УДК 546.798.21: 544.473-039.63

ВОССТАНОВЛЕНИЕ Np(V) ЧЕТЫРЕХВАЛЕНТНЫМ УРАНОМ В РАСТВОРАХ HNO₃, СОДЕРЖАЩИХ ГИДРАЗИН И ИОНЫ ТЕХНЕЦИЯ

© 2021 г. В. И. Марченко, О. А. Савилова, К. Н. Двоеглазов*

Высокотехнологический научно-исследовательский институт неорганических материалов им. акад. А. А. Бочвара, 123098, Москва, ул. Рогова, д. 5а *e-mail: KNDvoeglazov@bochvar.ru

Получена 11.02.2020, после доработки 12.09.2020, принята к публикации 16.09.2020

Изучено валентное поведение нептуния при взаимодействии Np(V) с U(IV) в растворах HNO₃, содержащих гидразин и ионы Tc(VII). Установлено, что Np(V) восстанавливается до Np(IV) в два последовательных этапа, протекающих с разными скоростями, после чего образовавшийся Np(IV) окисляется до пятивалентного состояния. Одновременно с восстановлением Np(V) происходит полное окисление U(IV). Установлены кинетические уравнения, описывающие скорость восстановления Np(V) и окисления U(IV), и рассмотрены возможные схемы протекания этих реакций.

Ключевые слова: нептуний, уран, технеций, ионы, валентность, восстановление, окисление, кинетика, растворы, азотная кислота, гидразин.

DOI: 10.31857/S0033831121030059

Одна из проблем водной технологии переработки ОЯТ связана с присутствием в растворах технеция, который существенно влияет на выбор режимов ряда технологических операций, в частности, разделения U, Pu и Np в первом экстракционным цикле с использованием U(IV), стабилизированного гидразином [1, 2]. Такая роль Тс обусловлена его каталитическим действием на реакции окисления U(IV), Pu(III) и гидразина азотной кислотой (нитрат-ионами), кинетика которых в растворах HNO₃ изучена в работах [3-6]. Гораздо меньше данных имеется о влиянии Тс на валентное поведение Np, которые фактически ограничиваются исследованием окисления Np(V) азотной кислотой [7] и восстановления Np(V) технецием(IV) [8], а также нашими предварительными данными по восстановлению Np(V) гидразином и U(IV) [9]. В настоящей работе валентные превращения Np в системе Np(V)-U(IV)-N₂H₄-Tc(VII) в растворах HNO₃ исследованы более полно.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Методика кинетических опытов состояла в следующем. В термостатируемую кювету спектрофотометра Lambda-40 (Perkin Elmer) вводили последовательно растворы Np(VI) и гидразина и выдерживали содержимое при заданной температуре для перехода Np(VI) в Np(V), полноту которого контролировали спектрофотометрически¹. Затем вносили аликвоты запасных растворов Tc(VII) и U(IV). После перемешивания раствора в кювете через определенные интервалы времени записывали спектры поглощения рабочего раствора в области от 400 до 1100 нм. Концентрацию образующегося Np(IV) при дальнейшем восстановлении Np(V) и остаточную концентрацию U(IV) рассчитывали из величин оптической плотности с использованием предварительно определенных коэффициентов экстинкции ионов Np^{4+} и U^{4+} при 723 и 648 нм соответственно.

 $^{^1}$ В условиях наших опытов время завершения реакции $2NpO_2^{2-+}$ $2N_2H_5^+ \rightarrow 2NpO_2^+ + 2NH_4^+ + N_2 + 2H^+$ не превышало 15 мин.

Рис. 1. Кинетические кривые Np(IV) и U(IV) при [HNO₃] = 1, $[N_2H_4] = 0.05$, $[Tc(VII)] = 3 \times 10^{-3} [U(IV)] = 2.5 \times 10^{-2}$ моль/л и температуре 30 (*1*, *1*'), 35 (*2*, *2*') и 40°С (*3*, *3*'). *1*–3 – [U(IV)], *1*–3' – [Np(IV)].

