УДК 539.26+546.798.21

МОЛИБДАТНЫЕ КОМПЛЕКСЫ Np(V) С КАТИОНАМИ К⁺, NH₄⁺, Rb⁺ И Tl⁺ ВО ВНЕШНЕЙ СФЕРЕ

© 2021 г. М. С. Григорьев, И. А. Чарушникова*, А. М. Федосеев

Институт физической химии и электрохимии им. А. Н. Фрумкина РАН, 119071, Москва, Ленинский пр., д. 31, корп. 4 *e-mail: charushnikovai@ipc.rssi.ru

Поступила в редакцию 09.07.2020, после доработки 27.08.2020, принята к публикации 31.08.2020

Синтезированы и структурно охарактеризованы молибдатные комплексы Np(V) с однозарядными катионами во внешней сфере и соотношением NpO₂⁺: MoO₄²⁻=1: 1 общего состава M[(NpO₂)(MoO₄)(H₂O)](I), где M⁺ = NH₄⁺ (Ia), Rb⁺ (Ib) и Tl⁺ (Ic), и новый комплекс с соотношением NpO₂⁺: MoO₄²⁻ = 1: 2 состава K₆[(NpO₂)(MoO₄)₂(H₂O)₂]₂ (II). В изоструктурных соединениях I координационное окружение атомов Np – пентагональные бипирамиды, связанные тетрадентатно-мостиковыми ионами MoO₄²⁻ в анионный каркас. Основной структурный мотив соединения II – центросимметричные димерные анионы, в которых пентагональные бипирамиды связаны бидентатно-мостиковыми ионами MoO₄²⁻.

Ключевые слова: нептуний(V), молибдаты, синтез, кристаллическая структура.

DOI: 10.31857/S0033831121050026

Настоящее сообщение является продолжением работы по изучению строения молибдатных соединений пятивалентного нептуния. Предыдущие части проводимого исследования касались комплексных молибдатов Np(V) с ионами Li^+ , Na⁺, K⁺ и Cs⁺ в качестве внешнесферных катионов [1–8]. Как показывают полученные ранее результаты, состав и строение молибдатных комплексных соединений нептуния(V) очень сильно зависят как от условий кристаллизации, так и от природы внешнесферных катионов, ярким примером этого могут служить двойные молибдаты Np(V) с натрием и литием. Так, в случае натрия выделено и структурно охарактеризовано пять соединений с соотношением NpO₂⁺ : MoO₄²⁻ = 1 : 1, 1 : 1.5, 1 : 2, 1 : 3 [1, 2, 4], а в случае лития – только одно с соотношением NpO₂⁺ : $MoO_4^{2-} = 1 : 1 [1]$. Это можно в некоторой степени объяснить сложностью выделения комплексов с Li за счет их относительно высокой растворимости. Также очень четко проявляется роль природы внешнесферного катиона в ряду октамолибдатов Np(V) состава $M_6[(NpO_2)_2(Mo_8O_{28})] \cdot 2H_2O$ (M = NH₄, K, Rb, Cs, Tl) [9]. Многочисленные попытки синтезировать такого рода соединения с катионами Li⁺, Na^{+} и $NH_{3}CH_{3}^{+}$ не увенчались успехом. Поскольку молибдаты и молибденовая кислота могут присутствовать в технологических процессах выделения, очистки урана и трансурановых элементов, данные о влиянии ионов MoO_4^{2-} на поведении актинидов представляют не только научный интерес. Для расширения ряда изученных комплексных молибдатов нептуноила была несколько изменена методика их синтеза, что позволило выделить ряд новых соединений.

