым методом (SHELXS97 [24]) и уточнены полноматричным методом наименьших квадратов (SHELXL-2014 [25]) по  $F^2$  в анизотропном приближении для всех неводородных атомов. Атомы Н групп NH<sub>2</sub> размещены в геометрически вычисленных позициях с  $U_{\mu_{30}} = 1.2 U_{3KB}$ (N). Атомы Н молекул воды и катионов аммония локализованы на разностных Фурье-синтезах электронной плотности и уточнены с  $U_{\mu_{30}} =$ 1.5U<sub>экв</sub>(O,N) и ограничением длин связей О-Н и угла Н-О-Н для молекул воды или с наложением условий равенства длин связей N-H и углов H-N-H для катионов аммония. Кристаллографические характеристики и детали дифракционных экспериментов приведены в табл. 1. Значения основных

**Таблица 1.** Кристаллографические данные, параметры эксперимента и уточнения структур (NH<sub>4</sub>)<sub>2</sub>UO<sub>2</sub>(C<sub>2</sub>O<sub>4</sub>)<sub>2</sub>·Urea·H<sub>2</sub>O (I), Rb<sub>2</sub>UO<sub>2</sub>(C<sub>2</sub>O<sub>4</sub>)<sub>2</sub>·Urea·H<sub>2</sub>O (II) и (NH<sub>4</sub>)<sub>2</sub>PuO<sub>2</sub>(C<sub>2</sub>O<sub>4</sub>)<sub>2</sub>·Urea·H<sub>2</sub>O (III)

| Параметр                                                       | Ι                   | II                                                 | III                 |
|----------------------------------------------------------------|---------------------|----------------------------------------------------|---------------------|
| Сингония, пространственная группа, Z                           |                     | Моноклинная, <i>P2</i> <sub>1</sub> / <i>c</i> , 4 |                     |
| <i>a</i> , Å                                                   | 8.8353(3),          | 8.9061(11),                                        | 8.8453(3),          |
| b, Å                                                           | 6.4682(2),          | 6.5265(9),                                         | 6.3948(2),          |
| <i>c</i> , Å                                                   | 24.7305(6)          | 24.470(3)                                          | 24.6883(8)          |
| β, град                                                        | 94.875(1)           | 96.248(3)                                          | 95.381(2)           |
| <i>V</i> , Å <sup>3</sup>                                      | 1408.20(7)          | 1413.9(3)                                          | 1390.31(8)          |
| $D_x$ , г/см <sup>3</sup>                                      | 2.642               | 3.265                                              | 2.695               |
| $\mu,{ m Mm}^{-1}$                                             | 11.599              | 18.386                                             | 4.815               |
| Т, К                                                           |                     | 100(2)                                             |                     |
| Излучение, λ, Å                                                |                     | Mo <i>K</i> <sub>a</sub> , 0.71073                 |                     |
| Размер образца, мм                                             | 0.12×0.10×0.08      | 0.24×0.12×0.10                                     | 0.18×0.08×0.04      |
| Тип сканирования                                               |                     | φиω                                                |                     |
| $T_{\min}, T_{\max}$                                           | 0.405, 0.457        | 0.105, 0.261                                       | 0.698, 0.831        |
| Область сбора данных по q, град                                | 4.168, 29.997       | 4.188, 29.997                                      | 4.188, 29.997       |
| Область <i>h</i> , <i>k</i> , <i>l</i>                         | $-12 \le h \le 12,$ | $-12 \le h \le 12,$                                | $-11 \le h \le 12,$ |
|                                                                | $-9 \le k \le 9,$   | $-8 \le k \le 9,$                                  | $-8 \le k \le 8,$   |
|                                                                | $-34 \le l \le 33$  | $-34 \le l \le 34$                                 | $-30 \le l \le 34$  |
| Число отражений: измеренных/                                   | 12916/4082,         | 15069/4115,                                        | 11547/4017,         |
| независимых ( $N_1$ ), $R_{int}$ /с $I > 2\sigma(I)$ ( $N_2$ ) | 0.0442/3090         | 0.0816/3203                                        | 0.0605/2983         |
| Метод уточнения                                                | Π                   | олноматричный МНК по                               | $F^2$               |
| Число уточняемых параметров                                    | 229                 | 205                                                | 229                 |
| Факторы недостоверности:                                       |                     |                                                    |                     |
| $wR_2$ по $N_1$                                                | 0.0467              | 0.0939                                             | 0.0603              |
| <i>R</i> <sub>1</sub> по <i>N</i> <sub>2</sub>                 | 0.0259              | 0.0410                                             | 0.0342              |
| S                                                              | 0.997               | 0.986                                              | 0.966               |
| $\Delta \rho_{max} / \Delta \rho_{min}$ , e/Å <sup>3</sup>     | 0.883/-1.064        | 2.615/-3.812                                       | 1.150/-1.780        |

