УДК 548.31

СТРОЕНИЕ ТЕТРАХЛОРОУРАНИЛАТОВ ТРИМЕТИЛБЕНЗИЛАММОНИЯ И ТРИЭТИЛБЕНЗИЛАММОНИЯ

© 2021 г. Л. Б. Сережкина^{*a*, *, М. С. Григорьев^{*b*}, Е. Ф. Рогалева^{*a*}, В. Н. Сережкин^{*a*}}

^а Самарский национальный исследовательский университет им. акад. С. П. Королева, 443011, Самара, ул. Акад. Павлова, д. 1 ^б Институт физической химии и электрохимии им. А. Н. Фрумкина РАН, 119071, Москва, Ленинский пр., д. 31, корп. 4 *e-mail: lserezh@samsu.ru

Получена 06.10.2020, после доработки 30.10.2020, принята к публикации 10.11.2021

Осуществлены синтез, ИК спектроскопическое и рентгеноструктурное исследование новых хлорсодержащих комплексов уранила $(C_{10}H_{16}N)_2[UO_2Cl_4]$ (I) и $(C_{13}H_{22}N)_2[UO_2Cl_4]_{0.5}[UO_2(NO_3)_2Cl_2]_{0.5}$ (II). Урансодержащими группами в структурах I и II являются комплексы $[UO_2Cl_4]^{2-}$, принадлежащие к кристаллохимической группе AM_4^1 ($A = UO_2^{2+}$, $M^1 = Cl^-$), которые в II сосуществуют с одноядерными комплексами $[UO_2(NO_3)_2Cl_2]^{2-}$, имеющими кристаллохимическую формулу $AB_2^{01}M_2^1$ ($A = UO_2^{2+}$, $B^{01} = NO_3^-$, $M^1 = Cl^-$). С помощью молекулярных полиэдров Вороного–Дирихле рассмотрены особенности межмолекулярных взаимодействий в структурах кристаллов I и II.

Ключевые слова: уранил, хлороуранилаты, молекулярные полиэдры Вороного-Дирихле.

DOI: 10.31857/S0033831121040043

Как известно, связи U^{VI}-Cl менее прочные, чем связи U^{VI}-O [1]. Поэтому получить гетеролигандные комплексы U(VI), содержащие в своем составе одновременно хлорид- и дикарбоксилат-ионы, удается сравнительно редко. Известными примерами таких комплексов могут служить [(UO₂)₂(mal)(Cl)₂(DMA)₄], где mal^{2–} – малонат-ион, DMA – диметилацетамид [2], и $[(UO_2)_2(suc)(Cl)_6]^4$, где suc²⁻ – сукцинат-ион [3]. Однако чаще всего в структурах кристаллов хлорид-ионы в присутствии дикарбоксилат-ионов находятся во внешней координационной сфере комплексов U(VI) [4, 5] или же входят в состав сравнительно устойчивых квазиоктаэдрических комплексных анионов $[UO_2Cl_4]^{2-}$ [6]. Именно с последней ситуацией мы столкнулись при попытках получить катионсодержащие хлоромалонатные или хлоросукцинатные комплексы уранила, поскольку вариация соотношения или концентрации хлорид и карбоксилат-ионов, так же как изменение рН использованных растворов, не позволили

решить поставленную задачу. Результаты анализа полученных продуктов свидетельствуют об образовании хлорсодержащих кристаллических фаз, не имеющих в своем составе карбоксилат-ионов. Поэтому целью данной работы явились идентификация и исследование строения кристаллов впервые полученных соединений уранила: $(C_{10}H_{16}N)_2[UO_2Cl_4]$ (I) и $(C_{13}H_{22}N)_2[UO_2Cl_4]_{0.5}[UO_2(NO_3)_2Cl_2]_{0.5}$ (II), где $C_{10}H_{16}N^+$ – триметилбензиламмоний, а $C_{13}H_{22}N^+$ – триэтилбензиламмоний.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Синтез кристаллов I. К водному раствору янтарной кислоты (0.12 г, 1.05 ммоль в 6 мл воды) добавляли водный раствор хлорида триметилбензиламмония (2.1 г, 14 ммоль в 6 мл воды) и оксид урана(VI) (0.1 г, 0.35 ммоль) и нагревали на кипящей водяной бане до полного растворения реагентов. К полученному раствору добавляли несколько

СЕРЕЖКИНА и др.

