УДК 546.799+546,65+621.039.72

ГАЗОФАЗНАЯ КОНВЕРСИЯ УРАНСОДЕРЖАЩИХ СОЕДИНЕНИЙ Cs И Sr В НИТРИРУЮЩЕЙ АТМОСФЕРЕ

© 2021 г. С. А. Кулюхин^{*a*, *}, Ю. М. Неволин^{*a*, б}, А.А. Бессонов^{*a*}

^а Институт физической химии и электрохимии им. А.Н. Фрумкина РАН, 119071, Москва, Ленинский пр., д. 31, корп. 4, ^б Химический факультет Московского государственного университета им. М.В. Ломоносова, 119991, Москва, Ленинские горы, дом 1, стр. 3 *e-mail: kulyukhin@mail.ru

Поступила в редакцию 13.04.2020, после доработки 13.04.2020, принята к публикации 15.09.2020

Изучена газофазная конверсия оксидных систем, содержащих U, Cs, Sr. Показана высокая термическая стабильность систем вида $Cs_2U_2O_7$ и (Sr–Cs–U)O_y при нагреве до 1523 К на воздухе. Установлена возможность эффективной конверсии указанных систем в водорастворимые нитраты металлов при их нагревании в атмосфере, образующейся в результате испарения 12 моль π^{-1} HNO₃.

Ключевые слова: нитрирование, волоксидация, газофазная конверсия, переработка ОЯТ

DOI: 10.31857/S0033831121050038

В настоящее время во многих странах мира в качестве одной из головных операций процесса переработки ОЯТ рассматривается окислительное охрупчивание (волоксидация – объемное окисление) как топлива, так и цирколоевых оболочек твэлов [1]. Основные результаты, полученные по волоксидации оксидного топлива в различных странах мира, представлены в отчете Европейского ядерного агентства за 2018 г [2].

Процесс газовой конверсии оксидного топлива осуществляют в различных атмосферах $[O_2$, воздух, O_3 , пары H_2O , смесь (90% воздуха + 10% CO_2)] при температуре 570–870 K, в процессе которой UO_2 , UN и UC переходят в U_3O_8 [3–7]. Основной задачей данной операции является удаление летучих продуктов деления (³H, C, PБГ). Показано, что в процессе волоксидации оксидного и нитридного ОЯТ ³H удаляется более чем на 99.9%. Помимо низкотемпературных процессов (570–870 K) в настоящее время разрабатываются также высокотемпературные процессы волоксидации, проводимые при температуре 1270–2070 K [8] и позволяющие удалить слаболетучие I, Cs, Mo, Tc, Ru из объема ОЯТ.

Так, в работе [9] исследовано объемное окисление «белых включений» на примере интерметаллидов U с Pd, Ru и Rh. Установлено, что их нагрев до температуры 1473 К позволяет провести их объемное окисление с образованием фазы U_3O_8 .

В качестве перспективного продолжения головных операций переработки ОЯТ предлагается не растворение волоксидированного ОЯТ в HNO₃, а его обработка оксидами азота, в результате которой будут образовываться малообводненные водорастворимые соединения урана и некоторых продуктов деления (ПД).

В работах [10–14] исследована газофазная конверсия различных соединений, содержащих U и ПД [Sr, Mo, Zr, лантаниды (Ln)], в атмосфере NO_x -H₂O(пар)-воздух и HNO₃(пар)-воздух. Установлено, что в процессе газофазной конверсии U₃O₈, UN, UC, (U,Nd)O_x, SrUO₄, SrO и Ln₂O₃ полностью переходят в водорастворимые соединения, в то время как MoO₃ и ZrO₂ не претерпевает каких-либо изменений. Молибдаты уранила и SrMoO₄ лишь частично переходят в водорастворимые соединения, т.е. не происходит полного отделения U или Sr от Мо. Конверсия смешанных оксидов $(U,Ce)O_x$ в системах NO_x -H₂O(пар)-воздух и HNO₃(пар)-воздух позволяет полностью перевести U в водорастворимые соединения, при этом часть Ce остается в фазе осадка CeO₂.