В настоящей работе рассмотрено строение молибдатов Np(V) с соотношением NpO₂⁺ : MoO₄²⁻ = 1 : 1 и общей формулой M[(NpO₂)(MoO₄)(H₂O)] (I), где M⁺ = NH₄⁺ (Ia), Rb⁺ (Ib) и Tl⁺ (Ic), изоструктурных ранее изученному цезиевому молибдату Cs[(NpO₂)(MoO₄)(H₂O)] [7], и строение нового комплекса с соотношением NpO₂⁺ : MoO₄²⁻ = 1 : 2 состава K₆[(NpO₂)(MoO₄)₂(H₂O)₂]₂ (II).

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

В качестве исходного служил раствор 0.2 моль/л нитрата Np(V), не содержащий свободной азотной кислоты, полученный центрифугированием суспензии гидроксида Np(V), внесенного в раствор

	1 1	1 10 1	1 1	
Параметр	Ia	Ib	Ic	II
Формула	H ₆ O ₇ NMoNp	H ₂ O ₇ RbMoNp	H ₂ O ₇ TlMoNp	H ₈ O ₂₄ K ₆ Mo ₄ Np ₂
М	465.00	532.43	651.33	1484.42
<i>Т</i> , К	293(2)	293(2)	296(2)	100(2)
Сингония	Ромбическая	Ромбическая	Ромбическая	Триклинная
Пространственная группа	Pnna	Pnna	Pnna	<i>P</i> -1
<i>a</i> , Å	9.3735(5)	9.3713(2)	9.3240(2)	6.8715(4)
b, Å	7.7908(4)	7.8047(2)	7.7710(1)	7.8235(5)
<i>c</i> , Å	10.3523(6)	10.4305(2)	10.4073(2)	12.6912(7)
α, град	90	90	90	96.680(3)
β, град	90	90	90	92.618(3)
ү, град	90	90	90	106.982(3)
$V, Å^3; Z$	756.00(7); 4	762.89(3); 4	754.08(2); 4	645.81(7); 1
$ ho_{выч}$, г/см ³	4.085	4.636	4.197	3.817
$\mu(MoK_{lpha}),$ мм $^{-1}$	10.359	16.512	22.644	7.883
Количество измеренных/независимых отражений	14324/ 1667	29432/2336	11889/1651	6539/ 3699
Количество независимых отражений с	1318	1763	1249	3496
$I > 2\sigma(I)$				
Количество уточняемых параметров	58	51	52	167
$R(F); wR(F^2) [I > 2\sigma(I)]$	0.0157; 0.0330	0.0207; 0.0416	0.0223; 0.0454	0.0406; 0.1211
$R(F); wR(F^2)$ [весь массив]	0.0246; 0.0353	0.0344; 0.0456	0.0360; 0.0494	0.0426; 0.1230
GOOF	1.078	1.039	1.063	1.105
$\Delta \rho_{\text{max}}$ и $\Delta \rho_{\text{min}}$, $e \cdot \text{Å}^{-3}$	0.685; -1.304	1.374; -2.223	1.072; -2.846	3.868; -2.617

Таблица 1. Кристаллографические данные и характеристики рентгеноструктурного эксперимента

0.2 моль/л HNO₃. Рабочие растворы готовили из молибдата натрия и нитратов аммония, рубидия и калия марки х.ч. и нитрита таллия марки ч.д.а. Приготовленный раствор ~0.2 моль/л NpO₂NO₃ вводили в раствор 1 моль/л Na₂MoO₄, подкисленный 3 моль/л HNO₃ до отношения [Mo] : [H⁺] в интервале (3-5): 1, до концентрации NpO₂NO₃ не более 0.05 моль/л при интенсивном перемешивании. Затем в полученный таким образом прозрачный раствор вводили 1 моль/л раствор нитрата соответствующего металла до отношения [Mo] : [MNO₃] (M = NH₄, K, Rb) в интервале (1–2) : 1. В случае таллия это отношение было не менее 10 : 1. Реакционную смесь нагревали в запаянной стеклянной ампуле при температуре в интервале 170-190°С. Соединения кристаллизуются в виде зеленых призматических кристаллов.