Параметр	I	П
Сингония, пространственная группа, Z	Моноклинная, <i>P</i> 2 ₁ / <i>c</i> , 4	Ромбическая, <i>Рbca</i> , 4
<i>a</i> , Å	14.6485(11)	14.8642(5)
<i>b</i> , Å	12.5722(8)	12.6508(4)
<i>c</i> , Å	13.6728(9)	16.6149(6)
β, град	91.168(4)	90
<i>V</i> , Å ³	2517.5(3)	3124.33(18)
<i>D_x</i> , г/см ³	1.879	1.750
μ, мм ⁻¹	6.890	5.490
Т, К	100(2)	100(2)
Излучение, λ, Å	$MoK_{\alpha}, 0.71073$	Mo <i>K</i> _α , 0.71073
Размер образца, мм	0.24×0.20×0.18	0.42×0.32×0.28
θ _{max} , град	29.993	34.999
Область <i>h</i> , <i>k</i> , <i>l</i>	$-20 \le h \le 18, -17 \le k \le 17, -19 \le l \le 18$	$-22 \le h \le 23, -20 \le k \le 20, -26 \le l \le 26$
Число отражений:	31644/7161, 0.0321/5064	59593/6863, 0.0415/3818
измеренных/независимых (N ₁), R_{int} /с $I > 2\sigma(I)$ (N ₂)		
Метод уточнения	Полноматричный МНК по F ²	Полноматричный МНК по F^2
Число уточняемых параметров	265	197
Весовая схема	w = $1/[\sigma^2(F_o^2) + (0.0102P)^2 + 0.9559P],$ где $P = (F_o^2 + 2F_c^2)/3$	w = $1/[\sigma^2(F_o^2) + (0.0116P)^2 + 2.9216P],$ rge $P = (F_o^2 + 2F_c^2)/3$
$R(\mathbf{F}), \mathbf{w}R(\mathbf{F}^2), I > 2\sigma(I)$	0.0209, 0.0385	0.0204, 0.0369
$R(F)$, w $R(F^2)$, все отражения	0.0388, 0.0430	0.0453, 0.0573
S	1.018	0.984
$\Delta \rho_{\text{max}} / \Delta \rho_{\text{min}}, e / \text{Å}^3$	0.510/-0.979	1.038/-1.033

Таблица 1. Кристаллографические данные, параметры эксперимента и уточнения структур $(C_{10}H_{16}N)_2[UO_2Cl_4]$ (I) и $(C_{13}H_{22}N)_2[UO_2Cl_4]_{0.5}[UO_2(NO_3)_2Cl_2]_{0.5}$ (II)

капель соляной кислоты до pH 1. Мольное соотношение исходных реагентов составляло 3 : 40 : 1. Через шесть дней выделились гигроскопичные желтые кристаллы состава ($C_{10}H_{16}N$)₂UO₂Cl₄ (найдено, %: U 31.9; вычислено, %: U 33.43), выход 59%. Содержание урана определяли по методике, описанной в работе [7].

Синтез кристаллов II. В качестве исходных реагентов для синтеза были взяты нитрат уранила, малоновая кислота, хлорид триэтилбензиламмония и соляная кислота. К водному раствору нитрата уранила (0.2 г, 0.4 ммоль в 4 мл воды) добавляли хлорид триэтилбензиламмония (0.55 г, 2.4 ммоль в 4 мл воды) и малоновую кислоту (0.02 г, 0.2 ммоль в 4 мл воды). pH раствора был равен 3. Мольное соотношение исходных веществ составляло 1 : 6 : 0.5. Через три дня выделялись кристаллы, которые по данным химического и рентгеноструктурного анализа представляли собой тригидрат малоната уранила. После добавления к маточному раствору по 3 капли соляной кислоты и этанола примерно через 2–3 дня формировались зеленовато-желтые кристаллы состава $(C_{13}H_{22}N)_2[UO_2Cl_4]_{0.5}[UO_2(NO_3)_2Cl_2]_{0.5}$ (найдено, %: U 28.6; вычислено, %: U 28.94), выход 32%.

ИК спектроскопия. ИК спектры исследуемых веществ были сняты на Фурье-спектрометре ФТ-801 в области волновых чисел 4000–500 см⁻¹. Способ приготовления образцов (в виде таблеток с KBr или в виде суспензии в вазелиновом масле) не влиял на положение полос поглощения в спектре.

Рентгенодифракционные эксперименты проведены на автоматическом четырехкружном дифрактометре с двумерным детектором Bruker Kappa Арех II. Параметры элементарных ячеек уточнены