Несмотря на многочисленные работы по газофазной конверсии ОЯТ в нитрирующей атмосфере, к настоящему времени не решен вопрос о поведении ураната Cs, а также смешанного ураната Cs и Sr в ходе конверсии в нитрирующей атмосфере. В связи с этим целью настоящей работы стала проверка возможности газофазной конверсии уранатов Cs и Sr в водорастворимые соединения в атмосфере, образующейся в результате испарения 12 моль·л⁻¹ HNO₃ (далее – нитрирующая атмосфера).

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

В работе использовали CsNO₃, Cs₂CO₃, Sr(NO₃)₂ и UO₂(NO₃)₂·6H₂O марки х.ч.

Диуранат цезия $Cs_2U_2O_7$ синтезировали из γ -UO₃ и Cs_2CO_3 в соответствии с методикой, представленной в работе [15]. Триоксид урана модификации γ -UO₃ получали согласно работе [16].

Смешанную оксидную систему брутто-состава (SrCs_{1.1}U_{3.4})O_v синтезировали путем прокаливания смеси соответствующих нитратов CsNO₃, Sr(NO₃)₂ и UO₂(NO₃)₂·6H₂O, взятых в массовом отношении 1:1:8. Смесь нитратов растворяли в минимальном количестве воды, после чего раствор упаривали до воздушно-сухого состояния. Полученную смесь перетирали в ступке. Для выбора температуры прокаливания смеси предварительно было исследовано термическое поведение композиции нитратов CsNO₃-Sr(NO₃)₂-UO₂(NO₃)₂·6H₂O в массовом отношении 1:1:8 (рис. 1). Термический анализ в работе осуществляли с использованием дериватографа STA 409 PC/PG (Netzch) с масс-спектрометром QMS 403 Aëolos Quadro (Netzch) со скоростью нагрева 10 К/мин в платиновых тиглях на воздухе.

Как видно из рис. 1, в смеси нитратов все процессы разложения завершаются до температуры 1000 К. По данным масс-спектрометрии газовой фазы, до температуры 523 К из системы удаляется только H₂O. В диапазоне температур 523–873 К происходит одновременное удаление H₂O, NO и NO₂.

РАДИОХИМИЯ том 63 № 5 2021

Рис. 1. Данные термогравиметрического анализа смеси C_{sNO_3} - $Sr(NO_3)_2$ - $UO_2(NO_3)_2$ · $6H_2O$ (1 : 1 : 8 по массе) с одновременной регистрацией масс-спектров газообразных продуктов разложения.

Далее в системе не наблюдается значительного изменения массы и выделения продуктов разложения. На основании полученных данных для прокаливания смесей нитратов при синтезе $(SrCs_{1.1}U_{3.4})O_y$ была выбрана температура 1073 К. Воздушно-сухую смесь нитратов прокаливали на воздухе в течение 4 ч.

Первичную идентификацию фазового состава синтезированных соединений проводили методом рентгенофазового анализа (РФА) на рентгеновских дифрактометрах ADP-10 (Philips) и Empyrean (Panalytical) с излучением CuK_{α} и Мо K_{α} . При этом значения 20 на представленных дифрактограммах приведены к длине волны излучения CuK_{α} . Часть дифракционных данных была получена в условиях in situ нагрева в камере печи HTK-1200 (Anton Paar).

На рис. 2 приведена порошковая дифрактограмма синтезированного диураната цезия. Видно, что положения основных отражений на ней соответствуют заявленной фазе $Cs_2U_2O_7$. В случае же (SrCs_{1.1}U_{3.4})O_y анализ полученных дифракционных данных (рис. 3) становится заметно более сложной задачей. При выбранном составе шихты нитратов конечное соотношение U : Cs : Sr в оксидной системе близко к 3 : 1 : 1, что делает возможным получение различных уранатов цезия и стронция. С учетом разнообразия соединений данного типа [18, 19], надежная идентификация фазового состава (SrCs_{1.1}U_{3.4})O_y не представляется возможной.

