УДК 548.31

СИНТЕЗ И СТРОЕНИЕ КОМПЛЕКСА СУКЦИНАТА УРАНИЛА С ИЗОНИКОТИНОВОЙ КИСЛОТОЙ И НОВОГО ПОЛИМОРФА МОНОГИДРАТА СУКЦИНАТА УРАНИЛА

© 2021 г. В. Н. Сережкин^{а,} *, М. С. Григорьев⁶, Е. Ф. Рогалева^а, Л. Б. Сережкина^а

^а Самарский национальный исследовательский университет им. акад. С. П. Королева, 443011, Самара, ул. Акад. Павлова, д. 1 ^б Институт физической химии и электрохимии им. А. Н. Фрумкина РАН, 119071, Москва, Ленинский пр., д. 31, корп. 4 *e-mail: serezhkin@samsu.ru

Получена 08.12.2020, после доработки 17.02.2021, принята к публикации 24.02.2021

Ocyществлены синтез, ИК спектроскопическое и рентгеноструктурное исследование кристаллов $[UO_2(C_4H_4O_4)(C_6H_5NO_2)_2]$ (I) и новой модификации $[UO_2(C_4H_4O_4)(H_2O)]$ (II), где $C_4H_4O_4^{2^-}$ – сукцинатионы, а $C_6H_5NO_2$ – изоникотиновая кислота. Структура I образована цепями, в которых сукцинат-ионы играют роль мостиковых лигандов Q^{02} и B^2 , а молекулы изоникотиновой кислоты, находящиеся в виде цвиттер-иона, являются монодентатными лигандами M^1 . Цепям I отвечает кристаллохимическая формула $AQ_{0.5}^{0.2}B_{0.5}^2M_2^1$, где $A = UO_2^{2^+}$, Q^{02} и $B^2 = C_4H_4O_4^{2^-}$, а $M^1 = C_6H_5NO_2$. С позиций правила 18 электронов в соединениях уранила объяснены причины изменения типа координации половины сукцинат-ионов в I от характерного Q^{02} до редкого B^2 . Структуре II, как и двум уже известным модификациям, соответствует кристаллохимическая формула AQ^{4M_1} , где $A = UO_2^{2^+}$, $Q^4 = C_4H_4O_4^{2^-}$, а $M^1 = H_2O$. На примере полиморфов моногидрата сукцината уранила выяснено, что подобно полиморфам кремнезема химически идентичные 3D уранилсодержащие каркасы могут различаться как топологией (реконструктивные изомеры), так и симметрией каркаса (деформационные изомеры). Установлено, что новая γ-форма II в области ≈180 К обратимо превращается в уже известную низкотемпературную β-модификацию. С помощью полиэдров Вороного–Дирихле показано, что имеющиеся данные для четвертого полиморфа $[UO_2(C_4H_4O_4)(H_2O)]$, зарегистрированного в CSD как {SUCCUR02}, являются ошибочными.

Ключевые слова: уранил, сукцинаты, полиморфизм, полиэдры Вороного-Дирихле.

DOI: 10.31857/S0033831121040055

ВВЕДЕНИЕ

Сукцинатсодержащие соединения U(VI) относятся к классу уранорганических координационных полимеров, которые сравнительно активно изучаются в последние десятилетия [1–11]. Недавно было установлено, что сукцинат-ионы ($C_4H_4O_4^{2-}$ = suc²⁻), которые принадлежат к гомологическому ряду дианионов [$O_2C-(CH_2)_n-CO_2$]²⁻ алифатических дикарбоновых кислот, могут проявлять 10 топологически разных типов координации к атомам *f*-металлов [12]. Имеющиеся данные свидетельствуют о том, что даже при одинаковом отношении suc^{2–} : UO_2^{2+} возникающие полимеры из-за топологической изомерии могут различаться размерностью (1D, 2D или 3D) и строением образующихся уранилсукцинатных комплексов. Выяснилось также, что в некоторых системах $UO_2(suc)-L-H_2O$, где L – электронейтральный азотсодержащий лиганд (в частности, карбамид [10] или N,N-диэтилацетамид [11]), в структуре образующихся кристаллов состава $UO_2(suc) \cdot nL$ (без учета кристаллизационных молекул воды) сосуществуют два типа комплексов U(VI), образование которых можно рассматривать

СЕРЕЖКИН и др.

Параметр	Ι	II		
Химическая формула	$UO_2(C_4H_4O_4)(C_6H_5NO_2)_2$	$UO_2(C_4H_4O_4)(H_2O)$		
Сингония, пространственная группа, Z	Триклинная, <i>Р</i> –1, 2	Ромбическая, <i>Pnna</i> , 4		
<i>a</i> , Å	7.5962(2)	9.4997(6)		
<i>b</i> , Å	9.7100(3)	10.8501(6)		
<i>c</i> , Å	13.3907(4)	7.5846(4)		
α, град	103.813(2)	90.0		
β, град	94.898(2)	90.0		
ү, град	108.853(2)	90.0		
<i>V</i> , Å ³	893.36(5)	781.77(8)		
D_x , г/см ³	2.351	3.434		
μ, мм ⁻¹	9.147	20.762		
Т, К	296(2)	296(2)		
Излучение, λ, Å	MoK _a , 0.71073			
Размер образца, мм	$0.18 \times 0.16 \times 0.12$	$0.10 \times 0.08 \times 0.06$		
θ_{\max} , град	30.000	34.994		
Область <i>h</i> , <i>k</i> , <i>l</i>	$-10 \le h \le 10, -13 \le k \le 13, -18 \le l \le 18$	$-15 \le h \le 15, -17 \le k \le 17, -12 \le l \le 12$		
Число отражений: измеренных/не- зависимых (N ₁), $R_{int}/c I > 2\sigma(I)$ (N ₂)	26280/17597, 0.0335/15843	14480/1721, 0.0280/1155		
Метод уточнения	Полноматричный МНК по F ²			
Число уточняемых параметров	263	59		
Весовая схема	$w = 1/[\sigma^2(F_o^2) + (0.0205P)^2 + 0.4545P],$ rge $P = (F_o^2 + 2F_c^2)/3$	$w = 1/[\sigma^2(F_o^2) + (0.0124P)^2 + 0.7484P],$ rge $P = (F_o^2 + 2F_c^2)/3$		
Факторы недостоверности:				
wR_2 по N_1	0.0519	0.0292		
<i>R</i> ₁ по <i>N</i> ₂	0.0260	0.0154		
S	1.048	1.009		
$\Delta \rho_{max} / \Delta \rho_{min}$, e/Å ³	1.458/-0.909	0.746/-1.657		