Рентгенодифракционные эксперименты проводили на автоматическом четырехкружном дифрактометре с двумерным детектором Bruker Kappa Арех II (излучение MoK_{α}). Параметры элементарных ячеек уточнены по всему массиву данных. В экспериментальные интенсивности введены поправки на поглощение с помощью программы SADABS [10]. Структуры расшифрованы прямым методом (SHELXS97 [11]) и уточнены полноматричным методом наименьших квадратов (SHELXL-2018/3 [12]) по F^2 по всем данным в анизотропном приближении для всех неводородных атомов. Атомы H координационных полиэдров (КП) атомов Np в структурах I и II и катиона аммония в структуре Ia найдены на разностных синтезах Фурье, позиции атомов уточнены с $U_{\rm H} = 1.5U_{\rm экв}({\rm O})$ и ограничением расстояний O–H, N–H и углов H–O–H.

Основные кристаллографические данные и характеристики рентгеноструктурного эксперимента приведены в табл. 1. Длины связей и валентные углы в КП атомов Np приведены в табл. 2 и 3. Координаты атомов депонированы в Кембриджский центр кристаллографических данных, депозиты CSD 2013768–2013771.

432

РАДИОХИМИЯ том 63 № 5 2021

Рис. 1. Фрагмент структуры (NH₄)[(NpO₂)(MoO₄)(H₂O)] (Ia). Эллипсоиды температурных смещений показаны с 50%-ной вероятностью. Операции симметрии: a – (x, 3/2 - y, 1/2 - z); b – (1 – x, 1 – y, 1 – z); c – (1 – x, -1/2 + y, -1/2 + z); d – (1/2 - x, 1 - y, -z); e – (1/2 - x, -1/2 + y, 1/2 - z); f – (1/2 + x, y, 1 - z); g – (1/2 + x, 1/2 - y, 1/2 - z).

Рис. 2. Анионный каркас в структуре Rb[(NpO₂)(MoO₄)(H₂O)] (Ib). Проекция в направлении [100].

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Соединения I, изоструктурные цезиевому молибдату [7], имеют каркасную структуру. Атомы Np(1) во всех соединениях расположены в частных позициях 4 c на осях 2 и имеют КП в виде пента-

РАДИОХИМИЯ том 63 № 5 2021

гональных бипирамид. В координационное окружение линейных группировок NpO_2 в экваториальной плоскости бипирамид входят атомы кислорода четырех анионов MoO_4^{2-} и молекулы воды. Окружение атомов Np(1) и нумерация атомов с структурах **I**

ГРИГОРЬЕВ и др.

Соединение	$Ia (M^+ = NH_4^+)$	Ib $(M^+ = Rb^+)$	$\mathbf{Ic} \ (\mathbf{M}^+ = \mathbf{Tl}^+)$			
Длины связей						
Np(1)=O(1)	$1.8455(17) \times 2$	1.8463(18) × 2	$1.852(3) \times 2$			
Np(1)–O(11)	2.4309(18) × 2	2.432(2) × 2	2.419(3) × 2			
Np(1)–O(12)	$2.4044(19) \times 2$	2.4154(19) × 2	$2.409(3) \times 2$			
Np(1)–O(1w)	b(1)–O(1w) 2.491(3)		2.485(5)			
Валентные углы						
O(1)=Np(1)=O(1a) ^a	178.66(11)	179.46(13)	178.9(2)			
O(11)Np(1)O(12)	72.88(7) × 2	72.72(8) × 2	72.27(13) × 2			
O(11)Np(1)O(11a)	68.75(9)	69.92(10)	70.17(16)			
O(12)Np(1)O(1w)	72.88(5) × 2	72.60(6) × 2	$72.82(10) \times 2$			
Mo(1)O(11)Np(1)	149.87(10)	151.61(12)	150.84(19)			
Mo(1)O(12)Np(1)	153.48(12)	153.64(14)	153.3(2)			

Таблица 2. Длины связей (Å) и валентные углы (град) в КП атомов Np структур М[(NpO₂)(MoO₄)(H₂O)] (I)

^аОперация симметрии: a - (x, -y + 3/2, -z + 1/2).