СТРОЕНИЕ ТЕТРАХЛОРОУРАНИЛАТОВ

2 372 230.3 7			
<i>d</i> , Å	Ω, % ^a	Угол	ω, град
	Ι		
Тетраго	нальная бипирамида U	JO ₂ Cl ₄	
1.7713(15)	24.23	O1U1O1	180.0
2.6546(5)	12.66	Cl1U1Cl2 (×2)	87.866(17)
2.6809(6)	12.40	Cl2U1Cl1 (×2)	92.135(17)
1.7714(16)	24.44	O2U2O2	180.0
2.6763(6)	12.69	Cl3U1Cl4 (×2)	88.404(18)
2.6757(6)	12.69	Cl4U1Cl3 (×2)	91.595(18)
	II		
Тетраго	нальная бипирамида U	JO ₂ Cl ₄	
1.7666(13)	22.71	01U101	180.0
2.7174(5)	12.37	Cl2U1Cl1 (×2)	90.29(9)
2.636(2)	13.04	Cl1U1Cl2 (×2)	89.71(9)
Гексаго	нальная бипирамида U	JO ₆ Cl ₂	
1.7666(13)	22.71	O1U1O1	180.0
2.507(3)	9.55	O2U1O3 (×2)	50.17(10)
2.551(3)	9.09	O2U1Cl1 (×2)	64.29(7)
2.7174(5)	12.37	O3U1Cl1 (×2)	66.01(7)
	d, Å Tetparo 1.7713(15) 2.6546(5) 2.6809(6) 1.7714(16) 2.6763(6) 2.6757(6) Tetparo 1.7666(13) 2.7174(5) 2.636(2) Гексаго 1.7666(13) 2.507(3) 2.551(3) 2.7174(5)	I Q, % ^a d, Å Q, % ^a I Тетрагональная бипирамида U 1.7713(15) 24.23 2.6546(5) 12.66 2.6546(5) 12.66 2.6546(5) 12.66 2.6809(6) 12.40 1.7714(16) 24.44 2.6763(6) 12.69 2.6757(6) 12.69 II Тетрагональная бипирамида U 1.7666(13) 22.71 2.636(2) 13.04 Гексагональная бипирамида U 1.7666(13) 22.71 2.507(3) 9.55 2.551(3) 9.09 2.7174(5) 12.37	$d, Å$ $\Omega, \%^a$ УголIТетрагональная бипирамида UO2Cl41.7713(15)24.232.6546(5)12.662.6546(5)12.662.6809(6)12.401.7714(16)24.4402U2O22.6763(6)12.692.6757(6)12.69IIТетрагональная бипирамида UO2Cl41.7666(13)22.7101U1012.7174(5)12.37Cl2U1Cl1 (×2)2.636(2)13.04Сl1U1Cl2 (×2)Гексагональная бипирамида UO6Cl2Гексагональная бипирамида UO6Cl2Сl2U1Cl1 (×2)ССССССССССССССССССССССССССССССССССС

Таблица 2. Основные геометрические параметры КП атомов U(VI) в структурах $(C_{10}H_{16}N)_2[UO_2Cl_4]$ (I) и $(C_{13}H_{22}N)_2[UO_2Cl_4]_{0.5}[UO_2(NO_3)_2Cl_2]_{0.5}$ (II)

^а Здесь и далее Ω – телесный угол (выражен в процентах от 4π ср), под которым общая грань полиздров Вороного–Дирихле соседних атомов видна из ядра любого из них.

по всему массиву данных [8]. В экспериментальные интенсивности рефлексов внесены поправки на поглощение с использованием программы SADABS [9]. Структуры расшифрованы прямым методом (SHELXS97 [10]) и уточнены полноматричным методом наименьших квадратов (SHELXL-2018 [11]) по F^2 по всем данным в анизотропном приближении для всех неводородных атомов.

Кристаллы Π имеют валовый состав (C₁₃H₂₂N)₂[UO₂(NO₃)Cl₃], поэтому из-за центросимметричности позиций атомов U можно было предполагать, что в структуре вещества комплексные анионы $[UO_2(NO_3)Cl_3]^{2-}$ с вероятностью 50% имеют две диаметрально противоположных ориентации. Однако при наличии таких разупорядоченных комплексов, в которых максимальный угол Cl–U–Cl обычно составляет от 166 до 170°, позиция атомов Cl1 в структуре должна быть раздвоенной с расщеплением более 0.5 Å, чего не наблюдается. Кроме того, эллипсоид температурных смещений атома Cl1 в структуре II имеет размеры, близкие к размерам эллипсоида атома Cl2 и четырех ато-

РАДИОХИМИЯ том 63 № 4 2021

мов хлора в структуре **I**. Поэтому имеющиеся данные позволяют с уверенностью утверждать, что в структуре присутствуют два разных центросимметричных аниона ($[UO_2Cl_4]^{2-}$ и $[UO_2(NO_3)_2Cl_2]^{2-}$), статистически занимающих одну и ту же позицию, а не разупорядоченный по ориентации анион $[UO_2(NO_3)Cl_3]^{2-}$.

В структуре II фрагменты UO₂Cl₂ статистически размещающихся комплексов $[UO_2Cl_4]^{2-}$ и $[UO_2(NO_3)_2Cl_2]^{2-}$ совпадают, но при этом два других хлорид-иона первого комплекса во втором случае замещены нитрат-ионами. Уточнение заселенности позиций анионов Cl⁻ и NO₃⁻ дало величину, очень близкую к 0.5 (соответственно 0.516(3) и 0.484(3)), поэтому при итоговом уточнении была использована фиксированная заселенность 0.5. Атомы водорода органических катионов размещены в геометрически вычисленных позициях с $U_{изо} = 1.2U_{3KB}(C)$ для групп CH и CH₂ и $U_{изо} = 1.5U_{3KB}(C)$ для групп CH₃. Отметим также, что статистическое размещение урансодержащих комплексных анионов в II не

Рис. 1. ИК спектры (C₁₀H₁₆N)₂[UO₂Cl₄] (**I**) и (C₁₃H₂₂N)₂[UO₂Cl₄]_{0.5}[UO₂(NO₃)₂Cl₂]_{0.5} (**II**).