Таблица 1. Кристаллографические данные, параметры эксперимента и уточнения структур I и II

как результат диспропорционирования по схеме $3UO_2(suc) \cdot nL \rightarrow [UO_2(L)_x]^{2+} + [(UO_2)_2(suc)_3]^{2-} + (3n-x)L.$

В процессе исследования фазовых равновесий в системе $UO_2(suc)-L-H_2O$, где L – пиридин-4-карбоновая (изоникотиновая – $C_6H_5NO_2$) кислота, нами были впервые получены кристаллы $UO_2(C_4H_4O_4)$ ($C_6H_5NO_2$)₂ (**I**), исследованию строения которых посвящена данная работа. Одновременно в работе приведены характеристики новой модификации $UO_2(C_4H_4O_4)(H_2O)$ (**II**), кристаллы которой были

получены в одном из экспериментов при попытке синтеза гетеролигандного сукцинато-оксалатного комплекса уранила.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Синтез кристаллов I. Изоникотиновую кислоту $C_6H_5NO_2$ (0.26 г, 2.11 ммоль) растворяли в 50 мл дистиллированной воды и приливали к горячему раствору янтарной кислоты (0.25 г, 2.11 ммоль в 6 мл воды). Затем добавляли оксид урана(VI) (0.20 г,

РАДИОХИМИЯ том 63 № 4 2021

	1 1	1 ()			
Связь	<i>d</i> , Å	Ω, % ^a	Угол	ω, град	
$[UO_2(suc)(C_6H_5NO_2)_2]$ (I)					
Пентагональная бипирамида UO7					
U1-01	1.766(3)	21.32	O1U1O2	178.13(15)	
U1-O2	1.763(3)	21.69	O3U1O4	52.50(8)	
U1–O3	2.473(3)	9.63	O3U1O7	78.01(10)	
U1–O4	2.454(3)	9.40	O4U1O9	71.27(9)	
U1–O5	2.276(3)	13.19	O5U1O7	81.38(11)	
U1–O7	2.310(3)	13.10	O5U1O9	77.28(10)	
U1–O9	2.367(3)	11.66			
$[UO_2(suc)(H_2O)]$ (II)					
Пентагональная бипирамида UO7					
U1-01	1.761(2) (×2)	21.73	O1U1O1	179.00(13)	
U1–O2	2.391(2) (×2)	11.38	O3U1O2	71.90(6) (×2)	
U1–O3	2.385(2) (×2)	11.46	O2U1O2	74.04(9)	
U1–O1w	2.441(3)	10.87	O3U1O4	71.09(4) (×2)	

Таблица 2. Основные геометрические параметры КП атомов U(VI)

^а Ω – телесный угол (в процентах от полного телесного угла 4π ср), под которым общая грань ПВД соседних атомов видна из ядра любого из них.

0.70 ммоль) и нагревали полученную смесь на кипящей водяной бане до полного растворения. Исходное мольное соотношение реагентов составляло 3:3:1, pH раствора был равен 4. Через 7–9 дней выделялись игольчатые монокристаллы желтого цвета состава UO₂(suc)(C₆H₅NO₂)₂ (найдено, %: U 37.00; вычислено, %: U 37.66), выход 49%.

Синтез кристаллов **II.** К смеси оксида урана(VI) (0.20 г, 0.70 ммоль), янтарной кислоты (0.17 г, 1.40 ммоль), щавелевой кислоты (0.06 г, 0.70 ммоль) и гидрохлорида гидроксиламина NH₂OH·HCl (0.02 г, 0.35 ммоль) добавляли 8 мл дистиллированной воды и 2 мл ацетонитрила. Полученную суспензию помещали в автоклав на 30 ч при температуре 140°С. Мольное соотношение исходных веществ составляло 1 : 2 : 1 : 0.5. В результате были получены кристаллы желтого цвета состава UO₂(suc)(H₂O) (найдено, %: U 59.29; вычислено, %: U 58.91), выход 52%.

ИК спектроскопия. ИК спектры исследуемых веществ в виде таблеток с КВr были сняты на Фу-

РАДИОХИМИЯ том 63 № 4 2021

рье-спектрометре ФТ-801 в области волновых чиссел 4000–500 см $^{-1}.$

Рентгенодифракционные эксперименты проведены на автоматическом четырехкружном дифрактометре с двумерным детектором Bruker Kappa Арех II. Параметры элементарных ячеек уточнены по всему массиву данных [13]. В экспериментальные интенсивности рефлексов внесены поправки на поглощение с использованием программ TWINABS [14] для I и SADABS [15] для II. Структуры расшифрованы прямым методом (SHELXS97 [16]) и уточнены полноматричным методом наименьших квадратов (SHELXL-2018 [17]) по F^2 по всем данным в анизотропном приближении для всех неводородных атомов. Структура I определена с использованием двойникового кристалла; вклад второго домена, повернутого относительно первого на 180° вокруг направления [001], составил 0.5375(4).

Атомы водорода групп CH_2 , CH и NH размещены в геометрически вычисленных позициях с $U_{\rm H} = 1.2U_{_{3KB}}(N, C)$. Атом водорода молекулы воды в структуре **II** локализован из разностного Фурье-синтеза электронной плотности и уточнен с

СЕРЕЖКИН и др.