Рис. 2. Кинетические кривые Np(IV) и U(IV) при [HNO₃] = 2, [N₂H₄] = 0.05, [Tc(VII)] = 1 × 10⁻³, 35°С и [U(IV)], моль/л: $l, l' - 2.5 \times 10^{-2}; 2, 2' - 1.5 \times 10^{-2}; \Pi, 3' - 5 \times 10^{-3}. l - 3 - [U(IV)], l' - 3' - [Np(IV)].$

Запасной раствор Np(VI) готовили растворением навески NpO₂ в 7 моль/л HNO₃ при нагревании с последующим восстановлением Np(VI) до Np(IV) гидразином и очисткой Np от примесей на анионобменной смоле ВП-1АП. Раствор Np после десорбции 0.5 моль/л HNO₃ упаривали до влажных солей и растворяли в 6–7 моль/л HNO₃. Полноту перехода нептуния в Np(VI) контролировали спектрофотометрически. Запасной раствор U(IV) получали электрохимическим восстановлением U(VI), предварительно очищенным от примесей пероксидным осаждением, на Pt-катоде в азотнокислом растворе в присутствии гидразина. Запасной раствор Tc(VII) готовили растворением навески $KTcO_4$ (массовая доля $KTcO_4$ 98%, без дополнительной очистки) в воде. В работе использовали нитрат гидразина марки ч и техническую азотную кислоту, перегнанную при атмосферном давлении.

Концентрацию Np в запасном растворе определяли γ-спектрометрическим методом, а концентрацию Tc – плазменно-абсорбционным методом. Содержание U(IV) в запасном растворе устанавливали тиМАРЧЕНКО и др.

[U(IV)],	[HNO ₃],	$[Tc] \times 10^3$,	$k_1' \times 10^4$	$k'_{2} \times 10^{5}$	$k_0 \times 10^4$	$k_1 \times 10^3$, ^a	$k_2 \times 10^3$, ^a	k_0 , ^a
моль/л	моль/л	моль/л	моль/(л•мин)		л/(моль•мин)	л/(моль•мин)	л ^{0.7} /(моль ^{0.7} ·мин)	
0.005	2.0	1.0	6.45	(4.0) ⁶	(1.0)	5.1	(20)	(0.06)
0.010	2.0	1.0	6.0	1.6	1.6	5.3	8.0	0.13
0.015	2.0	1.0	6.9	1.5	1.9	5.4	7.5	0.11
0.025	2.0	1.0	7.1	1.5	1.8	5.5	7.5	0.11
0.025	1.0	1.0	2.2	0.64	1.25	5.5	6.4	0.12
0.025	1.0	2.0	3.0	1.5	2.2	5.0	7.5	0.11
0.025	1.0	3.0	4.0	2.3	3.2	5.2	7.7	0.10
0.025	1.0	5.0	5.9	(9.6)	5.6	5.7	(19.2)	0.11
0.025	0.5	3.0	3.3	1.32	2.6	(14.0)	8.8	0.14
0.025	0.75	3.0	3.4	1.8	2.9	5.6	7.7	0.12
0.025	1.5	3.0	6.6	3.2	4.5	4.3	7.1	0.11
0.025	2.0	3.0	12.3	5.2	6.3	5.0	8.7	0.13

Таблица 1. Константы скорости восстановления Np(V) (k_1 и k_2) и окисления U(IV) (k_0) при [Np(V)]₀ = 6.0 × 10⁻³ моль/л, [N₂H₄] = 0.05 моль/л и 35°C

^a $k_1 = k'_1[N_2H_4]^{0.3}/([Tc]^{0.6}[HNO_3]^{1.7}); k_2 = k'_2[Tc][HNO_3]; k_0 = k'_0/([Tc][HNO_3]^{0.7}).$

⁶ Значения констант скорости в скобках не учитывались при расчете их средних значений.

трованием ванадатом аммония. Этот метод применяли и для определения общей концентрации урана после предварительного восстановления U(VI) до U(IV) солью Мора. Концентрацию гидразина в рабочих растворах определяли колориметрическим методом с реагентом *n*-диметиламинобензальдегидом, а содержание H⁺-ионов устанавливали потенциометрическим титрованием раствором щелочи.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Восстановление Np(V). Исследование проводили в интервале начальных концентраций $[U(IV)] = 5 \times 10^{-3} - 2.5 \times 10^{-2}$, $[Np(V)] = 3 \times 10^{-3} - 1 \times 10^{-2}$, $[N_2H_4] = 0.02 - 0.1$, $[Tc(VII)] = 1 \times 10^{-3} - 5 \times 10^{-3}$ и [HNO₃] = 0.5 - 2.0 моль/л при температуре от 30 до 45°С. На рис. 1 и 2 приведены типичные кинетические кривые Np(IV), на которых можно выделить 3 участка: первый этап (с константой скорости k_1), на котором происходит переход основной части Np(V) в Np(IV); второй этап (с константой скорости k_2), завершающийся полным восстановлением Np(V); третий этап (с константой скорости k_3), в ходе которого образовавшийся на предыдущих этапах Np(IV) окисляется до Np(V).