Связь	d	Угол	ω
Np(1)=O(1)	1.827(6)	O(1)=Np(1)=O(2)	177.4(2)
Np(1)=O(2)	1.825(5)	O(11)Np(1)O(12a)	76.56(18)
Np(1)–O(11)	2.439(5)	O(12a)Np(1)O(1w)	64.86(18)
Np(1)-O(12a)*	2.481(5)	O(21)Np(1)O(1w)	71.1(2)
Np(1)–O(21)	2.450(7)	O(11)Np(1)O(2w)	72.65(18)
Np(1)–O(1w)	2.505(5)	O(21)Np(1)O(2w)	74.9(2)
Np(1)–O(2w)	2.534(5)		
Mo(1)–O(11)	1.639(5)	O(11)Mo(1)O(12)	107.5(3)
Mo(1)–O(12)	1.635(5)	O(11)Mo(1)O(13)	112.3(3)
Mo(1)–O(13)	1.620(5)	O(11)Mo(1)O(14)	109.2(3)
Mo(1)–O(14)	1.646(5)	O(12)Mo(1)O(13)	110.9(3)
		O(12)Mo(1)O(12)	108.0(3)
		O(13)Mo(1)O(14)	108.8(3)
Mo(2)–O(21)	1.646(7)	O(21)Mo(2)O(22)	111.8(3)
Mo(2)–O(22)	1.614(5)	O(21)Mo(2)O(23)	108.3(3)
Mo(2)–O(23)	1.654(5)	O(21)Mo(2)O(24)	106.9(3)
Mo(2)–O(24)	1.637(5)	O(22)Mo(2)O(23)	109.4(3)
		O(22)Mo(2)O(22)	112.6(3)
		O(23)Mo(2)O(24)	107.7(3)

*Операция симметрии: a - (1 - x, 2 - y, 1 - z).

представлены на рис. 1 на примере соединения $(NH_4)[(NpO_2)(MoO_4)(H_2O)]$ (Ia).

Тетрадентатно-мостиковые молибдат-ионы занимают частные позиции 4 c на осях 2. Длины связей Мо–О в молибдатных тетраэдрах близки, их средние величины равны 1.7560(19) (Ia), 1.758 (2) (Ib), 1.755(3) Å (Ic). Диоксокатионы NpO_2^+ и молибдат-ионы MoO_4^{2-} связываются в анионный каркас с образованием двух типов металлоциклов: 4-членных, содержащих 2 атома Np и 2 атома Mo, и 8-членных, содержащих 4 атома Np и 4 атома Mo (рис. 2). Металлоциклы первого типа связываются в цепочки вдоль направления [011], 8-членные металлоциклы образуют ка-

РАДИОХИМИЯ том 63 № 5 2021

Рис. 3. Водородное связывание в структуре Tl[(NpO₂)(MoO₄)(H₂O)] (Ic). Проекция в направлении [001]. Операции симметрии: a - (x, 3/2 - y, 1/2 - z); b - (1/2 - x, 2 - y, z); c - (1/2 - x, -1/2 + y, 1/2 - z).

налы вдоль направления [100], в которых располагаются однозарядные внешнесферные катионы.

Катионы NH₄⁺ (**Ia**), Rb⁺ (**Ib**) и Tl⁺ (**Ic**) занимают ют частные положения на осях 2 (позиции 4 *c*). Координационное окружение катионов M⁺ (M⁺ = Rb, Tl) в виде 10-вершинников формируют 4 атома кислорода диоксокатионов NpO₂⁺ и 6 атомов кислорода молибдат-ионов MoO₄²⁻. Длины связей M–O лежат в пределах 2.978(2)–3.422(2) Å (среднее 3.176 Å, M⁺ = Rb, **Ib**), 2.940(3)–3.443(4) Å (среднее 3.167 Å, M⁺ = Tl, **Ic**). Для сравнения отметим, что в цезиевом молибдате Cs[(NpO₂)(MoO₄)(H₂O)] длины связей внутри КП атомов Cs лежат в пределах 3.05–3.42 Å (среднее 3.22 Å).