I		П			
Волновое число, см ^{-1 а}	Отнесениеб	Волновое число, см ^{-1 а}	Отнесение		
3436 сл.	ν(NH)	3328 с., ш.	v(H ₂ O)		
3109 cp. 3083 cp. 3054 cp.	$ u(CH)_{inic} $ $ u(CH_2)_{suc} $	2961 сл. 2943 с.	ν(CH ₂)		
1663 c.	v(CO) _{inic}	1620 – 1490 с., ш	$v_{as}(COO), \delta(H_2O)$		
1638 c.	$v_{as}(COO)_{suc}$	1427 с. 1393 с.	$ν_s(COO), \delta(CH_2), ω(CH_2)$		
1451 c.	$v_{s}(COO)_{suc}$	1384 c.			
1414 cp.	$\nu_{s}(COO)_{suc}, \nu(CC)_{inic}$	1297 с. 1232 ср.	ν(CO), δ(CH ₂)		
1382 c. 1348 c.	$v_{s}(COO)_{suc},$ $v_{s}(COO)_{inic}$	1190 с. 1109 сл. 1072 сл.	$\nu(CC), \delta(CH_2), \omega(CH_2)$		
1310 cp. 1232 cp.	$V(CO)_{suc}, O(CH_2)$				
1209 c. 1140 cp. 1076 cp.	$\nu(CC)_{suc}, \delta(CH_2), \omega(CH_2)$	995 ср. 973 ср.	v(CC)		
1057 ср. 1036 сл. 1001 ср.	$\delta(CH)_{ip}$	949 с. 937 с.	$v_{as}(UO_2^{2+})$		
964 cp.	v(CC) _{suc}	891 cp.	v(CC)		
936 cp. 911 c.	$v_{as}(UO_2^{2^+})$	862 сл.	$\nu_s(UO_2^{2+})$		
883 cp. 866 cp. 856 cp.	$\nu(CC)_{suc}, \delta(CH)_{ip}$	689 cp.	γ(COO)		
838 сл.	$v_s(UO_2^{2+})$	670 cp.	ω(CH ₂)		
803 cp. 769 c.	δ(CH) _{oop}	594 cp.	ρ(CH ₂)		
683 c.	$\gamma(COO)_{suc}, \delta(CC)_{oop}$	565 cp.	δ(CCC)		
549 cp.	$\delta(CCC)_{suc}, \delta(CC)_{ring}$				
528 сл.	$\delta_{as}(COO)_{inic}$				

Таблица 3. Предположительное отнесение полос поглощения в ИК спектрах [UO₂(suc)(C₆H₅NO₂)₂] (I) и $[UO_2(suc)(H_2O)]$ (II)

^а Интенсивность полос: с. – сильная, ср. – средняя, сл. – слабая, ш. – широкая. ^б inic – изоникотиновая кислота, suc – сукцинат-ион. Колебания: δ_{ip} – деформационное плоскостное, δ_{oop} – деформационное внеплоскостное.

340

Форма	Пространственная группа	Параметры ячейки <i>a</i> ; <i>b</i> ; <i>c</i> , Å	<i>V</i> , Å ³	$V_{\rm U}, Å^3$	Ss(U)	КТТ	Рефкод
α	Pbcn	7.583(2); 9.491(3); 10.890(3)	783.8	9.12	C ₂	4 ⁵ 5 ²	SUCCUR
β ⁶	$P2_1/n$	7.5720(5); 10.7786(8); 9.5090(6)	776.0	9.13	C ₁	4 ⁵ 5 ²	SUCCUR01
γ	Pnna	9.4997(6); 10.8501(6); 7.5846(4)	781.8	9.21	C ₂	4 ⁵ 5 ²	Данная работа
X	Ama2	10.8569(14); 9.5114(12); 7.5892(10)	783.7	11.76	Cs	3 ² 4 ⁵	SUCCUR02

Таблица 4. Некоторые характеристики полиморфов [UO₂(suc)(H₂O)]^a

^аV – объем элементарной ячейки; V_U – объем ПВД атома U; Ss(U) – симметрия позиции атома U; КТТ – комбинаторно-топологический тип ПВД атома U. В символе КТТ числа в строке указывают число вершин (или ребер) у грани, а надстрочные индексы указывают общее число таких граней.

⁶Для β -модификации угол $\beta = 90.773(5)^{\circ}$.

 $U_{\rm H}$ = 1.5 $U_{_{\rm 3KB}}({\rm O})$ и ограничением расстояния O–H и угла H–O–H.

Кристаллографические характеристики и детали дифракционного эксперимента приведены в табл. 1, а основные геометрические параметры полиэдров атомов урана – в табл. 2. Координационные числа (**КЧ**) всех атомов рассчитывали по методу пересекающихся сфер [18]. Координаты атомов и величины температурных параметров в структурах **I и II** депонированы в Кембриджском центре кристаллографических данных под номерами ССDС 2044442 и 2044443.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

В ИК спектре I присутствуют полосы поглощения, соответствующие характеристическим колебаниям ионов UO_2^{2+} [19], suc²⁻ [20] и молекул изоникотиновой кислоты [21, 22] (табл. 3). Поскольку группы СОО входят в состав как suc²⁻, так и молекул изоникотиновой кислоты, а области их поглощения в ИК диапазоне перекрываются, то разделить однозначно валентные колебания v(COO) на отвечающие колебаниям $C_4H_4O_4^{2-}$ и $C_6H_5NO_2$ не представляется возможным. Появление полосы v(NH) при 3436 см⁻¹ обусловлено нахождением изоникотиновой кислоты в структуре I в виде цвиттер-иона. О координации молекул изоникотиновой кислоты через атом кислорода карбоксильной группы свидетельствует понижение частоты колебания v(C=O) до 1663 см⁻¹ в спектре комплекса по сравнению с поглощением при 1712 см⁻¹ в ИК спектре свободной кислоты [21]. Антисимметричному валентному

РАДИОХИМИЯ том 63 № 4 2021

колебанию иона уранила отвечает дублет при 911 и 936 см⁻¹.

ИК спектр II содержит полосы колебаний ионов UO_2^{2+} , suc²⁻ и молекул воды в областях, отвечающих их характеристическим колебаниям (табл. 3). Антисимметричное валентное колебание иона уранила (v_{as}) наблюдается в виде дублета при 949 и 937 см⁻¹.

В структуре I все атомы занимают общие позиции 2i с симметрией $C_1 = 1$. Координационным полиэдром (КП) единственного независимого атома урана является пентагональная бипирамида UO₇, на главной оси которой находятся атомы кислорода ионов UO2⁺. Три экваториальных атома кислорода принадлежат двум кристаллографически разным сукцинат-анионам, один из которых проявляет тип координации Q⁰², а другой – В². Согласно работам [23-25], символы Q и В (первые буквы слов quadridentate и bidentate) характеризуют общую дентатность лигандов, которая для сукцинат-анионов в структуре I равна соответственно четырем и двум. Сукцинат-ионы типа Q⁰² связаны с каждым атомом урана бидентатно, поэтому надстрочная цифра 2 указывающая общее число таких атомов металла, стоит во второй позиции. Каждый сукцинат-ион типа В² тоже связывает два атома урана, но с каждым из них он связан монодентатно, поэтому цифра 2 стоит в первой позиции надстрочного символа. В результате в I сукцинат-ион В² использует для связывания с атомами урана только один из двух атомов кислорода каждой карбоксильной группы (рис. 1). При этом атом кислорода, связанный с ураном, находится на расстоянии d(U-O) = 2.276(3) Å, тогда как для некоординированного атома кислорода той же карбоксильной группы