|         | Структура I, пентагональная бипирамида UO <sub>7</sub> |                       |                           |            |  |  |
|---------|--------------------------------------------------------|-----------------------|---------------------------|------------|--|--|
| Связь   | $d, \mathbf{\AA}$                                      | Ω, % <sup>a</sup>     | Угол                      | ω, град    |  |  |
| U1-01   | 1.773(3)                                               | 21.32                 | O1U1O2                    | 178.95(12) |  |  |
| U1–O2   | 1.773(3)                                               | 21.36                 | O11U1O9                   | 78.22(9)   |  |  |
| U1–O3   | 2.408(3)                                               | 10.55                 | O7U1O9                    | 66.46(9)   |  |  |
| U1–O5   | 2.402(2)                                               | 11.13                 | O11U1O5                   | 79.15(10)  |  |  |
| U1–O7   | 2.342(3)                                               | 11.31                 | O7U1O3                    | 70.16(9)   |  |  |
| U1O9    | 2.374(3)                                               | 11.32                 | O5U1O3                    | 66.01(9)   |  |  |
| U1011   | 2.298(3)                                               | 13.02                 |                           |            |  |  |
|         | Структура І                                            | II, пентагональная би | пирамида UO <sub>7</sub>  |            |  |  |
| Связь   | $d, \mathbf{\mathring{A}}$                             | $\Omega, \%^{a}$      | Угол                      | ω, град    |  |  |
| U101    | 1.781(6)                                               | 21.24                 | O2U1O1                    | 178.6(2)   |  |  |
| U1–O2   | 1.772(5)                                               | 21.37                 | O3U1O8                    | 78.64(18)  |  |  |
| U1–O3   | 2.324(5)                                               | 12.75                 | O8U1O10                   | 66.61(17)  |  |  |
| U1–O4   | 2.400(5)                                               | 11.05                 | O10U1O6                   | 71.00(17)  |  |  |
| U1O6    | 2.391(5)                                               | 10.77                 | O3U1O4                    | 77.74(18)  |  |  |
| U1–O8   | 2.356(5)                                               | 11.64                 | O6U1O4                    | 66.05(18)  |  |  |
| U1O10   | 2.358(5)                                               | 11.17                 |                           |            |  |  |
|         | Структура І                                            | II, пентагональная би | пирамида PuO <sub>7</sub> |            |  |  |
| Связь   | $d, \mathbf{\mathring{A}}$                             | Ω, % <sup>a</sup>     | Угол                      | ω, град    |  |  |
| Pu1–O1  | 1.737(4)                                               | 21.70                 | O1Pu1O2                   | 179.20(18) |  |  |
| Pu1–O2  | 1.744(4)                                               | 21.64                 | O11Pu1O9                  | 78.83(13)  |  |  |
| Pu1–O3  | 2.410(4)                                               | 10.42                 | O7Pu1O9                   | 67.30(13)  |  |  |
| Pu1–O5  | 2.399(4)                                               | 10.95                 | O11Pu1O5                  | 76.99(13)  |  |  |
| Pu1–O7  | 2.336(4)                                               | 11.23                 | O5Pu1O3                   | 66.69(13)  |  |  |
| Pu1–O9  | 2.366(4)                                               | 11.33                 | O7Pu1O3                   | 70.20(13)  |  |  |
| Pu1–O11 | 2.303(4)                                               | 12.74                 |                           |            |  |  |

Таблица 2. Геометрические характеристики полиэдров An в структурах I, II и III

<sup>а</sup> Ω – здесь и далее телесный угол (в процентах от полного телесного угла 4π ср), под которым общая грань ПВД соседних атомов видна из ядра любого из них.

длин связей и валентных углов для полиэдров AnO<sub>7</sub> приведены в табл. 2. Для определения координационных чисел (КЧ) атомов использовали метод пересекающихся сфер [26]. Координаты атомов и величины температурных параметров кристаллических структур **I–III** депонированы в Кембриджском центре кристаллографических данных под номерами ССDС 1971566, 1971567 и 1971568 соответственно.

ИК спектры измерены при комнатной температуре в диапазоне 500–4000 см<sup>-1</sup> на Фурье-спектрометре ФТ-801. Образцы готовили прессованием таблеток с КВг. Отнесение полос поглощения выполнено с учетом работ [27–29]. РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Полученные рентгенографические данные свидетельствуют об изоструктурности соединений **I**– **III** и калиевого аналога [21], кристаллизующихся в пространственной группе  $P2_1/c$ . Атомы актинида (An = U или Pu) проявляют КЧ 7. Координационными полиэдрами (КП) Ал являются пентагональные бипирамиды, на главной оси которых находятся атомы кислорода актинильных групп AnO<sub>2</sub><sup>2+</sup>. Диоксокатионы AnO<sub>2</sub><sup>2+</sup> имеют практически симметричное (расстояния U–O равны 1.772 и 1.773 Å (I), 1.781 и 1.772 Å (II), а расстояния Pu–O – 1.737 и 1.744 Å) и линейное строение ( $\angle$ O–An–O  $\approx$  179°).



**Рис. 1.** Строение комплексов  $[AnO_2(C_2O_4)_2 \cdot Urea]^{2-}$  в структурах **I–III**. Светлые кружки – атомы кислорода, черные – углерода, серые – азота, штриховкой выделен атом An. Для упрощения атомы H не показаны.

Объемы полиэдров Вороного-Дирихле (ПВД) атомов урана, имеющих форму пентагональной призмы, в структурах кристаллов равны 9.02 Å<sup>3</sup> (I) и 9.06 Å<sup>3</sup> (II) и приемлемо согласуются со средним значением 9.3(2) Å<sup>3</sup>, установленным для атомов U(VI) в составе КП UO<sub>n</sub> (n = 5-9) [30]. Объем ПВД атома плутония в структуре кристаллов III равен 8.84 Å<sup>3</sup> и в пределах 3σ совпадает со средним значением 9.16(12)  $Å^3$  для атомов Pu(VI) в полиэдрах  $PuO_n$  (n = 6-8) [31]. Безразмерный второй момент инерции ( $G_3$ ) для ПВД атомов урана ( $G_3 = 0.08365$ и 0.08361 соответственно в I и II) меньше, чем для ПВД атома Ри (0.08390). Отметим, что указанные изменения, которые в I-III сопровождают переход от U к Pu (уменьшение объема ПВД и увеличение G<sub>3</sub>), находятся в полном согласии с результатами анализа эффекта актинидного сжатия в изоструктурных соединениях An(VI) [32].