влияет на позиции атомов, входящих в состав катионов триэтилбензиламмония.

Кристаллографические характеристики и детали дифракционного эксперимента приведены в табл. 1, а основные геометрические параметры полиэдров атомов урана – в табл. 2. Координационные числа (**КЧ**) всех атомов рассчитывали по методу пересекающихся сфер [12]. Координаты атомов и величины температурных параметров в структурах **I** и **II** депонированы в Кембриджском центре кристаллографических данных под номерами ССDC 2033836 и 2033837.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

ИК спектры комплексов содержат характеристические полосы, отвечающие колебаниям ионов уранила, а также нитрат-ионов и катионов триэтилбензиламмония (ТЭБА) (спектр II) и триметилбензиламмония (ТМБА) (спектр I). Отнесение полос поглощения в ИК спектрах (рис. 1), проведенное в соответствии с работами [13, 14], представлено в табл. 3. Антисимметричное валентное колебание уранильной группы наблюдается при 913, 889 (I) и 922 (II) см⁻¹. Валентные колебания v(CH) в спектрах I и II проявляются в интервале 3030-2925 см⁻¹. Из-за близости значений полос отнести их однозначно к v(CH₂) или v(CH₂) сложно, хотя, как правило, частоты валентных колебаний метильной группы выше, чем метиленовой. Большое число узких полос поглощения в области деформационных колебаний б(СН₂), б(СН₂) и б(СН) обусловлено, по-видимому, участием катионов ТМБА и ТЭБА в водородных связях. Антисимметричному валентному и деформационному колебаниям нитрат-иона отвечают поглощения при 1384 и 836 см⁻¹ соответственно.

В структуре I присутствуют два кристаллографически неэквивалентных атома урана, координационные полиэдры (КП) которых представляют собой тетрагональные бипирамиды состава UO_2Cl_4 с атомами кислорода ионов уранила в аксиальных позициях. Оба атома U расположены в центрах инверсии и поэтому ионы UO_2^{2+} имеют симметричное

Рис. 2. Структурные единицы кристаллов I.

Рис. 3. Структурные единицы кристаллов II.

и линейное строение. Четыре атома Cl лежат в экваториальной плоскости КП урана и играют роль монодентатных концевых лигандов (тип координации M¹). Типы координации лигандов и кристаллохимические формулы записаны согласно методике [15]. Урансодержащими структурными единицами кристаллов I являются одноядерные комплексы $[UO_2Cl_4]^{2-}$ (рис. 2), принадлежащие к кристаллохимической группе AM_4^1 (A = UO₂²⁺, M¹ = Cl⁻) комплексов уранила, которые связаны в каркас за счет совокупности межмолекулярных водородных связей и электростатических взаимодействий с внешнесферными катионами ТМВА. Объемы полиэдров Вороного-Дирихле (ПВД) атомов урана, которые в I имеют форму тетрагональной призмы, почти совпадают (12.57 и 12.68 Å³ для U1 и U2) и хорошо согласуются со средним значением (12.6(2) Å³) для 97 комплексов [UO₂Cl₄]²⁻ в структурах соединений U(VI), имеющихся в базах [16, 17].

В структуре II все атомы урана кристаллографически эквивалентны и находятся в центрах инверсии. Как и в I, линейные ионы уранила в кристаллах II координируют в экваториальной плоскости четыре хлорид-иона (по два атома Cl(1) и Cl(2)), входящих в состав тетрагональных бипирамид [UO₂Cl₄]²⁻. Важной особенностью кристаллов II является то,

РАДИОХИМИЯ том 63 № 4 2021

что в половине комплексов $[UO_2Cl_4]^{2-}$ позиции Cl(2) с вероятностью 50% заняты нитрат-ионами (атомы N(2) и O(2)–O(4)) (рис. 3). В отличие от монодентатных хлорид-ионов по отношению к ионам уранила нитрат-ионы играют характерную для них роль бидентатных лигандов B⁰¹ [18, 19]. Поэтому в результате указанного замещения тетрагональные бипирамиды $[UO_2Cl_4]^{2-}$ превращаются в центро-

Рис. 4. Зависимость объема ПВД ($V_{\rm U}$) атомов U(VI) в комплексах UO_bCl_c от λ , где $\lambda = c/(b + c)$. Учтены данные для КП UO₂Cl₄, UO₃Cl₄, UO₄Cl₃, UO₆Cl₂ и UO_n ($6 \le n \le 9$), их значения $V_{\rm U}$ указаны в тексте. Линии регрессии отвечает уравнение $V_{\rm U} = 9.2 + 4.8\lambda$, достоверность аппроксимации равна 0.97.