Рис. 1. Фрагмент уранилсукцинатной цепочки в структуре I.

d(U-O) = 4.414(3) Å. Несмотря на разную кристаллохимическую роль, оба типа сукцинат-ионов имеют одинаковую трансоидную ϕ^3 -конформацию (торсионные углы С-С-С-С равны 180°). Оставшиеся две позиции в экваториальной плоскости бипирамиды UO₇ занимают атомы кислорода двух кристаллографически независимых молекул изоникотиновой кислоты C₆H₅NO₂, которые являются монодентатными лигандами M¹ и находятся в виде цвиттер-ионов. Обозначения типов координации лигандов и кристаллохимические формулы (КХФ) комплексов даны в соответствии с работами [23–25]. В структуре I атомы урана объединены сукцинат-ионами в бесконечные цепочки состава $[UO_2(C_4H_4O_4)(C_6H_5NO_2)_2]$, которым отвечает КХФ $AQ_{0.5}^{02}B_{0.5}^2M_2^1$, где $A = UO_2^{2+}$, Q^{02} и $B^2 = C_4H_4O_4^{2-}$, а $M^1 = C_6 H_5 NO_2$ (рис. 1).

Диоксокатионы UO_2^{2+} в структуре практически симметричны и линейны (расстояния U=O равны 1.766(3) и 1.763(3) Å, угол O=U=O равен 178.1(2)°). Объем полиэдра Вороного–Дирихле (**ПВД**) атома урана, имеющего форму пентагональной призмы в структуре, равен 9.08 Å³ и хорошо согласуется со средним значением 9.2(2) Å³, установленным для атомов U(VI) в составе КП UO_n при *n* в диапазоне от 6 до 9 [26].

Цепочки $[UO_2(C_4H_4O_4)(C_6H_5NO_2)_2]$ в структуре I имеют такой же стехиометрический состав как и уранилсукцинатные цепочки в кристаллах $[UO_2(C_4H_4O_4)(L)_2]$ ·2H₂O (III), где L = C₂N₄H₄ – циангуанидин [11], которым отвечает КХФ AQ⁰²M₂¹. Однако в цепочках III все сукцинат-ионы проявляют характерный для них тип координации Q⁰², вследствие чего КЧ атомов U(VI) равно 8 (КП – гексагональная бипирамида), а не 7, как в I. Согласно полученным данным, уменьшение КЧ U(VI) до 7 обусловлено тем, что половина сукцинат-ионов в I проявляет тип координации B^2 , а не Q^{02} . С учетом данных о структуре III возникает вопрос, почему в I для половины сукцинат-ионов изменяется тип координации (от характерного Q^{02} до очень редкого B^2) и снижается их дентатность (от 4 до 2), что приводит к уменьшению КЧ атомов урана от 8 до 7.

Как известно, атомы U(VI), химически связанные только с атомами кислорода, чаще всего образуют КП UO_n при n = 6, 7 или 8 [26–28]. Неоднократно отмечалось, что объем ПВД атомов U(VI) в комплексах UO_n практически не зависит от КЧ урана и в среднем равен 9.2(2) Å³ [26]. Постоянство объема ПВД рассматривается как следствие реализации атомами U(VI) устойчивой и однотипной электронной оболочки (предположительно 18 \bar{e}). Основанное на этой гипотезе правило 18 электронов (далее для краткости **П-18**), позволяющее прогнозировать возможное KЧ атомов U(VI) в комплексах уранила, было успешно использовано при анализе ряда водно-солевых систем, в частности, содержащих сульфат- [29], нитрат- [30], карбонат- [31], метакрилат- [32] или пропионат-ионы [33], а также при выявлении особенностей строения стехиометрически однотипных комплексов [UO₂XO₄]^{*z*-}, где X = Si(IV), P(V) или S(VI) [28].

Как отмечалось [28–33], согласно П-18, реализующееся КЧ атомов U(VI) зависит от электронодонорной способности атомов кислорода, входящих в состав КП UO_n. Для удобства расчетов принято, что в КП UO_n атом U(VI) представляет собой ион U⁶⁺, который является акцептором электронов, предоставляемых координированными атомами кислорода. Все атомы кислорода в КП UO_n являются донорами электронов, причем число электронов (E_i), предоставляемых иону U⁶⁺ одним атомом O_i некоторого лиганда, можно определить по соотно-шению

$$E_i = 0.18 \times \Omega_i \quad , \tag{1}$$

где Ω_i – телесный угол (в процентах от 4π ср), под которым общая грань ПВД атомов U и O_i «видна» из ядра любого из них. Например, для атомов кислорода групп UO2²⁺ в I-III телесный угол в среднем составляет 21.6(2)%. Поэтому величина Е_i для атома кислорода иона уранила (O^{2-//M¹}, здесь и далее после двойного слеша указан символ типа координации лиганда по отношению к атому урана), рассчитанная по формуле (1), равна $3.89(4) \approx$ 4ē. Этот результат хорошо согласуется с классическим взглядом на строение группы UO_2^{2+} , согласно которому каждую связь U=O в ионе уранила образуют две обобществленные электронные пары, т.е. 4 электрона. Заметим также, что указанное E_i , рассчитанное на основе данных для I-III, практически совпало с $E_i(O^{2-1}/M^1) = 3.9(1)$ е для более 300 связей U=О в структурах сульфат-, нитрат- или карбонатсодержащих комплексов уранила [29-31]. Согласно Π -18, недостающие (18.0 – 2×3.9) = 10.2ē атом U(VI) получает за счет образования экваториальных связей U-O, которые по классическим представлениям являются одинарными, так как каждой из них отвечает около 2 электронов.

Для 12 и 2 кристаллографически разных связей U–O, образованных сукцинат-ионами с типом коор-

РАДИОХИМИЯ том 63 № 4 2021

динации Q⁰² и B² в уже изученных структурах, среднее E_i оказалось равно соответственно 1.66(7) \approx 1.7 и 2.40(3) ē. Для 5 связей U–O с участием молекул изоникотиновой кислоты в I, [UO₂(OH)(C₆H₄NO₂) (C₆H₅NO₂)][34] и [UO₂CrO₄(C₆H₅NO₂)₂(H₂O)]·2H₂O [35] среднее $E_i = 2.1(1)$ ē.