В экваториальной плоскости бипирамид AnO<sub>7</sub> находятся четыре атома кислорода двух оксалат-ионов. Каждый анион реализует тип координации  $B^{01}$ -5, поскольку связан с атомом актинида бидентатно-циклически с образованием пятичленного металлоцикла (рис. 1). Здесь и далее обозначения типов координации лигандов и кристаллохимические формулы (КХФ) комплексов указаны в соответствии с методом [33, 34]. Пятую позицию в экваториальной плоскости бипирамид занимает атом кислорода молекулы карбамида, выступающей в роли монодентатного лиганда (тип координации  $M^{1}$ ). Расстояния An-O в экваториальной плоскости лежат в области 2.30-2.41 Å (табл. 2). Основной структурной единицей кристаллов I-III являются одноядерные комплексы состава  $[AnO_2(C_2O_4)_2 \cdot Urea]^{2-}$ 



Рис. 2. Фрагмент цепи  $Rb(1)O_{3/2}O_{3/1}$ · $Rb(2)O_{5/2}O_{2/1} = Rb_2O_9$  в структуре II.

(рис. 1), которым отвечает КХФ  $AB_{2}^{01}M^{1}$  ( $A = AnO_{2}^{2+}$ ,  $B^{01} = C_{2}O_{4}^{2-}$ ,  $M^{1} = CO(NH_{2})_{2}$ ).

Как и в изоструктурном  $K_2UO_2(C_2O_4)_2$ ·Urea·H<sub>2</sub>O [21], в структуре II содержится два разных иона рубидия, которые образуют координационные полиэдры Rb(1)O<sub>6</sub> и Rb(2)O<sub>7</sub> с *d*(Rb–O) в диапазоне 2.81–2.99 Å. Атомы кислорода, координированные рубидием, принадлежат четырем разным комплексам [UO<sub>2</sub>(C<sub>2</sub>O<sub>4</sub>)<sub>2</sub>·Urea]<sup>2–</sup>. Атом Rb(2) координирует также атом кислорода (O12) внешнесферной молекулы воды. Полиэдры RbO<sub>n</sub> в II