(C ₁₀ H ₁₆ N) ₂ [U	$[O_2Cl_4]$ (I)	$(C_{13}H_{22}N)_2[UO_2Cl_4]_{0.5}$	$[UO_2(NO_3)_2Cl_2]_{0.5}$ (II)
Волновые числа, см ^{-1 а}	Отнесение	Волновые числа, см ^{-1 а}	Отнесение
3030 о.сл.	v(CH ₃), v(CH ₂)	2992 сл.	ν(CH ₃), ν(CH ₂)
2925 о.сл.		2953 о.сл.	
1485 cp.	δ(CH ₃)	1503 cp.	δ(CH ₃)
1472 cp.		1454 cp.	
1458 cp.		1384 c.	$v_{as}(NO_3)$
1413 сл.	δ(CH ₂)	1283 cp.	δ(CH ₂)
1383 сл.		1216 сл.	
1218 сл.		1185 сл.	
989 сл.	v(CC)	1171 сл.	
976 сл.	v(CN)	1081 сл.	v(CC)
913 c.	$v_{as}(UO_2^{2+})$	1025 cp.	v(CN)
889 cp.		922 c.	$v_{as}(UO_2^{2+})$
777 ср.	δ(CH)	836 сл.	$\delta(NO_3)$
724 ср.		816 сл.	δ(CH)
700 ср.		792 сл.	
		759 ср.	
		708 cp.	

Таблица 3. Отнесение полос поглощения в ИК спектрах I и II

^а с. – сильная, ср. – средняя, сл. – слабая, о.сл. – очень слабая.

симметричные гексагонально-бипирамидальные комплексы [UO₂(NO₃)₂Cl₂]²⁻, которые относятся к кристаллохимической группе $AB_{2}^{01}M_{2}^{1}$ (A = UO₂²⁺, $B^{01} = NO_3^-, M^1 = Cl^-$) и содержат КП UO₆Cl₂. Длина связей U-Cl в структурах I и II (табл. 2) в пределах 25 совпадает со средним значением 2.70(5) Å для комплексов уранила. Незначительные различия длины связей U-Cl вызваны особенностями невалентных взаимодействий с участием атомов хлора. Заметим, что по нашим данным II является первым соединением U(VI), в котором в экваториальной плоскости ионов уранила присутствуют ионы NO_3^- и Cl⁻ в соотношении 2 : 2, так как в известных нитрато-хлоридных комплексах уранила соотношение NO₃ и Cl⁻ обычно равно 1 : 3 [20–23]. Все охарактеризованные комплексы [UO₂(NO₃)Cl₃]²⁻ принадлежат к кристаллохимической группе AB⁰¹M₃ и поэтому содержат атомы U(VI) с КП UO₄Cl₃ и КЧ 7, а не КП UO₆Cl₂ и КЧ 8, как в комплексах [UO₂(NO₃)₂Cl₂]²⁻ структуры II.

В структуре II объем ПВД атомов урана ($V_{\rm II}$) в комплексах [UO₂Cl₄]²⁻ и [UO₂(NO₃)₂Cl₂]²⁻ равен соответственно 12.66 и 10.37 Å³. Во избежание ошибок, вызванных статистическим размещением некоторых атомов (Cl, N и O) в кристаллах II, при расчете V_{II} учитывали два предельных варианта структуры. В одном варианте (Па) считали, что все атомы U образуют комплексы $[UO_2Cl_4]^{2-}$, а в другом (IIb) – только комплексы [UO₂(NO₃)₂Cl₂]²⁻. Для сравнения заметим, что в семи комплексах [UO₂(NO₃)Cl₃]²⁻ [20–23] среднее значение $V_{\rm U} = 11.4(1)$ Å³. В ряду комплексов с КП UO₂Cl₄, UO₄Cl₃ и UO₆Cl₂ для атомов U(VI) с КЧ 6, 7 и 8, величина V_{11} (соответственно ≈ 12.6, 11.4 и 10.4 Å³) уменьшается с ростом КЧ, приближаясь к величине 9.2(2) Å³ [24], характерной для КП UO_n при *n* в диапазоне от 6 до 9. Отметим также, что для атомов U(VI) с КЧ 7 известны и КП UO_3Cl_4 , которые реализуются в структуре UO_2Cl_2 [25, 26], в которой V_{II} составляет 11.6 Å³. В UO₂Cl₂ все атомы Cl являются мостиковыми лигандами M², а дополнительный атом кислорода в координацион-