Одновременно с процессом восстановления Np(V) происходит окисление U(IV) с константой скорости k_0 .

Скорость восстановления Np(V) на первом и втором этапах описывается кинетическим уравнением нулевого порядка

$$-d[Np(V)]/dt = k'_i, \tag{1}$$

где *i* = 1 или 2 соответственно. Аналогичное уравнение справедливо и для окисления основной части U(IV):

$$-d[U(IV)]/dt = k'_0.$$
 (2)

Значения кажущихся констант скорости нулевого порядка k'_1 , k'_2 и k'_0 при различных условиях приведены в табл. 1; там же представлены константы скорости k_1 , k_2 и k_0 , рассчитанные с использованием полных кинетических уравнений (3), (16) и (26).

Значения констант скорости при разных температурах (табл. 2) использовали для расчета энергий активации, найденных равными $E_1 = 72.0, E_2 = 66.5$ и $E_0 = 81.5$ кДж/моль соответственно.

Первый этап восстановления Np(V). Восстановление Np(V) на этом этапе в большинстве случаев протекает с небольшим (менее \sim 5–7 мин) индукционным периодом (он отсутствует только в опытах при самых высоких значениях концентрации HNO₃, Np и Tc и температуры), после завершения которого скорость восстановления описывается уравнением нулевого порядка относительно Np(V) (приводимые

Таблица 2. Значения констант скорости восстановления Np(V) и окисления U(IV) при различной температуре ([HNO₃] = 1, [Tc] = 3×10^{-3} , [N₂H₄] = 0.05 моль/л)

Константа	30°C	35°C	40°C	45°C
$k'_1 \times 10^4$, моль/(л·мин)	2.9	4.0	6.55	11.1
$k'_2 \times 10^5$, моль/(л·мин)	1.2	2.3	3.6	4.1
$k'_0 \times 10^4$, моль/(л·мин)	2.0	3.35	5.6	9.2

в табл. 1 значения констант скорости k'₁ рассчитаны из наклонов прямолинейных участков кинетических кривых). В конце этапа начинается выделение газов из раствора, что связано с началом окисления гидразина азотной кислотой (нитрат-ионами), катализируемого ионами технеция.

Скорость восстановления Np(V) на первом этапе не зависит от начальной концентрации $[U(IV)]_0$, увеличивается с ростом концентрации Tc (табл. 1) и уменьшается с ростом концентрации гидразина, как следует из следующих данных (при $[HNO_3] =$ 1 моль/л, $[Tc] = 3 \times 10^{-3}$ моль/л, 35°С:

[N ₂ H ₄], моль/л	0.02	0.03	0.05	0.1
$k_1' \times 10^4$, моль/(л · мин)	5.8	4.65	4.0	3.7

Зависимость скорости от кислотности носит сложный характер – при [HNO₃] \geq 1 моль/л она увеличивается с ростом [HNO₃], а при [HNO₃] < 1 моль/л порядок по кислоте уменьшается практически до нуля. В интервале [HNO₃] = 1–2 моль/л скорость восстановления Np(V) описывается уравнением

$$d[Np(IV)]/dt = k_1[Tc]^{0.6}[HNO_3]^{1.7}/[N_2H_4]^{0.3}.$$
 (3)

Константа скорости k_1 равна (5.23 ± 0.37) × 10^{-3} л/(моль·мин) при 35°С и увеличивается пропорционально начальной концентрации Np.