Согласно П-18, зная электронодонорную способность Е_i каждого лиганда, можно рассчитать общее количество электронов (N_{II}) во внешней оболочке атома U(VI) для любых комплексов. Для расчета N_U необходимо просуммировать значения Еі всех координированных ураном лигандов с учетом их типа координации, зависящего от состава и предполагаемого строения комплекса. В качестве примера рассмотрим уранилсукцинатный комплекс $[(UO_2)_2(suc)_3]^{2-}$ с КХФ AQ⁰²₁₅, где A = UO₂²⁺, а Q⁰² – suc^{2–}. Согласно КХФ, каждый ион уранила образует $(0 \times 1 + 2 \times 2) \times 1.5 = 6$ экваториальных связей U–О. Поэтому для атома урана $N_{\rm II} = 2E_i({\rm O}^{2-1/M^1}) +$ $6E_i(\text{suc}//\text{Q}^{02}) = 2 \times 3.9 + 6 \times 1.7 = 18.0$ ē, что объясняет высокую устойчивость и частую встречаемость таких комплексов. Для комплекса [UO₂(suc)(L)₂], где L – изоникотиновая кислота (inic), рассмотрим две возможных структуры с КХФ $AQ^{02}M_2^1$ (v1) и $AQ_{0.5}^{02}B_{0.5}^2$ M¹₂ (**v2**), где $A = UO_2^{2+}$, Q^{02} и $B^2 - suc^{2-}$, а M^1 – inic. В случае v1 получим, что $N_U = 2E_i (O^{2-1/2})$ M^{1}) + 4 $E_{i}(suc//Q^{02})$ + 2 $E_{i}(inic//M^{1})$ = 2×3.9 + 4×1.7 + $2 \times 2.1 = 18.8\bar{e}$, а для v2 $N_U = 2E_i(O^{2-1/M^1}) + 2E_i(suc/1/M^2)$ Q^{02}) + $E_i(suc/B^2)$ + $2E_i(inic/M^1) = 2 \times 3.9 + 2 \times 1.7 +$ 2.4 + 2×2.1 = 17.8ē. Согласно П-18, изоникотинатный комплекс v1 с $N_{\rm U} = 18.8\bar{\rm e}$ является электроноизбыточным и поэтому неустойчив, тогда как комплекс v2 с $N_{\rm U} = 17.8\bar{\rm e}$ попадает в область $18.0 \pm 0.3\bar{\rm e}$, которая отвечает стабильным комплексам уранила.

Устойчивость комплексов v1 и v2 зависит также и от электронодонорных свойств монодентатного лиганда. Так, если в сукцинатных комплексах v1 и v2 вместо изоникотиновой кислоты, для которой $E_i = 2.1\bar{e}$, в качестве лиганда M¹ содержится циангуанидин, для которого $E_i = 1.8\bar{e}$, то N_U понизится (на 2×0.3 = 0.6 \bar{e}) до 18.2 и 17.2 \bar{e} соответственно. При этом в полном согласии с имеющимися данными [11] циангуанидиновый комплекс v1 с $N_U =$ 18.2 \bar{e} существует, так как попадает в область стабильности 18.0 ± 0.3 \bar{e} , тогда как комплекс v2 с $N_U =$ 17.2 \bar{e} является электронодефицитным и поэтому не должен кристаллизоваться. Заметим, что надежность П-18 для прогнозирования строения и соста-

Рис. 2. Фрагмент 3D каркаса структуры II.

ва устойчивых комплексов уранила была недавно подтверждена результатами квантовохимических расчетов с позиций теории функционала плотности (DFT) [36].

Как табл. видно ИЗ 4, полученный [UO₂(C₄H₄O₄)·(H₂O)] (II) оказался новой модификацией моногидрата сукцината уранила (SUM), которая далее обозначена как у-SUM. Кроме у-SUM и двух сравнительно давно охарактеризованных форм α-SUM [1] и β-SUM [2], в табл. 4 учтены данные еще для одной модификации (обозначена как x-SUM), сведения о которой были опубликованы в 2015 г. в Inorg. Chem. Commun. на стр. 36-40 и зарегистрированы в Кембриджской базе данных с кодом {SUCCUR02}. Как будет показано далее, сведения о структуре x-SUM являются ошибочными, поэтому библиографические данные для этой статьи в списке литературы не указаны. Все модификации SUM были получены в гидротермальных условиях, различающихся составом использованных растворов и максимальной температурой нагрева (для α-, β-, γ - и х-форм соответственно ≈30, 180, 140 и 120°С). Несмотря на разную симметрию полученных кристаллов и небольшие различия параметров ячеек (в среднем они равны 7.58(1), 9.50(1) и 10.84(5) Å, табл. 4), объем элементарных ячеек лежит в узком интервале от 776 до 784 Å³, причем для α- и х-SUM он совпадает в пределах погрешности измерений.

Во всех полиморфах SUM присутствует один независимый атом U, который занимает позицию с симметрией C₂, C_s или C₁ (табл. 4) и образует КП UO₇. Так же как и в α - или β -формах, КП UO₇ в γ-SUM (II) представляет собой пентагональную бипирамилу, в которой четыре экваториальных атома кислорода принадлежат четырем разным сукцинат-ионам, а пятый атом входит в состав молекулы воды, которая, как и атом урана, лежит на оси C_2 . Молекулы воды играют роль монодентатных лигандов, а сукцинат-ионы проявляют тип координации Q⁴ (рис. 2). Такую же кристаллохимическую роль сукцинат-ионы и молекулы воды реализуют и в структурах α- или β-SUM. Поэтому структурам α-, β- и γ-SUM соответствует единая кристаллохимическая формула AQ^4M^1 , где $A = UO_2^{2+}$, $Q^4 = C_4H_4O_4^{2-}$, а M¹ = H₂O. Благодаря мостиковым сукцинат-ионам Q⁴ (каждый из них связывает базисный атом U с тремя другими) все три полиморфа имеют 3D структуру.