Контакты		(C ₁₀ H ₁₆ N) ₂ [UO ₂ Cl ₄] (I)			$(C_{13}H_{22}N)_2[U_{13}$	O ₂ Cl ₄] (IIa			C ₁₃ H ₂₂ N) ₂ [UO ₂	2(NO ₃) ₂ Cl ₂] (I	IP)
A/Z	$k_{ m AZ}$	$d, \mathrm{\AA}$	$S_{AZ}, Å^2$	$\Delta_{\rm AZ}, \%$	$k_{\rm AZ}$	$d, \mathrm{\AA}$	$S_{ m AZ}, { m \AA}^2$	$\Delta_{\rm AZ},$ %	$k_{ m AZ}$	$d, \mathrm{\AA}$	$S_{ m AZ},{ m \AA}^2$	$\Delta_{ m AZ},$ %
H/H	166	2.43-4.33	251.53	37.2	226	2.07-4.64	341.48	43.9	206	2.07-4.64	297.80	37.5
H/C	104	2.70-4.12	61.67	9.1	100	2.75-4.66	76.15	9.8	100	2.75-4.66	71.70	9.0
C/C	24	3.42-4.00	10.19	1.5		I	Ι	I	I	I	I	I
N/H	I	Ι	Ι	I		I	Ι	I	24	2.84–3.62	17.37	2.2
C/N	I	I	I	I	I	I	I	I	8	3.49-3.53	0.42	0.1
O/H	40	2.38-4.57	91.33	13.5	36	2.85–3.46	91.45	11.8	148	2.36-4.20	289.16	36.4
C/0	9	3.35-4.00	1.23	0.2	I	I	I	I	16	3.06-3.67	9.34	1.2
H/C1	112	2.74-4.69	257.81	38.2	124	2.78-4.38	266.34	34.3	56	2.78-4.01	107.60	13.6
C/Cl	10	3.60-4.50	0.98	0.1	8	3.60-3.61	1.71	0.2	I	I	I	I
CI/CI	2	4.62	0.04	<0.1	I	I	Ι	I	Ι	I	I	Ι
H/U	10	3.56-3.82	0.82	0.1	~	3.78–3.95	0.15	<0.1	I	I	I	I
сумма	474	2.38-4.69	675.59	100.0	502	2.07-4.66	777.28	100.0	558	2.07-4.66	793.39	100.0
$\frac{a}{k_{AZ}}$ – общее ч атомов, содеј	исло всех эжащихся	к граней с рангом я в одной форму.	Γ PГ = 0; $d - \pi$ льной едини	иапазон соо: це вещества,	гветствун ; $\Delta_{AZ} - па$	лцих межатомн рциальный вкл	ных расстоян тад соответс	ний A–Z; S_{ℓ} ствующих 1	_{-Z} – общая п невалентны	площадь всех гр. іх контактов А/7	аней указанног Z в величину и	о типа у ПВД нтегрального

Таблица 4. Основные параметры межмолекулярных взаимодействий в структурах кристаллов^а

РАДИОХИМИЯ том 63 № 4 2021

СТРОЕНИЕ ТЕТРАХЛОРОУРАНИЛАТОВ

параметра $^0S = \Sigma S_{\rm AZ}$ молекулярного ПВД.

Рис. 5. Гистограмма со значениями парциальных вкладов ($\Delta_{A/Z}$, %) для межмолекулярных контактов в структурах кристаллов **I**, **IIa** и **IIb**.

ной сфере U(VI) появляется за счет катион-катионного взаимодействия между ионами уранила [27].

По аналогии с КП U^{VI}O_bN_c [28] состав упомянутых выше КП можно описать общей формулой UO_bCl_c. Регрессионный анализ показал, что для пяти разных комплексов UO_bCl_c объем ПВД атомов U(VI) линейно увеличивается с ростом параметра $\lambda = c/(b+c)$, который характеризует относительное содержание атомов Cl в координационной сфере (рис. 4). Аналогичный эффект наблюдается и для гетеролигандных комплексов UO_bN_c [28]. Эти факты дают основание считать, что увеличение объема ПВД атомов U(VI) в гетеролигандных комплексах UO_bX_c является следствием существенного увеличения длины связей U-X (X = N или Cl) по сравнению со связями U-O. В частности, в обсуждаемых соединениях I и II среднее d(U-Cl) = 2.68(3) Å, а *d*(U–O_{экв}) равно 2.53(3) Å.

Анализ межмолекулярных взаимодействий в структуре I проводили с помощью метода молекулярных полиэдров Вороного–Дирихле (ММПВД) [29–31], который учитывает все возможные межатомные контакты A/Z, а не только те, которые принято считать важными. Поскольку в I и II присутствуют атомы 6 элементов, то в структурах кристаллов теоретически возможен 21 тип контактов, различающихся природой атомов A и Z. Так как ММПВД не пригоден для соединений со статисти-

ческим размещением атомов, то для кристаллов II учитывали два уже упомянутых выше предельных варианта структуры, в которых все атомы U образуют химически идентичные комплексы [UO₂Cl₄]²⁻ (вариант IIa) или [UO₂(NO₃)₂Cl₂]²⁻ (вариант IIb). Согласно полученным данным, в структурах I, IIa и IIb реализуются межмолекулярные взаимодействия соответственно 9, 6 и 7 возможных типов, причем во всех случаях одновременно встречаются только четыре типа контактов: Н/Н, Н/С, Н/О и H/Cl (табл. 4, рис. 5). Именно эти взаимодействия, на которые в каждой структуре в сумме приходится более 96% общей площади граней молекулярных $\Pi B \square (^{0}S)$, вносят основной вклад в связывание комплексных групп. Парциальные вклады всех остальных обнаруженных типов невалентных контактов (C/C, H/N, C/N, C/O, C/Cl, Cl/Cl и H/U, табл. 4) в сумме не превышают 4%.