Интерпретация полученных результатов представляет определенную сложность, что обусловлено протеканием в исследуемой системе большого числа окислительно-восстановительных реакций с участием ионов U, Np и Tc, а также гидразина, кинетические закономерности большинства которых либо не установлены, либо изучены недостаточно полно. Один из основных вопросов заключается в идентификации природы восстановителя Np(V). Очевидно, им не может быть U(IV) вследствие малой скорости реакции

$$2NpO_{2}^{+} + U^{4+} + 2H_{2}O \rightarrow 2Np^{4+} + UO_{2}^{2+} + 4H^{+}$$
(4)

РАДИОХИМИЯ том 63 № 3 2021

в условиях наших опытов (расчет по данным работы [10] приводит к величине ее полупериода ~3 ч при [HNO₃] = 1 моль/л, [U(IV)] = 2.5 × 10⁻² моль/л и 35°С). Это же вывод относится и к гидразину, который восстанавливает Np(V) еще медленнее, чем U(IV). Наиболее вероятно, восстановителями Np(V) являются ионы Tc, а именно Tc(V) или Tc(IV), поскольку Tc(VI) неустойчив и диспропорционирует с высокой скоростью в кислых средах. Установленная нами зависимость скорости восстановления Np(V) от концентрации гидразина позволяет заключить, что активной формой является Tc(V). Образование Tc(V) в качестве устойчивой промежуточной формы Тс в виде комплексного соединения Tc(V) с гидразином (или с продуктами его разложения) постулировано в работе [6] и позднее подтверждено другими авторами [11]. Представив уравнение образования этого комплекса в виде

$$TcO_3^- + N_2H_5^+ \rightleftharpoons [TcO_3N_2H_5], \qquad (5)$$

запишем общую концентрацию Tc(V) в виде

$$[Tc(V)] = [TcO_3^-] + [TcO_3N_2H_5].$$
(6)

Предполагая, что непосредственным восстановителем Np(V) на первом этапе является ион TcO_3^- , из уравнений (5) и (6) получим выражение для его концентрации

$$[TcO_3^-] = [Tc(V)]/(1 + K[N_2H_5^+]),$$
(7)

где K – константа равновесия реакции (5). Из уравнения (7) следует, что порядок реакции относительно гидразина должен находиться между 0 (при $K[N_2H_5^+] << 1$) и –1 (при $K[N_2H_5^+] >> 1$), что соответствует экспериментальным данным. Тогда схему восстановления Np(V) можно представить уравнениями

$$2\text{TcO}_{4}^{-} + 3\text{U}^{4+} \rightarrow 2\text{TcO}^{2+} + 3\text{UO}_{2}^{2+}, \tag{8}$$

$$2\text{TcO}^{2+} + \text{TcO}_4^- + 3\text{H}_2\text{O} \rightleftharpoons 3\text{TcO}_3^- + 6\text{H}^+,$$
 (9)

$$2NpO_2^+ + TcO_3^- + 6H^+ \rightarrow 2Np^{4+} + TcO_4^- + 3H_2O$$
, (10)

которые описывают суммарную реакцию (4) восстановления Np(V) четырехвалентным ураном.

Дополнительную информацию, касающуюся механизма первого этапа, дают результаты опытов по восстановлению Np(V) гидразином в растворах с Тс в отсутствие U(IV) и сравнение их с результатами, полученными в растворах с U(IV). Как видно из рис. 3, восстановление Np(V) гидразином (кривая *1*) протекает с индукционным периодом и завершает-

[U(IV)],	[HNO ₃],	$[Tc] \times 10^3$,	$k'_1 \times 10^4$,
моль/л	моль/л	моль/л	моль/(л · мин)
0.025	2.0	1.0	7.1
0	2.0	1.0	7.3
0.025	1.0	3.0	4.0
0	1.0	3.0	3.9

Таблица 3. Константы скорости k'_1 в растворах с U(IV) и без U(IV) при $[N_2H_4] = 0.05$ моль/л и 35°C

ся за один этап, после чего начинается окисление образовавшегося Np(IV), которое также происходит по механизму автокатализа. В растворах того же макросостава, но содержащих U(IV) (кривая 2), явно выраженный индукционный период отсутствует, а восстановление Np(V) протекает в 2 последовательных этапа, при этом наклоны линейных участков на обеих кинетических кривых, а, следовательно, и скорости реакции на первом этапе примерно одинаковы в обоих растворах (табл. 3).