Различие строения уранилсукцинатных каркасов можно охарактеризовать координационными последовательностями { C_{P}^{N} } [37], указывающими число (C_{P}) атомов металла А, которые связаны с базисным всеми мостиковыми лигандами первой (N = 1), второй (N = 2) и последующих координационных сфер. Согласно полученным данным, для шести первых координационных сфер в α -модификации { $C_{P}^{6} = 12$, 60, 152, 274, 442, 632}, а для β - или γ-SUM { $C_p^6 = 10, 42, 92, 162, 252, 362$ }. Как уже отмечалось [12], из-за разных $C_p^N \alpha$ - и β-SUM являются топологическими изомерами, причем различие строения их 3D каркасов является следствием разной конформации (соответственно ϕ^3 и ϕ^1 [38]) сукцинат–ионов. В связи с этим отметим, что торсионные углы С–С–С–С (ϕ) для сукцинат-ионов в структурах α -, β - и γ-SUM равны соответственно 180.0, 67.2 и 67.0°. Так как для β - и γ-SUM углы ϕ практически совпадают, то неудивительно, что параметры C_p^6 для этих полиморфов не отличаются.

Полиморфы γ-SUM и α-SUM, подобно паре β-SUM и α-SUM, из-за различия C_P^6 являются топологическими (или реконструктивными) изомерами, В то же время топологически и химически идентичные 3D каркасы β- и γ-SUM с одинаковым C_{p}^{6} следует считать разными «деформационными» формами, так как структурные единицы, образующие каркас, отличаются точечной симметрией из-за небольших взаимно согласованных смещений атомов. Так, в β-SUM ионы уранила, сукцинат-ионы и молекулы воды имеют локальную симметрию С₁, тогда как в γ-SUM все они обладают симметрией C₂. В результате уранилсукцинатный 3D каркас в β-SUM имеет моноклинную симметрию и характеризуется пространственной группой P2₁/n, тогда как аналогичный каркас в у-SUM имеет более высокую ромбическую симметрию, которая описывается пространственной группой Рппа.

Поскольку структуры кристаллов β- [2] и γ-SUM изучены при 150 и 296 К, их можно рассматривать соответственно как низко- и высокотемпературную модификации. Это мнение подтверждается существованием обратимого превращения γ -SUM $\leftrightarrow \beta$ -SUM, которое было установлено при низкотемпературной съемке монокристалла у-SUM. До 200 К у-SUM остается ромбическим, однако уже при 160 К он становится моноклинным (a = 7.60(1) Å, b = 10.83(1) Å, c = 9.53(1) Å, $\beta = 91.03(1)^{\circ}$) и сохраняет моноклинную симметрию как при 120 K (*a* = 7.60(1) Å, b = 10.79(1) Å, c = 9.52(1) Å, $\beta = 91.10(1)^{\circ}$), так и при 100 К (a = 7.60(1) Å, b = 10.77(1) Å, c =9.50(1) Å, $\beta = 91.09(1)^{\circ}$). Указанные параметры моноклинной ячейки хорошо согласуются с данными авторов [2] для β-SUM, которые указаны в табл. 4.

Заметим, что недавно при 100 К были охарактеризованы кристаллы [$PuO_2(C_4H_4O_4)(H_2O)$] [39], которые оказались изоструктурны с β -SUM. Поэтому,

РАДИОХИМИЯ том 63 № 4 2021

на наш взгляд, можно ожидать, что моногидрат сукцината плутонила также будет обладать полиморфизмом, причем его высокотемпературная модификация окажется изоструктурна с γ-SUM.

Отметим, что различия между а-, β- и γ-SUM аналогичны установленным для хорошо изученного кремнезема SiO₂, существующего при обычном давлении в виде минералов – кварца, тридимита и кристобалита, которым отвечает единая кристаллохимическая формула AM_2^2 , где $A = Si^{4+}$, а $M^2 = O^{2-}$. В структурах этих минералов 3D каркасы являются топологическими (или реконструктивными) изомерами, так как при одинаковом составе они имеют разные значения C_P^N . Так, для кварца { $C_P^6 = 4, 12,$ 30, 52, 80, 116}, для тридимита {C_P⁶ = 4, 12, 25, 44, 67, 96}, а для кристобалита {C_P⁶ = 4, 12, 24, 42, 64, 92}. Из-за разных C_{p}^{N} термически индуцированные переходы кварц тридимит кристобалит (соответственно при 870 и 1470°С) сопровождаются разрывом и перегруппировкой некоторых связей Si-O, начиная с третьей координационной сферы, и поэтому происходят крайне медленно [40]. Каждый из трех указанных минералов имеет низко- и высокотемпературные модификации, при этом для всех полиморфов одного и того же минерала значения C_{p}^{N} остаются неизменными. Постоянство C_{p}^{N} обусловлено тем, что структуры таких модификаций, которые являются разными «деформационными» формами минерала, различаются только небольшим изменением взаимной ориентации тетраэдров SiO_{4/2}, образующих 3D каркасы. Как и в случае β- и у-SUM, разные «деформационные» формы минералов кремнезема отличаются локальной симметрией структурных единиц. Например, в кристаллах α- и β-кварца, которые принадлежат к пространственным группам P3₁21 и P6₄22, атомы кислорода имеют соответственно сайт-симметрию C_1 и C_2 , а атомы кремния – C_2 и D_2 .

В структуре γ -SUM присутствует равноплечный ион уранила, для которого d(U=O) = 1.761(2) Å, а угол O=U=O равен 179.0(1)°. Объем ПВД атомов U(VI) в α -, β - и γ -SUM (табл. 4) хорошо согласуется со средним значением 9.2(2) Å³ [26] для 3426 атомов U(VI) в составе КП UO_n при *n* в диапазоне от 6 до 9, имеющих почти линейные ионы уранила. Независимо от симметрии позиций атомов урана их ПВД в α -, β - и γ -SUM принадлежат к одному и тому же комбинаторно-топологическому типу (КТТ, табл. 4), который соответствует КП в виде пентагональной бипирамиды UO₇.