Положение внешнесферного катиона NH_4^+ (Ia) на оси 2 определяют водородные связи, в которых акцепторами протонов выступают «ильные» атомы диоксокатионов и атомы O(11) молибдат-ионов (табл. 4). В ближайшем окружении катионов аммония находятся 4 диоксокатиона NpO_2^+ с межатомными расстояниями $Np\cdots N$ 3.956(2) и 4.191(3) Å (среднее 4.074 Å), остальные расстояния превышают 6.8 Å.

Важное значение в формировании кристаллической упаковки соединений I играет водородное связывание молекул воды в КП атомов Np с «ильными» атомами кислорода катионов NpO₂⁺ (табл. 4). В результате сравнительно прочные H-связи объединяют анионные комплексы [(NpO₂)(MoO₄)(H₂O)]⁻ в

РАДИОХИМИЯ том 63 № 5 2021

цепочки вдоль направления [010] (рис. 3). В структуре **Ia** Н-связи с участием катионов NH₄⁺ дополнительно объединяют между собой цепочки вдоль направления [001] (рис. 4).

Ранее исследованные молибдаты Np(V) с соотношением NpO_2^+ : $MoO_4^{2-} = 1 : 1$ представлены соединениями состава $M_2[(NpO_2)_2(MoO_4)_2(H_2O)] \cdot nH_2O$, где $M^+ = Li^+$, n = 8 [1]; $M^+ = Na^+$, n = 1 [2]; $M^+ = Cs^+$, n = 1 [8]. В этих соединениях в отличие от молибдатов состава I два независимых атома нептуния – Np(1) и Np(2), а молекула воды входит в состав КП атома Np(1). В экваториальную плоскость бипирамиды атома Np(2) вместо молекулы воды включен атом кислорода катиона Np(1)O₂⁺. В этих структурах имеет место катион-катионное (КК) взаимодействие, связывающее диоксокатионы NpO₂⁺ в пары лиганд-координирующий центр» через один «ильный» атом кислорода. Литиевая структура слоистая, состав натриевого и цезиевого соединений одинаков, основу обеих структур составляет анионный нептуноил-молибдатный каркас. В литиевом и цезиевом соединении способ связывания КП атомов Np в пары в одинаков, они объединяются через общую вершину - «ильный» атом кислорода. В натриевой структуре Na₂[(NpO₂)₂(MoO₄)₂(H₂O)]·H₂O два КП объединяются через общее ребро - «ильный» атом кислорода и мостиковый атом кислорода молибдат-иона.

Основу структуры II составляет центросимметричный димерный комплекс (соотношение NpO₂⁺:

$D-\mathrm{H}\cdots A$	<i>D</i> –H, Å	H… <i>A</i> , Å	$D \cdots A$, Å	<i>D</i> −H···A, град	Операция симметрии для А
(NH ₄)[(NpO ₂)(MoO ₄)(H ₂ O)] (Ia)					
O(1w)–H(1)····O(1)	0.837(16)	1.937(12)	2.755(2)	165(2)	-x + 1/2, 2 - y, z
N(1)-H(2)····O(1)	0.82(2)	2.18(2)	2.954(3)	156.2(17)	x + 1/2, y - 1, 1 - z
N(1)-H(3)····O(11)	0.83(2)	2.20(2)	2.946(2)	149(2)	x, y - 1, z
$Rb[(NpO_2)(MoO_4)(H_2O)]$ (Ib)					
O(1w)–H(1)…O(1)	0.816(17)	2.02(3)	2.744(2)	148(5)	-x + 1/2, 2 - y, z
$Tl[(NpO_2)(MoO_4)(H_2O)]$ (Ic)					
O(1w)–H(1)…O(1)	0.853(18)	1.894(13)	2.719(4)	162(3)	-x + 1/2, 2 - y, z
K ₆ [(NpO ₂)(MoO ₄) ₂ (H ₂ O) ₂] ₂ (II)					
O(1w)–H(1)····O(24)	0.85(2)	1.86(2)	2.702(8)	175(10)	-x, 1-y, -z
O(1w)–H(2)···O(23)	0.85(2)	2.01(5)	2.818(8)	160(11)	x, 1 + y, z
O(2w)–H(3)···O(23)	0.84(2)	1.91(4)	2.727(8)	164(11)	
O(2w)–H(4)····O(14)	0.870(6)	1.847(6)	2.712(8)	171.7(4)	-x, 1-y, 1-z

Таблица 4. Водородные связи с молекулами воды в структурах I, II

MoO₄²⁻ = 1 : 2, рис. 5). Атом Np расположен в общем положении и имеет КП в виде искаженной пентагональной бипирамиды с «ильными» атомами кислорода в апикальных позициях. Экваториальную плоскость бипирамиды формируют атомы кислорода трех молибдат-ионов и двух молекул воды.

Два независимых молибдат-иона выполняют разные функции: Mo(1)O₄²⁻ является бидентатно-мостиковым, Mo(1)O₄²⁻ – монодентатным лигандом, длины связей Мо–О приведены в табл. 3.

Две молекулы воды в координационном окружении атомов Np выступают как доноры протонов в водородном связывании, объединяя димеры в анионные слои, параллельные диагональной плоскости (101) (рис. 6). Акцепторами протонов выступают атомы кислорода молибдат-ионов (табл. 4). Наблюдается определенная зависимость длин связей Мо-О от участия атомов кислорода в водородном связывании (табл. 3). Так, в обоих молибдатных тетраэдрах наиболее короткая связь Мо-О с атомом кислорода, не задействованным ни в координации с центральным атомом, ни в Н-связях. Самая длинная связь с атомом кислорода О(23), участвующим в двух Н-связях (табл. 4). Водородное связывание с участием атома О(14) объединяет два соседних анионных слоя. В результате в кристалле образуется трехмерная сеть Н-связей.

В структуре II локализовано 3 кристаллографически независимых катиона К⁺. Два из них [атомы К(1) и К(2)] имеют координационное окружение в виде 7-вершинников, у третьего атома К(3) – КП 6-вершинник. Внутри КП атомов калия длины связей изменяются следующим образом: для К(1) 2.713(6)–2.880(6) Å (среднее 2.797 Å), для К(2) 2.683(6)–3.392(6) Å (среднее 2.874 Å), для К(3) 2.694(6)–3.091(8) Å (среднее 2.836 Å). КП атомов калия связываются общими ребрами и гранями, образуя катионные прослойки между анионными слоями.

Следует отметить, что выделение молибдата Np(V) с соотношением NpO₂⁺ : MoO₄²⁻ = 1 : 2 в виде димерного комплекса наблюдается впервые. Молибдаты Np(V) с соотношением NpO₂⁺ : MoO_4^{2-} = 1:2 представлены соединениями с внешнесферными катионами от Li⁺ до Cs⁺. Соединения с внешнесферными катионами от Li⁺ до K⁺ имеют общий мотив строения – анионные слои одинакового состава. Это соединения Li₂Na[NpO₂(MoO₄)₂]·4H₂O [3], $Na_{6}[(NpO_{2})_{2}(MoO_{4})_{4}]^{2}H_{2}O$ [4], $K_{3}[(NpO_{2})(MoO_{4})_{2}]$ [5]. Координационное окружение атомов Np(V) в этих комплексах – пентагональные бипирамиды, экваториальную плоскость которых образуют атомы кислорода пяти анионов МоО₄²⁻. Бидентатно- и тридентатно-мостиковые молибдат-ионы связывают диоксокатионы NpO₂⁺ в анионные слои. Структура $Cs_3[(NpO_2)(MoO_4)_2]$ [8] с соотношением NpO_2^+ : $MoO_4^{2-} = 1 : 2$ имеет цепочечное строение, два независимых бидентатно-мостиковых молибдат-иона связывают диоксокатионы NpO₂⁺ в анионные цепоч-