| $MZ$ $k_{AZ}$ $d, A$ $S_{AZ}$ , $\delta_A$ $\delta_{AZ}$                                                                                                                                                                                                                                                                                     | Контакты | (NF      | $H_4)_2UO_2(C_2O_4)_3$ | <sup>1</sup> 2. <sup>1</sup> Urea·H <sub>2</sub> ( | (I) C             | -        | $Rb_2UO_2(C_2O_4)_2$ | ₂•Urea•H₂O       | (II)              | £        | VH4)2PuO2(C2C  | )4)2·Urea·H <sub>2</sub> ( | (III)             |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------|------------------------|----------------------------------------------------|-------------------|----------|----------------------|------------------|-------------------|----------|----------------|----------------------------|-------------------|
| 0/0         38 $3.15-4.16$ $21.58$ $4.65$ $55$ $3.16-4.56$ $47.50$ $10.66$ $34$ $3.12-3.66$ N/O         10 $3.31-3.65$ $5.67$ $1.22$ $14$ $3.34-3.51$ $7.86$ $1.76$ $10$ $3.29-3.56$ C/O $24$ $3.09-3.93$ $22.47$ $4.84$ $24$ $3.07-3.98$ $26.11$ $5.86$ $22$ $3.09-3.56$ H/O $174$ $1.96-4.26$ $318.08$ $68.51$ $88$ $1.98-4.32$ $15.65.8$ $35.15$ $180$ $1.90-4.2$ C/N $8$ $3.18-3.91$ $3.12$ $0.67$ $10$ $3.22-3.76$ $32.5$ $0.06$ $12$ $3.19-3.93$ H/N $10$ $3.24-3.95$ $2.85$ $0.61$ $2$ $3.26-3.68$ $3.13-3.75$ $3.16-4.0$ H/N $10$ $3.24-3.95$ $2.86$ $0.25$ $0.73$ $8$ $3.13-3.85$ H/N $10$ $3.24-3.56$ $12.6$ $12.66-3.7$ <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | A/Z      | $k_{AZ}$ | $d,  m \AA$            | $S_{AZ},  m \AA^2$                                 | $\Delta_{AZ}$ , % | $k_{AZ}$ | $d,  m \AA$          | $S_{AZ}$ , $Å^2$ | $\Delta_{AZ}$ , % | $k_{AZ}$ | d, Å           | $S_{AZ}$ , ${ m \AA}^2$    | $\Delta_{AZ}$ , % |
| N/O         10         3.31-3.65         5.67         1.22         14         3.34-3.51         7.86         1.76         10         3.29-3.55           C/O         24         3.09-3.03         22.47         4.84         24         3.07-3.98         26.11         5.86         122         3.09-3.65           H/O         174         1.96-4.26         318.08         68.51         88         1.98-4.32         156.58         35.15         180         190-4.32           C/N         8         3.18-3.91         3.12         0.67         10         3.22-3.76         3.25         0.73         8         3.13-3.33           C/N         8         3.18-3.91         3.12         0.67         10         3.22-3.76         3.25         0.73         8         3.13-3.53           C/N         8         3.18-3.91         3.12         0.67         10         3.22-3.76         3.25         0.73         8         3.16-40           C/N         8         3.18-3.91         3.12         3.26-3.68         1.86         0.42         4         3.16-40           H/N         10         3.24-3.05         0.18         7         3.26-3.68         1.86         0.42         7 <td>0/0</td> <td>38</td> <td>3.15-4.16</td> <td>21.58</td> <td>4.65</td> <td>55</td> <td>3.16-4.56</td> <td>47.50</td> <td>10.66</td> <td>34</td> <td>3.12 –<br/>4.06</td> <td>21.87</td> <td>4.73</td> | 0/0      | 38       | 3.15-4.16              | 21.58                                              | 4.65              | 55       | 3.16-4.56            | 47.50            | 10.66             | 34       | 3.12 –<br>4.06 | 21.87                      | 4.73              |
| C(0         24         3.09-3.93         22.47         4.84         24         3.07-3.98         26.11         5.86         22         3.09-3.6           H/O         174         1.96-4.26         318.08         68.51         88         1.98-4.32         156.58         35.15         180         1.90-42.3           C/N         8         3.18-3.91         3.12         0.67         10         3.22-3.76         3.25         0.73         8         3.13-38           H/N         10         3.24-3.95         2.85         0.61         2         3.04         0.25         0.06         12         3.16-40           H/N         10         3.24-3.97         0.85         0.18         7         3.26-3.68         1.86         0.42         4         3.16-40           K/V         54         3.24-3.77         0.85         0.18         7         3.26-3.68         1.86         0.42         4         3.29-3.7           H/H         74         2.44-4.10         66.94         14.42         6         2.64-33         146.36         3.28         -         -         -           Rb/O         -         -         -         -         -         -         44<                                                                                                                                                                                                                        | O/N      | 10       | 3.31–3.65              | 5.67                                               | 1.22              | 14       | 3.34–3.51            | 7.86             | 1.76              | 10       | 3.29–3.56      | 5.27                       | 1.14              |
| H/O         174         1.96-4.26         318.08         68.51         88         1.98-4.32         156.58         35.15         180         1.90-4.2           C/N         8         3.18-3.91         3.12         0.67         10         3.22-3.76         3.25         0.73         8         3.13-3.8           H/N         10         3.24-3.95         2.85         0.61         2         3.04         0.25         0.06         12         3.16-40           H/N         10         3.24-3.95         2.85         0.61         2         3.04         0.25         0.06         12         3.16-40           H/H         74         3.34-3.77         0.85         0.18         7         3.26-3.68         1.86         0.42         4         3.29-3.7           H/H         74         2.40-4.27         22.71         4.89         26         2.68-4.30         15.74         3.53         52         2.68-4.2           Rb/O         -         -         -         44         2.81-4.33         146.36         3.53         52         2.68-4.2           Rb/N         -         -         -         -         44         2.81-4.33         146.36         3.53                                                                                                                                                                                                                            | C/O      | 24       | 3.09-3.93              | 22.47                                              | 4.84              | 24       | 3.07–3.98            | 26.11            | 5.86              | 22       | 3.09–3.65      | 23.22                      | 5.02              |
| C/N       8       3.18–3.91       3.12       0.67       10       3.22–3.76       3.25       0.73       8       3.13–3.8         H/N       10       3.24–3.95       2.85       0.61       2       3.04       0.25       0.06       12       3.16–4.0         K/V       10       3.24–3.77       0.85       0.18       7       3.26–3.68       1.86       0.42       4       3.29–3.7         H/C       54       2.70–4.27       22.71       4.89       26       2.68–4.30       15.74       3.53       52       2.68–4.2         H/H       74       2.44–4.10       66.94       14.42       6       2.40–3.82       12.32       2.76       70       2.36–4.1         Rb/O       -       -       -       4       3.53-3.75       146.36       3.286       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -                                                                                                                                                                                                                                                                                                                                          | O/H      | 174      | 1.96-4.26              | 318.08                                             | 68.51             | 88       | 1.98-4.32            | 156.58           | 35.15             | 180      | 1.90-4.28      | 314.41                     | 68.03             |