В отличие от остальных форм SUM в структуре х-SUM объем ПВД атома U имеет аномально большую величину (11.76 Å³), а также КТТ, который соответствует КП в виде одношапочной тригональной призмы, не встречающейся в соединениях уранила. Отметим, что по данным исследователей, охарактеризовавших x-SUM {SUCCUR02}, в этой структуре присутствует изогнутый ион уранила, в котором угол О=U=О равен 115°. С позиций развиваемой нами стереоатомной модели строения кристаллов (СМСК) [41-43] аномально большой для кислородсодержащих соединений U(VI) объем ПВД атома урана в x-SUM является свидетельством ошибок, наличие которых подтверждается и характеристиками ПВД атомов кислорода. Так, в структурах любых карбоксилатов U(VI) (включая α-, β- и γ-SUM) кратчайшее расстояние О-О обычно равно ~2.2 Å и отвечает контактам между атомами кислорода одной и той же карбоксильной группы. В структуре же x-SUM кратчайшее расстояние О-О равно 1.43 Å и соответствует контакту О_{экв}-О_{экв} между атомами кислорода двух соседних сукцинат-ионов, координированных одним и тем же атомом урана. Отметим, что в α -, β - и γ -SUM все контакты $O_{\gamma KB} - O_{\gamma KB}$ лежат в области 2.80-2.88 Å, то есть реально они в два раза длиннее, чем установили исследователи x-SUM.

Поскольку расстояние 1.43 Å короче длины ковалентной связи О–О (для нее d(O-O) = 1.48 Å) [44], то в x-SUM отсутствуют сукцинат-ионы, так как связями с d(O-O) = 1.43 Å они соединены в бесконечную полимерную цепь. Однако исследователи x-SUM даже не заметили этот факт, поскольку уделили основное внимание изогнутому до 115° иону уранила. При этом они не попытались объяснить причины аномального изгиба иона уранила в структуре x-SUM и, ограничившись упоминанием о существовании α- и β-SUM, в которых ион уранила имеет обычное почти линейное строение, назвали свои результаты «вехой в истории химии актинидов». Учитывая данные работ [27, 45], которые посвящены обсуждению причин искажения линейного строения иона уранила, отметим, что известные примеры изгиба иона уранила (вплоть до ≈162°) вызваны стерическими факторами или электростатическим отталкиванием между экваториальными

лигандами и атомами кислорода групп UO₂²⁺. В охарактеризованных α-, β- и γ-SUM такие эффекты отсутствуют, и поэтому неудивительно, что в их структурах угол О=U=О отклоняется от 180° менее, чем на 2°. С учетом приведенных частот полос в ИК спектре x-SUM, валентным колебаниям $v_{as}(UO_2^{2+})$, по-видимому, отвечает поглощение при 940 см⁻¹. Это значение не выходит за диапазон частот, характерных для почти линейной уранильной группы, в которой экваториальное окружение состоит из атомов кислорода. В целом аномальные результаты для x-SUM {SUCCUR02} дают основание считать их не вышеупомянутой «вехой», а примером ошибки (судя по параметрам и объему ячейки, неверно определена пространственная группа для кристаллов α-SUM), допущенной авторами.

ЗАКЛЮЧЕНИЕ

Полученные результаты показывают, что кристаллохимический анализ с помощью полиэдров Вороного-Дирихле, параметры которых обладают четким физическим смыслом и не имеют аналогов в классической кристаллохимии, позволяет с новых позиций взглянуть на ряд проблем химии и стереохимии урана(VI), в частности, дает возможность связать особенности химического состава, пространственного и электронного строения образующихся комплексов, а также выявлять ошибки в огромных массивах уже имеющейся кристаллоструктурной информации. Поэтому можно ожидать, что в перспективе с позиций СМСК удастся получить ответы и на некоторые другие актуальные вопросы кристаллохимии и супрамолекулярной химии.

ФОНДОВАЯ ПОДДЕРЖКА

Рентгенодифракционные эксперименты проведены в ЦКП ФМИ ИФХЭ РАН при частичном финансировании Министерством науки и высшего образования РФ (тема N AAAA-A18-118040590105-4). Один из соавторов (ЕФР) благодарен Российскому

РАДИОХИМИЯ том 63 № 4 2021

научному фонду за финансовую поддержку (проект № 20-73-10250).

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют об отсутствии конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- Bombieri G., Benetollo F., Del Pra A., Rojas R. // J. Inorg. Nucl. Chem. 1979. Vol. 41, N 2. P. 201. https://doi.org/10.1016/0022-1902(79)80513-8
- Jong-Young Kim, Norquist A.J., O'Hare D. // Dalton Trans. 2003. P. 2813. https://doi.org/10.1039/B306733P
- Jian-Ling Wang, Zhao-Yan Deng, Shi-Bo Duan, Yong-Heng Xing // J. Coord. Chem. 2012. Vol. 65, N 20. P. 3546. https://doi.org/10.1080/00958972.2012.719611
- Mihalcea I., Falaise C., Volkringer C., Henry N., Loiseau T. // Inorg. Chem. Commun. 2014. Vol. 44, N 1. P. 63.

https://doi.org/10.1016/j.inoche.2014.02.040

- Serezhkin V.N., Peresypkina E.V., Serezhkina L.B., Seliversova N.V., Virovets A.V. // Russ. J. Inorg. Chem. 2014. Vol. 59. P. 1437. https://doi.org/10.1134/S0036023614120237
- Juan Wang, Zhen Wei, Fengwan Guo, Chenyang Li, Pengfei Zhu, Wenhua Zhu. // Dalton Trans. 2015. Vol. 44. P. 13809. https://doi.org/10.1039/C5DT02111A
- Qing Lin Guan, Feng Ying Bai, Yong Heng Xing, Jing Liu, Huan Zhi Zhang. // Inorg. Chem. Commun. 2015. Vol. 59, N 1. P. 36. https://doi.org/10.1016/j.inoche.2015.06.027
- Qing Lin Guan, Xue Gao, Jing Liu, Wen Juan Wei, Yong Heng Xing, Feng Ying Bai // J. Coord. Chem. 2016. Vol. 69, N 6. P. 1026. https://doi.org/10.1080/00958972.2016.1150458
- 9. Novikov S.A., Grigoriev M.S., Serezhkina L.B., Serezhkin V.N. // J. Solid State Chem. 2017. Vol. 248. P. 178.

https://doi.org/10.1016/j.jssc.2017.02.010

 Serezhkina L.B., Grigor'ev M.S., Seliverstova N.V., Serezhkin V.N. // Crystallogr. Rep. 2017. Vol. 62, N 5. P. 716. https://doi.org/10.1134/S1063774517040204 Serezhkina L.B., Grigoriev M.S., Rogaleva E.F., Serezhkin V.N. // Crystallogr. Rep. 2019. Vol. 64, N 4. P. 594. https://doi.org/10.1134/S1063774519040187