Рис. 4. Водородное связывание в структуре (NH₄)[(NpO₂)(MoO₄)(H₂O)] (**Ia**). Проекция в направлении [100]. Операции симметрии: a – (x, 3/2 – y, 1/2 – z); b – (3/2 – x, –y, z).

Рис. 5. Фрагмент структуры $K_6[(NpO_2)(MoO_4)_2(H_2O)_2]_2$ (II). Эллипсоиды температурных смещений показаны с 50%-ной вероятностью. Операция симметрии: a - (1 - x, 2 - y, 1 - z).

РАДИОХИМИЯ том 63 № 5 2021

Рис. 6. Анионный слой в структуре K₆[(NpO₂)(MoO₄)₂(H₂O)₂]₂ (**II**). Проекция в направлении [100]. Пунктирными линиями показаны H-связи.

ки, и атомы Np(V) имеют координационное окружение в виде тетрагональных бипирамид, экваториальную плоскость которых формируют атомы кислорода четырех анионов $MoO_4^{2^-}$.

Данный ряд соединений позволяет проанализировать взаимодействие между внешнесферными катионами M⁺ и диоксокатионами NpO₂⁺ в структурах с соотношением NpO₂⁺ : MoO₄²⁻ = 1 : 2. В структуре Li₂Na[NpO₂(MoO₄)₂]·4H₂O каждый атом кислорода диоксокатиона NpO₂⁺ связывается с одним атомом Li, атом Na в катионное взаимодействие $NpO_2^+ \cdots M^+$ не включен. В натриевом дигидрате каждый атом кислорода NpO₂⁺ связывается с двумя атомами Na, а в безводной калиевой соли K₃[(NpO₂)(MoO₄)₂] - с тремя атомами К. В структуре $Cs_3[(NpO_2)(MoO_4)_2]$ каждый атом кислорода NpO₂⁺ связывается с четырьмя атомами Cs. Средняя длина связей Np=O в соединениях уменьшается по ряду Li-Na-K-Cs (рис. 7). При этом в смешанно-катионном соединении Li₂Na[NpO₂(MoO₄)₂]·4H₂O анионный слой имеет отличающееся от других слоев строение при одинаковом составе, а в цезиевой соли основной структурный мотив – анионные цепочки. С увеличением радиуса внешнесферного щелочного катиона возрастает число его контактов с атомами кислорода диоксокатиона NpO₂⁺. Это приводит к сокращению средней длины связи Np=O в соединениях по ряду от Li к Cs. По-видимому, в данном случае суммарное число контактов, приходящееся на один катион NpO₂⁺ и равное 6 (по 3 на каждый атом кислорода), является пограничным, далее происходит изменение основного структурного мотива.

Таким образом, исследование молибдатных комплексов с внешнесферными катионами щелочных элементов от Li^+ до Cs^+ , а также NH_4^+ и Tl^+ показало, что благодаря способности сравнительно крупного тетраэдрического аниона MoO_4^{2-} проявлять дентат-

Рис. 7. Зависимость средней длины связи Np=O в диоксокатионах NpO_2^+ от внешнесферного катиона щелочного металла в структурах с соотношением $NpO_2^+: MoO_4^{2-} = 1:2.$