Характеристики межмолекулярных взаимодействий для однотипных по стехиометрическому составу структур $R_2[UO_2Cl_4]$ (I и IIa, табл. 4, рис. 5) в целом похожи. Имеющиеся различия вызваны изменением мольной доли (δ) атомов в комплексах изза различающегося состава катионов R⁺: ТМБА (I) и ТЭБА (IIa). Так, в IIa величина δ для атомов водорода увеличена (на $\approx 3.2\%$), а δ для Cl понижена (на $\approx 1.5\%$) по сравнению с I, при этом для остальных элементов различие δ не превышает 0.7%. Именно поэтому парциальный вклад дисперсионных взаимодействий H/H в структуре **Па** значительно выше (\approx 44%), чем в **I** (\approx 37%), тогда как вклад водородных связей H/Cl в **Па**, наоборот, заметно понижен (\approx 34%) по сравнению с **I** (\approx 38%).

Еще более отчетливо влияние состава соединений на особенности межмолекулярных взаимодействий проявляется для пары Па и Пb, которым отвечают соответственно валовые формулы С₂₆Н₄₄Сl₄N₂O₂U и С₂₆Н₄₄Cl₂N₄O₈U. В **Шb** по сравнению с Па значение б наиболее значительно (на ≈7.1%) увеличено для атомов О и понижено (на 2.7 %) для атомов Н и Cl, тогда как для остальных элементов различие б не превышает 1.6%. Поэтому неудивительно, что водородные связи Н/О в структуре IIb вносят в связывание значительно более высокий парциальный вклад ($\Delta_{H/O} \approx 36\%$), чем в **Па** (≈12%), в то время как вклад водородных связей H/Cl в **Шb** ($\Delta_{H/Cl} \approx 14\%$), наоборот, существенно понижен по сравнению с Па (≈34%). Другими словами, замещение половины ионов Cl⁻ всех комплексов $[UO_2Cl_4]^{2-}$ в **IIa** на нитрат-ионы в **IIb**, по существу, приводит к замене большинства водородных связей H/Cl на водородные связи H/O (рис. 5). Важнейшим межмолекулярным водородным связям в I и II (по классификации [32] они являются слабыми по силе) отвечают углы C-H···X > 130° (X = О или Cl). Граням ПВД, которые эквивалентны контактам Н…Х в таких связях, соответствуют телесные углы >10% от 4π ср и межатомные расстояния в диапазонах $2.36-2.88 (X = O) \mu 2.74-2.94 \text{ Å} (X = Cl).$

Отметим, что присутствующие в структуре ІІ урансодержащие комплексы формально можно рассматривать как результат диспропорционирования по схеме $2[UO_2(NO_3)Cl_3]^{2-} \rightarrow [UO_2Cl_4]^{2-} +$ [UO₂(NO₃)₂Cl₂]²⁻. Реальная структура II является суперпозицией двух предельных вариантов Па (с комплексами $[UO_2Cl_4]^{2-}$) и **Пb** (с комплексами $[UO_{2}(NO_{3})_{2}Cl_{2}]^{2-})$, характеристики которых указаны в табл. 4 и на рис. 5. Имеющиеся данные позволяют предположить, что сосуществование в кристаллах II двух продуктов диспропорционирования нитратно-трихлоридного комплекса вызвано природой внешнесферного катиона – триэтилбензиламмония, который при неизменной геометрии способен образовать систему энергетически выгодных водородных связей как с хлорид(структура **IIa**), так и с нитрат-ионами (структура **IIb**), входящими в состав комплексов уранила.

ФОНДОВАЯ ПОДДЕРЖКА

Рентгенодифракционные эксперименты проведены в ЦКП ФМИ ИФХЭ РАН при частичном финансировании Министерством науки и высшего образования РФ (тема N AAAA-A18-118040590105-4).

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют об отсутствии конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- Morss Eds L.R., Edels tein N.M., Fuger J., Katz J.J. The Chemistry of the Actinide and Transactinide Elements. Springer, 2006. https://doi.org/10.1007/1-4020-3598-5
- Medvedkov Ya.A., Grigor'ev M.S., Serezhkina L.B., Pushkin D.V., Serezhkin V.N. // Russ. J. Inorg. Chem. 2018. Vol. 63. N 3. P. 338. https://doi.org/10.1134/S0036023618030154
- Mihalcea I., Falaise C., Volkringer C., Henry N., Loiseau T. // Inorg. Chem. Commun. 2014. Vol. 44. N 1. P. 63.

https://doi.org/10.1016/j.inoche.2014.02.040

- Zhang Y., Collison D., Livens F.R., Helliwell M., Eccles H., Tinker N. // J. Alloys Compd. 1998. Vol. 271–273. P. 139. https://doi.org/10.1016/S0925-8388(98)00041-3
- Zhang Y., Collison D., Livens F.R., Helliwell M., Heatley F., Powell A.K., Wocadlo S., Eccles H. // Polyhedron. 2002. Vol. 21, N 1. P. 81. https://doi.org/10.1016/S0277-5387(01)00965-2
- Falaise C., Volkringer C., Hennig C., Loiseau T. // Chem. Eur. J. 2015. Vol. 21, N 46. P. 16654. https://doi.org/10.1002/chem.201502207
- Сережкина Л.Б., Кучумова Н.В., Сережкин В.Н. // Радиохимия. 1993. Т. 35, № 6. С. 31.
- 8. SAINT-Plus (Version 7.68). Madison, Wisconsin, USA: Bruker AXS, 2007.
- 9. *Sheldrick G.M.* SADABS. Madison, Wisconsin, USA: Bruker AXS, 2008.
- Sheldrick G.M. // Acta Crystallogr., Sect. A. 2008. Vol. 64, N 1. P. 112. https://doi.org/10.1107/ S0108767307043930