Обращаясь теперь к рис. 2, отметим, что при независимости скорости восстановления Np(V) от $[U(IV)]_0$ полнота его перехода в Np(IV) на первом этапе увеличивается, а продолжительность второго этапа (с константой скорости k_2), напротив, уменьшается по мере снижения $[U(IV)]_0$, при этом общий вид кинетических кривых приближается к тому, который характерен для восстановления Np(V) гидразином (рис. 3, кривая *1*). При минимальной используемой концентрации $[U(IV)]_0 = 5 \times 10^{-3}$ моль/л (рис. 2, кривая *3*) форма зависимости [Np(IV)]–вре-

Рис. 3. Кинетические кривые восстановления Np(V) гидразином (*1*) и ураном(IV) (*2*) в растворах с Tc при [HNO₃] = 2, [N₂H₄] = 0.05, [Tc(VII)] = 1×10^{-3} , [U(IV)] = 5×10^{-3} моль/л и 35°С.

мя практически совпадает с той, которая (после индукционного периода) наблюдается при восстановлении Np(V) гидразином (рис. 3, кривая I). При этой концентрации U(IV) почти полный переход $Np(V) \ge Np(IV)$ завершается на первом этапе, а второй этап фактически вырождается в индукционный период, предшествующий окислению Np(IV), как и в опыте с гидразином. Описанные наблюдения позволяют предположить, что в восстановлении Np(V) на первом этапе помимо U(IV) участвует также и гидразин, вклад которого в наблюдаемую скорость возрастает по мере уменьшения [U(IV)]₀. Примерное равенство констант скорости k₁ восстановления Np(V) обоими восстановителями (табл. 3) указывает на то, что медленной стадией механизма является одна и та же реакция, и тогда схему восстановления Np(V) на первом этапе в общем виде можно представить уравнениями

 $Tc(VII) + Red \rightarrow Tc(IV) + продукты,$ (11)

$$2Tc(IV) + Tc(VII) \rightleftharpoons 3Tc(V)$$
 (медленно), (12)

$$2Np(V) + Tc(V) \rightarrow 2Np(IV) + Tc(VII),$$
(13)

где Red = U(IV) или гидразин. В растворах с U(IV) Tc(IV) образуется в быстрой стадии (11), а в отсутствие U(IV) – в ходе индукционного периода по механизму, описанному в работе [5].

Второй этап восстановления Np(V). На этом этапе продолжается восстановление Np(V), которое протекает медленнее, чем на первом этапе, и сопровождается интенсивным газовыделением вследствие каталитического разложения гидразина, схему которого в самом общем виде можно представить реакциями

$$TcO_4^- + N_2H_5^+ \rightarrow TcO^{2+} + продукты,$$
 (14)

$$TcO^{2+} + HNO_3 + H_2O \rightarrow TcO_4^- + NO + 3H^+$$
(15)

(в действительности оно протекает по гораздо более сложному механизму с участием и других валентных форм технеция [5, 6, 11]). Скорость восстановления Np(V) на втором этапе не зависит от концентрации U(IV) и гидразина и описывается уравнением

$$d[Np(IV)]/dt = k_2[Tc][HNO_3],$$
(16)

где $k_2 = (7.69 \pm 0.66) \times 10^{-3}$ л/(моль·мин) при 35°С. Иная, чем на первом этапе, форма кинетического уравнения свидетельствует об изменении механиз-

ма восстановления Np(V) при переходе от первого ко второму этапу, что можно объяснить появлением в растворе азотистой кислоты по реакции

$$2NO + HNO_3 + H_2O \rightleftharpoons 3HNO_2.$$
 (17)

Тогда кинетическому уравнению (16) отвечает механизм с участием в медленной стадии ионов нитриния NO⁺ (их существование доказано экспериментально методами спектроскопии [12]), образующихся в быстрой обратимой реакции

$$HNO_2 + H^+ \rightleftharpoons NO^+ + H_2O, \qquad (18)$$

за которой следуют стадии

$$TcO^{2+} + NO^{+} + 2H_2O \rightarrow TcO_3^{-} + NO + 4H^{+},$$
 (19)

$$2NpO_2^+ + TcO_3^- + 6H^+ \rightarrow 2Np^{4+} + TcO_4^- + 3H_2O$$
, (20)

из них медленной является стадия (19).

Нетрудно видеть, что предложенный механизм согласуется с установленными на опыте первыми порядками реакции по Tc и HNO₃.