ность от 1 до 4 можно выделить соединения разного состава с соотношением NpO_2^+ : MoO_4^{2-} от 1 : 1 до 1: 3 и разнообразного строения, включая димерные комплексы II, ранее неизвестные для молибдатов Np(V). В молибдатных структурах может иметь место КК взаимодействие, которое обнаружено практически в половине структурно охарактеризованных соединений Np(V). При этом в молибдатах Np(V) природа внешнесферного катиона не влияет на КК взаимодействие, оно найдено в структурах соединений Li₂[(NpO₂)₂(MoO₄)₂(H₂O)]·8H₂O $Na_2[(NpO_2)_2(MoO_4)_2(H_2O)] \cdot H_2O$ [1], [2], $K_4(H_5O_2)[(NpO_2)_3(MoO_4)_4]$ ·4H₂O [6] И Cs₂[(NpO₂)₂(MoO₄)₂(H₂O)]·H₂O [8]. По ряду молибдатов с соотношением NpO₂⁺ : MoO₄²⁻ = 1 : 2 и внешнесферными катионами от Li⁺ до Cs⁺ проявляется влияние природы щелочного катиона на длину «ильных» связей в диоксокатионе NpO₂⁺ и на структуру соединений. Для большинства исследованных молибдатных комплексов КП атомов Np – пентагональные бипирамиды. В двух соединениях КП атомов Np – тетрагональные бипирамиды, это Cs₃[(NpO₂)(MoO₄)₂] [8] и K₄(H₅O₂) [(NpO₂)₃(MoO₄)₄]·4H₂O [6], здесь тетрагональная бипирамида найдена у межслоевого диоксокатиона.

БЛАГОДАРНОСТИ

Рентгенодифракционные эксперименты выполнены в ЦКП ФМИ ИФХЭ РАН.

ФОНДОВАЯ ПОДДЕРЖКА

Работа выполнена при частичном финансировании Министерством науки и высшего образования Российской Федерации (тема № АААА-А18-118040590105-4) и Программой 35 Президиума РАН «Научные основы создания новых функциональных материалов».

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют об отсутствии конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- Григорьев М.С., Чарушникова И.А., Федосеев А.М. // Радиохимия. 2020. Т. 62, № 4. С. 304.
- Григорьев М.С., Батурин Н.А., Федосеев А.М., Буданцева Н.А. // Координац. химия. 1994. Т. 20, № 7. С. 552.
- Григорьев М.С., Чарушникова И.А. Федосеев А.М. // Радиохимия 2021. Т. 63, № 4. С. 321.
- Григорьев М.С., Чарушникова И.А., Федосеев А.М. // Радиохимия. 2020. Т. 62, № 5. С. 417.
- Григорьев М.С., Чарушникова И.А., Федосеев А.М., Буданцева Н.А., Яновский А.И., Стручков Ю.Т. // Радиохимия. 1992. Т. 34, № 5. С. 7.
- Григорьев М.С., Чарушникова И.А., Федосеев А.М., Буданцева Н.А., Батурин Н.А., Регель Л.Л. // Радиохимия. 1991. Т. 33, № 4. С. 19.
- Григорьев М.С., Федосеев А.М., Буданцева Н.А., Антипин М.Ю. // Радиохимия. 2005. Т. 47, № 6. С. 500.
- Григорьев М.С., Чарушникова И.А., Федосеев А.М. // Радиохимия 2021. Т. 63, № 2. С. 103.
- Буданцева Н.А., Григорьев М.С., Федосеев А.М. // Радиохимия. 2015. Т. 57, № 3. С. 193.
- 10. *Sheldrick G.M.* SADABS. Madison, Wisconsin (USA): Bruker AXS, 2008.
- Sheldrick G.M. // Acta Crystallogr. Sect. A. 2008. Vol. 64, N 1. P. 112–122.
- Sheldrick G.M. // Acta Crystallogr. Sect. C. 2015. Vol. 71, N 1. P. 3–8.