| H/N10 $3.24-3.95$ $2.85$ $0.61$ $2$ $3.04$ $0.25$ $0.06$ $12$ $3.16-4.0$ $C/C$ 4 $3.34-3.77$ $0.85$ $0.18$ $7$ $3.26-3.68$ $1.86$ $0.42$ $4$ $3.29-3.7$ $H/C$ $54$ $2.70-4.27$ $2.87$ $0.18$ $7$ $3.26-3.68$ $1.86$ $0.42$ $4$ $3.29-3.7$ $H/H$ $74$ $2.70-4.27$ $22.71$ $4.89$ $26$ $2.68-4.30$ $15.74$ $3.53$ $52$ $2.68-4.2$ $Rb/O$ $      44$ $2.81-4.382$ $12.32$ $2.76$ $70$ $2.36-4.1$ $Rb/O$ $       44$ $2.81-4.33$ $146.36$ $3.236$ $  Rb/O$ $            Rb/O$ $            Rb/H$ $              Rb/H$ $                               -$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C/N      | 8        | 3.18–3.91              | 3.12                                               | 0.67              | 10       | 3.22–3.76            | 3.25             | 0.73              | ~        | 3.13-3.84      | 3.22                       | 0.70              |
| C/C       4       3.34-3.77       0.85       0.18       7       3.26-3.68       1.86       0.42       4       3.29-3.7         H/C       54       2.70-4.27       22.71       4.89       26       2.68-4.30       15.74       3.53       52       2.68-4.2         H/H       74       2.44-4.10       66.94       14.42       6       2.40-3.82       12.32       2.76       70       2.36-4.1         Rb/O       -       -       -       -       44       2.81-4.33       146.36       32.86       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       <                                                                                                                                                                                                                                                                                                                                                              | N/H      | 10       | 3.24-3.95              | 2.85                                               | 0.61              | 5        | 3.04                 | 0.25             | 0.06              | 12       | 3.16-4.00      | 3.18                       | 0.69              |
| H/C $54$ $2.70-4.27$ $22.71$ $4.89$ $26$ $2.68-4.30$ $15.74$ $3.53$ $52$ $2.68-4.2$ H/H $74$ $2.44-4.10$ $66.94$ $14.42$ $6$ $2.40-3.82$ $12.32$ $2.76$ $70$ $2.36-4.1$ Rb/O $     44$ $2.81-4.33$ $146.36$ $32.86$ $ -$ Rb/N $     44$ $2.81-4.33$ $146.36$ $32.86$ $ -$ Rb/R $         -$ Rb/H $         -$ Statistical Rb/H $        -$ Statistical Rb/H $        -$ Rb/H $    -$ <td>C/C</td> <td>4</td> <td>3.34–3.77</td> <td>0.85</td> <td>0.18</td> <td>L</td> <td>3.26–3.68</td> <td>1.86</td> <td>0.42</td> <td>4</td> <td>3.29–3.71</td> <td>0.97</td> <td>0.21</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | C/C      | 4        | 3.34–3.77              | 0.85                                               | 0.18              | L        | 3.26–3.68            | 1.86             | 0.42              | 4        | 3.29–3.71      | 0.97                       | 0.21              |
| H/H       74       2.44-4.10       66.94       14.42       6       2.40-3.82       12.32       2.76       70       2.36-4.1         Rb/O       -       -       -       -       44       2.81-4.33       146.36       32.86       -       -       -         Rb/O       -       -       -       -       44       2.81-4.33       146.36       32.86       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -                                                                                                                                                                                                                                                                                                                                                                                          | H/C      | 54       | 2.70-4.27              | 22.71                                              | 4.89              | 26       | 2.68-4.30            | 15.74            | 3.53              | 52       | 2.68-4.28      | 22.00                      | 4.76              |
| Rb/O         -         -         -         44         2.81-4.33         146.36         32.86         -         -         -         -         -         -         -         -         -         -         -         -         -         44         2.81-4.33         146.36         32.86         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -                                                                                                                                                                                                                                                                                   | H/H      | 74       | 2.44-4.10              | 66.94                                              | 14.42             | 9        | 2.40–3.82            | 12.32            | 2.76              | 70       | 2.36-4.19      | 68.00                      | 14.71             |
| Rb/N         -         -         -         4         3.75-3.76         0.60         0.14         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -                                                                                                                                                                                                                                                                                               | Rb/O     |          | Ι                      | I                                                  | I                 | 44       | 2.81-4.33            | 146.36           | 32.86             | I        | I              | Ι                          | Ι                 |
| Rb/C         -         -         -         6         3.58-4.50         0.21         0.05         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -                                                                                                                                                                                                                                                                                               | Rb/N     | I        | Ι                      | I                                                  | I                 | 4        | 3.75–3.76            | 09.0             | 0.14              | Ι        | I              | I                          | I                 |
| Rb/Rb         -         -         -         2         4.17         0.074         0.02         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -                                                                                                                                                                                                                                                                                                  | Rb/C     |          | Ι                      | I                                                  | I                 | 9        | 3.58-4.50            | 0.21             | 0.05              | I        | I              | I                          | I                 |
| Rb/H         -         -         -         24         3.06-4.50         26.76         6.01         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -                                                                                                                                                                                                                                                                                             | Rb/Rb    |          | Ι                      | I                                                  | I                 | 5        | 4.17                 | 0.074            | 0.02              | I        | I              | I                          | I                 |
| Сумма 396 1.96-4.27 464.27 100.00 312 1.98-4.56 445.46 100.00 392 1.90-4.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Rb/H     |          | Ι                      | I                                                  | I                 | 24       | 3.06-4.50            | 26.76            | 6.01              | Ι        | I              | Ι                          | I                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Сумма    | 396      | 1.96-4.27              | 464.27                                             | 100.00            | 312      | 1.98-4.56            | 445.46           | 100.00            | 392      | 1.90-4.28      | 462.13                     | 100.00            |