- Sheldrick G.M. // Acta Crystallogr., Sect. C. 2015. Vol. 71, N 1. P. 3. https://doi.org/10.1107 / S2053229614024218
- 12. Serezhkin V.N., Mikhailov Yu.N., Buslaev Yu.A. // Russ. J. Inorg. Chem. 1997. Vol. 42, N 12. P. 1871.
- 13. *Накамото К.* ИК спектры и спектры КР неорганических и координационных соединений: Пер. с англ. М.: Мир, 1991. 536 с.
- Sharma R.P., Bala R., Sharma R., Vermani B.K., Gill D.S., Venugopalan P. // J. Coord. Chem. 2005. Vol. 58, N 4. P. 309. https://doi.org/10.1080/00958970512331325557
- Serezhkin V.N., Vologzhanina A.V., Serezhkina L.B., Smirnova E.S., Grachova E.V., Ostrova P.V., Antipin M.Yu. // Acta Crystallogr., Sect. B. 2009. Vol. 65, N 1. P. 45.

https://doi.org/10.1107/S0108768108038846

- 16. Inorganic Crystal Structure Database. Gmelin-Institut für Anorganische Chemie & FIC Karlsruhe. 2019.
- 17. Cambridge Structural Database System. Cambridge Crystallographic Data Centre, 2019.
- Serezhkin V.N. Structural Chemistry of Inorganic Actinide Compounds / Eds S.V. Krivovichev, P.C Burns, I.G. Tananaev. Amsterdam: Elsevier, 2007. P. 31–65.
- 19. *Морозов И.В., Сережкин В.Н., Троянов С.И.* // Изв. РАН. Сер. хим. 2008. № 3. С. 429.
- Indira A., Sridhar M.A., Qayyas N.N.A., Prasad J.S., Robinson W.T. // Z. Kristallogr. 1994. Vol. 209, N 11. P. 916.

https://doi.org/10.1524/zkri.1994.209.11.916

 Cocalia V., Smiglak M., Kelley S.P., Shamshina J.L., Gurau G., Rogers R.D. // Eur. J. Inorg. Chem. 2010. Vol. 2010, N 18. P. 2760. https://doi.org/10.1002/piig.201000162

https://doi.org/10.1002/ejic.201000162

- Nazarchuk E.V., Siidra O.I., Krivovichev S.V. // Z. Naturforsch. B. 2011. Vol. 66, N 2. P. 107. https://doi.org/10.1515/znb-2011-0206
- Andrews M.B., Cahill C.L. // Crystengcomm. 2013.
 Vol. 15, N 16. P. 3082. https://doi.org/10.1039/C2CE26561C
- Serezhkin V.N., Savchenkov A.V., Pushkin D.V., Serezhkina L.B. // Appl. Solid State Chem. 2018. N 2. P. 2. https://doi.org/10.18572/2619-0141-2018-2-3-2-16
- Debets P.C. // Acta Crystallogr., Sect. B. 1968. Vol. 24. N 3. P. 400. https://doi.org/10.1107/S056774086800244X
- Taylor J.C., Wilson P.W. // Acta Crystallogr., Sect. B. 1973. Vol. 29, N 5. P. 1073. https://doi.org/10.1107/S0567740873003882
- Serezhkin V.N., Sidorenko G.V., Pushkin D.V., Serezhkina L.B. // Radiochemistry. 2014. Vol. 56, N 2. P. 115. https://doi.org/10.1134/S1066362214020015
- 28. Serezhkin V.N., Karasev M.O., Serezhkina L.B. // Radiochemistry. 2013. Vol. 55, N 2. P. 137. https://doi.org/10.1134/S106636221302001X
- 29. Serezhkin V.N., Serezhkina L.B. // Crystallogr. Rep. 2012. Vol. 57, N 1. P. 33. https://doi.org/10.1134/S1063774511030291
- Serezhkin V.N., Pushkin D.V., Serezhkina L.B. // Crystallogr. Rep. 2010. Vol. 55, N 4. P. 554. https:// doi.org/10.1134/S1063774510040048
- Serezhkin V.N., Savchenkov A.V. // Cryst. Growth Des. 2020. Vol. 20. P. 1997. https://dx.doi.org/10.1021/acs.cgd.9b01645
- Steiner T. // Angew. Chem. 2002. Vol. 41, N 1. P. 48. https://doi.org/10.1002/1521-3773(20020104)41:1<48::AID-ANIE48>3.0.CO;2-U

336