Второй этап завершается полным переходом Np(V) в Np(IV), прекращением выделения газов и началом окисления образовавшегося Np(IV). Продолжительность второго этапа возрастает при увеличении начальной концентрации U(IV) и при уменьшении концентрации Tc, HNO_3 и температуры, а его окончание совпадает по времени с полным окислением U(IV).

Окисление Np(IV). Заключительный, третий, этап валентных превращений нептуния, в ходе которого Np(IV) полностью или частично окисляется до Np(V), начинается сразу после исчезновения из раствора урана(IV) и протекает с индукционным периодом, указывающим на его автокаталитический характер. Мы не смогли получить полного количественного описания скорости этого этапа из-за изменения порядков относительно Np, Tc и HNO₃ от 0 до 1 при варьировании начальных условий. В частности, для Np(IV) оно происходит при уменьшении концентрации Tc (<2 × 10⁻³ моль/л) и HNO₃ (≤0.75 моль/л), а также при увеличении концентрации гидразина (≥0.1 моль/л) и температуры (≥40°С). Очевидно, что для количественного описания наблюдаемых закономерностей требуется проведение дополнительного исследования. Здесь же мы ограничимся приведением величины константы скорости нулевого порядка $k_3 = (3.5 \pm 0.4) \times$ 10⁻⁴ моль/(л·мин), рассчитанной ИЗ серии опытов при различной $[U(IV)]_0$ (от 5×10^{-3} до 2.5×10^{-2} моль/л) при $[HNO_3] = 2$, $[Np(V)]_0 = 6 \times 10^{-3}$, $[Tc] = 1 \times 10^{-3}$ моль/л и 35°С. Отметим также, что скорость окисления Np(IV) увеличивается с ростом концентрации нептуния в интервале от 3.0×10^{-3} до 1.2×10^{-2} моль/л с порядком относительно нептуния, равным ~0.8.

Отсутствие кинетического уравнения для третьего этапа не позволяет сделать обоснованного заключения о механизме окисления Np(IV). В то же время в отдельной серии опытов нами установлено, что Np(IV), достаточно устойчивый в растворах HNO₃, в присутствии ионов Tc(VII) окисляется до Np(V), очевидно, нитрат-ионами (окисления не наблюдается в среде хлорной кислоты) со скоростью, приблизительно описываемой в интервале [HNO₃] = 0.5-1.0 моль/л уравнением

$$-d[Np(IV)]/dt = k[Np(IV)][Tc]/[HNO_3]^2,$$
 (21)

где $k \approx 0.34$ моль/(л·мин) при 50°С. Возможно, именно эта реакция лежит в основе окисления Np(IV) на третьем этапе, и тогда его схему можно представить уравнениями

$$3Np^{4+} + TcO_{4}^{-} + 3H_{2}O \rightarrow 3NpO_{2}^{+} + TcO^{2+} + 6H^{+}, (22)$$
$$TcO^{2+} + HNO_{3} + H_{2}O \rightarrow TcO_{4}^{-} + NO + 3H^{+}. (23)$$

В этой схеме обе реакции медленные, причем скорость первой из них пропорциональна концентрации Np(IV), а второй – не зависит от [Np(IV)]; таким образом, наблюдаемый порядок относительно Np должен находиться между 0 и +1, что соответствует экспериментальным результатам.

Окисление U(IV). Как отмечалось выше, параллельно с восстановлением Np(V) происходит окисление U(IV), которое протекает в две стадии, первая из которых характеризуется быстрым и относительно небольшим снижением концентрации U(IV), а вторая — медленным окислением основной части U(IV) по уравнению нулевого порядка. По мнению авторов работы [3], на первой стадии Tc(VII) восстанавливается до Tc(IV) ураном(IV), и в растворе устанавливаются равновесные стационарные концентрации Tc(VII) и Tc(IV), определяемые соотношением скоростей относительно быстрой реакции

$$2\text{TcO}_4^- + 3\text{U}^{4+} \rightarrow 2\text{TcO}^{2+} + 3\text{UO}_2^{2+}$$
 (24)

и более медленной реакции

РАДИОХИМИЯ том 63 № 3 2021

$$\Gamma cO^{2+} + HNO_3 + H_2O \rightarrow TcO_4^- + NO + 3H^+.$$
 (25)

На второй стадии окисление U(IV) протекает со скоростью, которая не зависит от концентрации U(IV) и гидразина и описывается в наших условиях уравнением:

$$-d[U(IV)]/dt = k_0[Tc][HNO_3]^{0.7},$$
 (26)