СИНТЕЗ И РЕНТГЕНОСТРУКТУРНОЕ ИССЛЕДОВАНИЕ

231

| Характеристики водородных связей в структуре І |       |            |             |                          |                   |           |            |
|------------------------------------------------|-------|------------|-------------|--------------------------|-------------------|-----------|------------|
| D U O                                          | Pace  | стояния, А | Å           |                          |                   |           | Ранг грани |
| $D-H\cdots O$                                  | D-H   | Н…О        | <i>D</i> …0 | Углы <i>D</i> –Н…О, град | $\Omega(D-H), \%$ | Ω(H…O), % | Н…О        |
| O12–H1…O4                                      | 0.828 | 2.015      | 2.837       | 171.7                    | 33.26             | 22.22     | 0          |
| N1–H4…O12                                      | 0.862 | 2.024      | 2.884       | 175.1                    | 25.06             | 19.78     | 0          |
| N1–H5…O10                                      | 0.866 | 2.000      | 2.799       | 152.8                    | 24.58             | 22.35     | 0          |
| N1–H6…O6                                       | 0.859 | 2.127      | 2.815       | 136.7                    | 25.03             | 17.53     | 0          |
| N2–H7…O6                                       | 0.860 | 2.231      | 3.003       | 149.3                    | 24.99             | 16.06     | 0          |
| N2–H7…O4                                       | 0.860 | 2.287      | 2.960       | 135.3                    | 24.99             | 16.58     | 0          |
| N2–H8…O2                                       | 0.859 | 2.111      | 2.928       | 158.8                    | 25.23             | 21.24     | 0          |
| N2–H9…O3                                       | 0.858 | 2.040      | 2.888       | 169.4                    | 25.11             | 18.85     | 0          |
| N2-H10····O10                                  | 0.869 | 1.967      | 2.832       | 173.7                    | 24.67             | 20.88     | 0          |
| N3–H11…O9                                      | 0.880 | 2.231      | 2.982       | 143.1                    | 33.16             | 20.33     | 5          |
| N3–H12…O8                                      | 0.880 | 2.049      | 2.925       | 173.7                    | 33.04             | 20.73     | 0          |
| N4–H13…O6                                      | 0.880 | 2.214      | 2.999       | 148.4                    | 33.24             | 15.27     | 0          |
| N4–H14…O7                                      | 0.879 | 1.961      | 2.837       | 174.7                    | 33.13             | 20.29     | 0          |
|                                                | 1     | Харан      | стеристик   | и водородных связей в    | структуре II      |           |            |
| O12–H2…O7                                      | 0.854 | 1.982      | 2.815       | 164.8                    | 33.18             | 23.02     | 5          |
| N1–H3…O5                                       | 0.880 | 2.198      | 2.996       | 150.6                    | 33.49             | 18.31     | 5          |
| N1–H4…O10                                      | 0.881 | 1.981      | 2.856       | 172.6                    | 33.34             | 20.40     | 9          |
| N2–H5…O8                                       | 0.881 | 2.220      | 2.982       | 144.6                    | 33.18             | 20.46     | 5          |
| N2-H6…O11                                      | 0.880 | 2.078      | 2.951       | 171.5                    | 33.00             | 20.51     | 11         |
|                                                |       | Харак      | теристики   | и водородных связей в    | структуре III     |           |            |
| O12–H1…O4                                      | 0.871 | 1.942      | 2.809       | 173.3                    | 31.63             | 22.90     | 0          |
| N1–H4…O12                                      | 0.920 | 1.979      | 2.946       | 166.4                    | 24.58             | 19.54     | 0          |
| N1–H5…O10                                      | 0.906 | 1.991      | 2.770       | 143.1                    | 25.34             | 21.85     | 0          |
| N2–H7…O6                                       | 0.913 | 2.194      | 2.984       | 144.4                    | 25.12             | 15.98     | 0          |
| N2–H7…O4                                       | 0.913 | 2.217      | 2.954       | 137.5                    | 25.12             | 17.67     | 0          |
| N2–H8…O2                                       | 0.915 | 2.207      | 3.019       | 147.6                    | 25.03             | 19.74     | 0          |
| N2–H9…O3                                       | 0.917 | 1.967      | 2.877       | 171.9                    | 24.98             | 19.62     | 0          |
| N2-H10···O10                                   | 0.916 | 1.903      | 2.816       | 175.3                    | 24.88             | 21.51     | 0          |
| N3–H11…O9                                      | 0.880 | 2.185      | 3.294       | 145.2                    | 33.10             | 20.70     | 5          |
| N3-H12…O8                                      | 0.880 | 2.076      | 2.952       | 173.0                    | 32.96             | 20.09     | 0          |
| N4-H13…O6                                      | 0.880 | 2.194      | 2.990       | 150.3                    | 33.15             | 14.69     | 0          |
| N4–H14…O7                                      | 0.880 | 1.951      | 2.828       | 173.9                    | 33.07             | 20.20     | 0          |

Таблица 4. Характеристики водородных связей в структуре кристаллов I–III<sup>a</sup>

<sup>а</sup> Учтены контакты с расстояниями H····O  $\leq$  2.5 Å, углами D-H····O  $\geq$  130° и  $\Omega$ (H···O) >10%.

соединены общими ребрами и вершинами в цепи  $Rb(1)O_{3/2}O_{3/1}\cdot Rb(2)O_{5/2}O_{2/1} = Rb_2O_9$ , которые проходят вдоль [100] (рис. 2). Из девяти кристаллографически разных атомов кислорода такой цепи пять принадлежит оксалат-ионам, два – иону уранила и по одному – молекулам воды и карбамида.

В структурах I и III роль внешнесферных катионов играют ионы аммония, поэтому комплексы [AnO<sub>2</sub>(C<sub>2</sub>O<sub>4</sub>)<sub>2</sub>·Urea]<sup>2-</sup> связаны в каркас как за счет электростатических взаимодействий с противоионами, так и с помощью водородных связей N-H···O. Количественно оценить особенности межмолекулярных взаимодействий в обсуждаемых соединениях можно с помощью метода молекулярных полиэдров Вороного-Дирихле (ММПВД) [35, 36], который позволяет с единых позиций выявлять и характеризовать как все межмолекулярные, так и внутримолекулярные невалентные контакты. В рамках ММПВД важной характеристикой каждой грани А/У двух ПВД соседних атомов А и У является ее ранг, который указывает минимальное число химических связей, соединяющих ядра атомов А и Ув структуре вещества [35, 36]. В зависимости от значения ранга грани (РГ) контакт A/Y относится к одному из трех возможных типов: химические связи  $(P\Gamma = 1)$ , межмолекулярные взаимодействия  $(P\Gamma =$ 0) и внутримолекулярные взаимодействия ( $P\Gamma > 1$ ).