- Serezhkin V.N., Rogaleva E.F., Shilova M.Yu., Novikov S.A., Serezhkina L.B. // Russ. J. Phys Chem. A. 2018. Vol. 92, N 8. P. 1535.
- SAINT-Plus (Version 7.68). Madison, Wisconsin, USA: Bruker AXS, 2007.
- 14. *Sheldrick G.M.* TWINABS. Madison, Wisconsin, USA: Bruker AXS, 2008.
- 15. *Sheldrick G.M.* SADABS. Madison, Wisconsin, USA: Bruker AXS, 2008.
- Sheldrick G.M. // Acta Crystallogr., Sect. A. 2008. Vol. 64, N 1. P. 112. https://doi.org/10.1107/S0108767307043930
- Sheldrick G.M. // Acta Crystallogr., Sect. C. 2015. Vol. 71, N 1. P. 3. https://doi.org/10.1107/S2053229614024218
- Serezhkin V.N., Mikhailov Yu.N., Buslaev Yu.A. // Russ. J. Inorg. Chem. 1997. Vol. 42, N 12. P. 1871.
- Накамото К. ИК спектры и спектры КР неорганических и координационных соединений: Пер. с англ. М.: Мир, 1991. 536 с.
- Krishnan S., Raj C.J., Robert R., Ramanand A., Das S.J. // Cryst. Res. Technol. 2007. Vol. 42, N 11. P. 1087. https://doi.org/10.1002/crat.200710981
- Koczoń P., Dobrowolski J.Cz., Lewandowski W., Mazurek A.P. // J. Mol. Struct. 2003. Vol. 655, N 1. P. 89. https://doi.org/10.1016/S0022-2860(03)00247-3
- Budantseva N.A., Andreev G.B., Fedoseev A.M., Antipin M.Y., Krupa J.-C. // Radiochim. Acta. 2006. Vol. 94, N 2. P. 69. https://doi.org/10.1524/ract.2006.94.2.69
- Serezhkin V.N., Medvedkov Ya.A., Serezhkina L.B., Pushkin D.V. // Russ. J. Phys. Chem. A. 2015. Vol. 89, N 6. P. 1018. https://doi.org/10.1134/S0036024415060254
- 24. *Сережкин В.Н., Полынова Т.Н., Порай-Кошиц М.А.* // Координац. химия. 1995. Т. 21, № 4. С. 253.
- Serezhkin V.N., Vologzhanina A.V., Serezhkina L.B., Smirnova E.S., Grachova E.V., Ostrova P.V., Antipin M.Yu. // Acta Crystallogr., Sect. B. 2009. Vol. 65, N 1. P. 45.

https://doi.org/10.1107/S0108768108038846

 Serezhkin V.N., Savchenkov A.V., Pushkin D.V., Serezhkina L.B. // Appl. Solid State Chem. 2018. N 2. P. 2.

https://doi.org/10.18572/2619-0141-2018-2-3-2-16

РАДИОХИМИЯ том 63 № 4 2021

- 27. Serezhkin V.N., Karasev M.O., Serezhkina L.B. // Radiochemistry. 2013. Vol. 55. P. 137. https://doi.org/10.1134/S106636221302001X
- Serezhkin V.N. Structural Chemistry of Inorganic Actinide Compounds / Eds Krivovichev S.V., Burns P.C., Tananaev I.G. Amsterdam: Elsevier, 2007. P. 31–65.
- 29. Сережкина Л.Б., Сережкин В.Н. // ЖНХ. 1996. Т. 41, № 3. С. 427.
- 30. Сережкина Л.Б., Сережкин В.Н. // ЖНХ. 1996. Т. 41, № 3. С. 438.
- 31. Сережкина Л.Б., Сережкин В.Н. // Радиохимия. 1996. Т. 38, № 2. С. 117.
- SerezhkinaL.B., Grigor 'evM.S., ShiminN.A., Klepov V.V., Serezhkin V.N. // Russ. J. Inorg. Chem. 2015. Vol. 60, N 6. P. 672. https://doi.org/10.1134/S0036023615060121
- Serezhkin V.N., Grigor'ev M.S., Abdul'myanov A.R., Serezhkina L.B. // Radiochemistry. 2016. Vol. 58, N 2. P. 114. https://doi.org/10.1134/S1066362216020028
- Grechishnikova E.V., Mikhailov Yu.N., Kanishcheva A.S., Serezhkina L.B., Serezhkin V.N. // Russ. J. Inorg. Chem. 2005. Vol. 50, N 9. P. 1436.
- Serezhkina L.B., Vologzhanina A.V., Novikov S.A., Korlyukov A.A., Serezhkin V.N. // Crystallogr. Rep. 2011. Vol. 56, N 2. P. 233. https://doi.org/10.1134/S1063774511020179

- Petrus E., Bo C. // J. Comput. Chem. 2020. Vol. 41, N 11. P. 1124. https://doi.org/10.1002/jcc.26157.
- 37. O'Keffe M. // Z. Kristallogr. 1995. Vol. 210, N 12. P. 905. https://doi.org/10.1524/zkri.1995.210.12.905
- 38. *Кан Р., Дермер О.* Введение в химическую номенклатуру. М.: Химия, 1983. С. 165.
- Charushnikova I.A., Fedoseev A.M., Bessonov A.A. // Radiochemistry. 2019. Vol. 61, N 2. P. 137. https://doi.org/10.1134/S1066362219020024
- 40. *Брэгг У.Л., Кларингбулл Г.Ф.* Кристаллическая структура минералов: Пер. с англ. М.: Мир, 1967. 390 с.
- Serezhkin V.N., Verevkin A.G., Pushkin D.V., Serezhkina L.B. // Russ. J. Coord. Chem. 2008. Vol. 34, N 3. P. 225. https://doi.org/10.1134/S1070328408030135
- Serezhkin V.N., Sidorenko G.V., Pushkin D.V., Serezhkina L.B. // Radiochemistry. 2014. Vol. 56, N 2. P. 115. https://doi.org/10.1134/S1066362214020015
- 43. Serezhkin V.N., Savchenkov A.V., Sidorenko G.V.,
- *Serezhkina L.B.* // Radiochemistry. 2019. Vol. 61, N 4. P. 408. https://doi.org/10.1134/S1066362219040039
- 44. Wells A.F. Structural Inorganic Chemistry. New York: Clarendon, 1984. 5th ed.
- 45. *Hayton T.W.* // Dalton Trans. 2018. Vol. 47, N 4. P. 1003. https://doi.org/10.1039/C7DT04123C