где $k_0 = (0.117 \pm 0.011) \, \pi^{0.7}/(\text{моль}^{0.7} \cdot \text{мин})$ при 35°С. Дробный порядок относительно HNO₃ позволяет предположить, что окисление основной части U(IV) происходит по двум параллельным путям. Первый из этих путей (с порядком относительно HNO₃, равным 1) можно представить уравнениями (11), (18), (19), (17) и уравнением

$$TcO_3^- + 2NO^+ + H_2O \rightarrow TcO_4^- + 2NO + 2H^+$$
, (27)

с медленной стадией (19). Второй путь (с нулевым порядком по HNO₃) включает медленную стадию репропорционирования Tc(V) [уравнение (12)] и быструю реакцию:

$$2\text{TcO}_3^- + \text{U}^{4+} + 4\text{H}^+ \rightarrow 2\text{TcO}^{2+} + \text{UO}_2^{2+} + 2\text{H}_2\text{O}.$$
 (28)

В заключение этого раздела отметим, что реакция окисления U(IV), катализируемая ионами Tc, изучалась многими авторами [1, 3, 13, 14], и во всех случаях, включая настоящее исследование, получены существенно различающиеся по форме кинетические уравнения: установленные в этих работах порядки реакции по Тс варьируют от 0.7 до 2, а по HNO₃ – от 1 до ~2.5 (порядок относительно U(IV) в большинстве исследований определен равным нулю). Указанные расхождения, на наш взгляд, обусловлены характерной для реакций ионов технеция чувствительностью к деталям проведения экспериментов, в частности, к используемым в работе величинам концентраций технеция и азотной кислоты, от выбора которых в значительной мере зависят определяемые кинетические параметры реакции.

КОНФЛИКТ ИНТЕРЕСОВ

Авторы звявляют об отсутствии конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- 1. Колтунов В.С., Марченко В.И., Никифоров А.С., Смелов В.С., Шмидт В.С., Гомонова Т.В., Полунин А.К., Кондратьев Б.А. // Атом. энергия, 1986. Т. 60, №1. С. 35–41.
- 2. *Марченко В.И., Двоеглазов К.Н., Волк В.И.* // Радиохимия. 2009. Т. 51, №4. С. 289–302.
- 3. *Колтунов В.С., Гомонова Т.В.* // Радиохимия. 1991, Т. 33, №5. С. 107–117.
- 4. Колтунов В.С., Зайцева Л.Л., Тихонов М.Ф. // Радиохимия. 1980. Т. 22, №5. С. 671–678.
- Garraway J., Wilson P. // J. Less-Common Met. 1984. Vol. 97, N 1. P. 191–203.
- 6. Спицын В.И., Крючков С.В., Кузина А.Ф. // Радиохимия. 1983. Т. 25, №4. С. 497–502.
- 7. Рамазанов Л.М., Суслов Ю.П., Боровинский В.А. // Радиохимия. 1984. Т. 26, №4. С. 370–373.
- Zhou X., Ye G., Zhang H., Li L., Luo F., Meng Z. // Radiochim. Acta. 2014. Vol. 102, N 1/2. P. 111–116
- Марченко В.И., Журавлева Г.И. Двоеглазов К.Н., Савилова О.А. // Хим. технология. 2008. Т. 9, №2. С. 61–67.
- Koltunov V.S., Marchenko V.I., Frolov K.M., Sinev M.Yu., Shepelkova M.P., Rodyushkin S.P., Zhuravleva G.I. // Int. Conf. «Actinides'89»: Abstracts. Tashkent (USSR), Sept. 24–29, 1989. Moscow: Nauka, 1989. P. 353.
- Редкие элементы в ядерном топливном цикле: монография / Под ред. И.Д. Трошкиной, М. Озавы, К.Э. Германа. М.: РХТУ им. Д.И. Менделеева, 2018. 272 с.
- Turney T., Wright G. // Chem. Rev. 1959. Vol. 59, N 3. P. 497–513.
- 13. Zelverte A. CEA-Rapp. 5443. France, 1988. 142 p.
- 14. Суслов Ю.П., Рамазанов Л.М., Боровинский В.А. // Радиохимия. 1986. Т. 28, №2. С. 177–185.