Если в составе вещества присутствуют атомы р разных элементов, то теоретически могут реализоваться невалентные взаимодействия p(p + 1)/2 типов. Использование ММПВД возможно только при условии, что установлены координаты всех независимых атомов в структуре кристалла [35, 36]. Структуры I, II и III, для которых соответственно p = 5, 6и 5, отвечают этому требованию. Согласно полученным данным, в структурах I и III реализуется 9 из 15 возможных типов межмолекулярных контактов (табл. 3). В обоих случаях наибольший вклад в связывание комплексов  $[AnO_2(C_2O_4)_2 \cdot Urea]^{2-}$  принадлежит водородным связям (контакты Н/О), на которые приходится около 68% общей площади поверхности молекулярных ПВД (<sup>0</sup>S в табл. 3). Значительную роль играют также межмолекулярные дисперсионные взаимодействия (контакты H/H, O/O и H/C), суммарный парциальный вклад которых составляет ≈24%.

РАДИОХИМИЯ том 63 № 3 2021

Таблица 5. Отнесение полос поглощения в ИК спектре II

| Волновые числа, см $^{-1 a}$ | Отнесение                       |
|------------------------------|---------------------------------|
| 3457 с                       | ν(H <sub>2</sub> O)             |
| 3436 c                       |                                 |
| 3361 c                       | $\nu(\rm NH)$                   |
| 1717cp                       | $v_{as}(COO)$                   |
| 1652 c                       | $v_{as}(COO)$                   |
| 1622 c                       | $v(C = O)_{Urea}, \delta(H_2O)$ |
| 1574 c                       | $v_{as}(COO), \gamma(NH_2)$     |
| 1505 ср                      | $v_{as}(COO)$                   |
| 1384 ср                      | $v_{s}(COO), v_{as}(CN)$        |
| 1348 ср                      | v <sub>s</sub> (COO)            |
| 1307 ср                      |                                 |
| 1158 cp                      | $\rho(\text{NH}_2)$             |
| 1029 сл                      | $v(CC), v_s(CN)$                |
| 951 c                        | $v_{as}(UO_2^{2+})$             |
| 796 ср                       | δ(COO)                          |
| 765 сл                       |                                 |
| 669 cp                       | δ(NH)                           |
| 609 cp                       | ρ(COO)                          |
| 575 ср                       |                                 |
| 541 cp                       |                                 |

<sup>а</sup> с – сильная, ср – средняя, сл – слабая.

Для удобства сравнения с I или III в структуре II в качестве межмолекулярных контактов учтены все взаимодействия, в которых принимают участие атомы Rb (5 нижних строк в табл. 3). С их учетом в II реализуется 14 из 21 возможного типа межмолекулярных контактов. Как и в аммонийных аналогах, в кристаллах II важнейшая роль в связывании урансодержащих комплексов принадлежит водородным связям. Однако по сравнению с I или III их парциальный вклад ( $\Delta_{\rm HO} \approx 35\%$ , табл. 3) понижен почти в два раза из-за появления конкурирующих и сопоставимых по значимости контактов Rb/O, для которых  $\Delta_{\text{RbO}} \approx 33\%$ . На различие парциальных вкладов межмолекулярных взаимодействий влияет также изменение мольной доли (б) атомов в рассматриваемых комплексах. При переходе от I (или III) к **Π** величина δ увеличивается для атомов кислорода (на 9.5%), тогда как для водорода б сильно снижается (на 17.5%). Вследствие этого вклад дисперсионных взаимодействий О/О в II по сравнению с I или III увеличен примерно вдвое (до  $\approx 11\%$ ), а для

взаимодействий Н/Н понижен примерно в пять раз (до  $\approx$ 3%, табл. 3).

Таким образом, связывание структурных единиц кристаллов I, II и III осуществляется за счет электростатических взаимодействий, системы водородных связей и дисперсионных контактов. Характеристики важнейших водородных связей, которые по классификации [37] являются средними по силе, представлены в табл. 4.

ИК спектры I–III похожи. В качестве примера проанализирован ИК спектр II (табл. 5). Полученные данные согласуются с результатами рентгеноструктурного анализа монокристаллов: спектр содержит характеристические полосы поглощения ионов  $UO_2^{2+}$ ,  $C_2O_4^{2-}$  и молекул Urea. Колебание  $v_{as}(UO_2^{2+})$  проявляется при 951 см<sup>-1</sup>. В интервалах 1717–1505 и 1384–1307 см<sup>-1</sup> наблюдаются соответственно антисимметричные и симметричные валентные колебания карбоксильных групп оксалат-иона. Понижение частоты колебания v(C=O) до 1622 см<sup>-1</sup> в спектре комплекса по сравнению с поглощением при 1668 см<sup>-1</sup> [29] в ИК спектре свободного Urea свидетельствует о координации молекулы карбамида к U(VI) атомом кислорода.

## ФОНДОВАЯ ПОДДЕРЖКА

Рентгенодифракционные эксперименты проведены в ЦКП ФМИ ИФХЭ РАН при частичном финансировании Министерством науки и высшего образования РФ (тема № АААА-А18-118040590105-4).

## КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют об отсутствии конфликта интересов.

#### СПИСОК ЛИТЕРАТУРЫ

- 1. *Матюха В.А., Матюха С.В.* Оксалаты редкоземельных элементов и актиноидов. М.: ИздАТ, 2008. 607 с.
- Loiseau T., Mihalcea I., Henry N., Volkringer C. // Coord. Chem. Rev. 2014. Vol. 266–267. P. 69–109.
- Wang K.-X., Chen J.-S. // Acc. Chem. Res. 2011. Vol. 44. P. 531–540.
- Thuéry P., Harrowfield J. // Inorg. Chem. 2015. Vol. 54. P. 8093–8102.
- Su J., Chen J. // Lanthanide Metal-Organic Frameworks. Structure and Bonding. Berlin, Heidelberg: Springer, 2014. Vol. 163. P. 265–295.
- 6. Юткин М.П., Дыбцев Д.Н., Федин В.П. // Успехи хи-

мии. 2011. Т. 80. № 11. С. 1061–1086.

- Kerr A.T., Cahill C.L. // Crystal Growth Des. 2011. Vol. 11, N 12. P. 5634–5641.
- Сережкин В.Н., Артемьева М.Ю., Сережкина Л.Б. Михайлов Ю.Н. // ЖНХ. 2005. Т. 50, № 7. С. 1106–1117.
- Thuery P., Harrowfield J. // CrystEngComm. 2016. Vol. 18. P. 3905–3918.
- 10. Zehnder R.A., Boncella J.M., Cross J.N. et al. // Cryst. Growth Des. 2017. Vol. 17. P. 5568–5582.
- Bai Z., Wang Y., Li Y. et al. // Inorg. Chem. 2016. Vol. 55. P. 6358–6360.
- Xie J., Wang Y., Liu W. et al. // Angew. Chem. 2017. Vol. 56. P. 7500–7504.
- Артемьева М.А., Михайлов Ю.Н., Горбунова Ю.Е., Сережкина Л.Б., Сережкин В.Н. // ЖНХ. 2003. Т. 48, № 9. С. 1470–1472.
- 14. Беломестных В.И., Свешникова Л.Б., Михайлов Ю.Н. // ЖНХ. 2013. Т. 58, № 6. С. 754–761.
- 15. *Thuery P., Atoini Y., Harrowfield J. //* Cryst. Growth Des. 2018. Vol. 18. P. 3167–3177.
- 16. Бейрахов А.Г., Орлова И.М., Ильин Е.Г. и др. // ЖНХ. 2012. Т. 57, № 7. С. 1019–1026.
- 17. Бейрахов А.Г., Орлова И.М., Ротов А.В. и др. // ЖНХ. 2016. Т. 61, № 12. С. 1583–1590.
- Артемьева М.А., Михайлов Ю.Н., Горбунова Ю.Е., Сережкина Л.Б., Сережкин В.Н. // ЖНХ. 2003. Т. 48, № 9. С. 1473–1475.
- 19. *Марков В.П., Цапкина И.В. //* ЖНХ. 1959. Т. 4, № 10. С. 2255–2260.
- 20. *Марков В.П., Цапкина И.В.* // ЖНХ. 1963. Т. 8, № 2. С. 285–289.
- Михайлов Ю.Н., Горбунова Ю.Е., Артемьева Е.Ю., Сережкина Л.Б., Сережкин В.Н. // ЖНХ. 2002. Т. 47, № 6. С. 936–939.
- 22. SAINT-Plus (Version 7.68). Madison, Wisconsin (USA): Bruker AXS, 2007.
- 23. *Sheldrick G.M.* SADABS. Madison, Wisconsin (USA): Bruker AXS, 2008.
- Sheldrick G.M. // Acta Crystallogr., Sect. A. 2008. Vol. 64, N 1. P. 112–122.
- 25. Sheldrick G.M. // Acta Crystallogr., Sect. C. 2015. Vol. 71, N 1. P. 3–8.
- 26. Сережкин В.Н., Михайлов Ю.Н., Буслаев Ю.А. // ЖНХ. 1997. Т. 42, № 12. С. 2036–2077.
- Nakamoto K. Infrared and Raman Spectra of Inorganic and Coordination Compounds. New York: Wiley– Intersience, 1986. 4th ed.
- 28. Bougeard D., Villepin J., Novak A. // Spectrochim. Acta.

A. 1988. Vol. 44, N 12. P. 1281–1286.

- 29. Barlow G.B., Corish P.J. // J. Chem. Soc. 1959. P. 1706– 1710.
- 30. Сережкин В.Н., Карасев М.О., Сережкина Л.Б. // Радиохимия. 2013. Т. 55, № 2. С. 97–105.
- 31. Сережкин В.Н., Пушкин Д.В., Сережкина Л.Б. // Радиохимия. 2018. Т. 60, № 3. С. 193–203.
- Сережкин В.Н., Савченков А.В., Сидоренко Г.В., Сережкина Л.Б. // Радиохимия. 2019. Т. 61, № 4. С. 297–307.
- Сережкин В.Н., Медведков Я.А., Сережкина Л.Б., Пушкин Д.В. // ЖФХ. 2015. Т. 89, № 6. С. 978–988.

- Serezhkin V.N., Vologzhanina A.V., Serezhkina L.B. et al. // Acta Crystallogr., Sect. B. 2009. Vol. 65, N 1. P. 45–53.
- 35. *Сережкин В.Н., Сережкина Л.Б.* // Кристаллография. 2012. Т. 57, № 1. С. 39–49.
- Serezhkin V.N., Serezhkina L.B., Vologzhanina A.V. // Acta Crystallogr., Sect. B. 2012. Vol. 68, N 3. P. 305–312.
- Steiner T. // Angew. Chem. 2002. Vol. 41, N 1. P. 48–76.