Рис. 2. Порошковая дифрактограмма синтезированного Cs₂U₂O₇. Штрих-дифрактограмма сравнения представлена для β-Cs₂U₂O₇ [17].

Эксперименты по газофазной конверсии уранатов Cs и Sr проводили в нитрирующей атмосфере в реакторе, представлявшем собой сосуд с возможностью работы до давления 10 атм. В объем реактора помещали образец и 12 моль · л⁻¹ HNO₃, при этом образец не контактировал с HNO₃, закручивали герметичную тефлоновую пробку реактора. Нагрев сосуда осуществляли с помощью жидкостного термостата. Конверсию осуществляли при 343-423 К и времени экспозиции 1 ч. Расчетное давление в зависимости от температуры составляло 1.5-2.5 атм. После проведения конверсии реактор охлаждали и извлекали конечный продукт конверсии. Продукты конверсии растворяли в дистиллированной воде, при этом в случае не полного растворения осадок отделяли центрифугированием, измеряли рН маточных растворов. Содержание Cs, Sr и U в маточных растворах определяли методом МС-ИСП с использованием спектрометра Agilent 7500 с (Agilent).

Степень конверсии $Cs_2U_2O_7$ и (SrCs_{1.1}U_{3.4})O_y рассчитывали как отношение содержания исследуемого металла в растворе к его исходному количеству в образце. Содержание Cs, Sr, U в (SrCs_{1.1}U_{3.4})O_y рассчитывали исходя из брутто-состава SrCs_{1.1}U_{3.4}O₂₁, полученного по результатам ТГА измерений смеси исходных нитратов

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Конверсия $Cs_2U_2O_7$. Одним из возможных путей газофазной конверсии $Cs_2U_2O_7$ является его термическое разложение при высоких температу-

Рис. 3. Порошковая дифрактограмма синтезированной оксидной системы (SrCs_{1.1}U_{3.4})O_v.

рах в атмосфере воздуха или вакууме (высокотемпературная волоксидация). При этом в результате отгонки соединений цезия в головной стадии процесса переработки возможно образование фазы U_3O_8 . В связи с этим предварительно была изучена термическая устойчивость $Cs_2U_2O_7$ на воздухе при нагреве до температуры 1773 К (рис. 4).

Как видно из рис. 4, практически до 1523 К не наблюдается значимого уменьшения массы образца. Потеря 5% массы образца в области температур 473–1073 К сопровождается небольшим выделением тепла. Активный процесс разложения $Cs_2U_2O_7$ начинается с температуры ~1523 К и сопровождается сильным поглощением тепла. Из данных термогравиметрического анализа можно сделать вывод о том, что для получения фазы U_3O_8 , не содержащей цезия, необходим нагрев $Cs_2U_2O_7$ на воздухе до

Рис. 4. Данные термогравиметрического анализа Cs₂U₂O₇ в воздушной атмосфере.

температуры выше 1523 К. Данные ТГА измерений также подтверждаются РФА продуктов разложения $Cs_2U_2O_7$ на воздухе с in situ нагревом образца. Нагрев диаураната цезия до 1473 К на воздухе не приводит к изменению фазового состава. Полученные результаты в целом согласуются с данными авторов работ [19, 20] о высокой термической стабильности $Cs_2U_2O_7$. Таким образом, использование высокотемпературной волоксидации ОЯТ в технически приемлемом интервале температур 1073–1473 К, скорее всего, не приведет к разложению диураната цезия. Это, в свою очередь, является мотивацией к изучению поведения этого соединения в следующем за волоксидацией процессе газофазного нитрирования.

Поскольку в процессе испарения 12 моль $\cdot \pi^{-1}$ HNO₃ возможно образование как NO₂, так и паров кислоты, то процесс конверсии Cs₂U₂O₇ в нитрирующей атмосфере с образованием водорастворимых соединений может быть представлен следующими уравнениями:

Рис. 5. Данные термогравиметрического анализа $(SrCs_{1,1}U_{3,4})O_v$ в воздушной атмосфере.

 $Cs_2U_2O_7$ при более низких температурах (опыты 1 и 2 табл. 1) приводит к снижению степени конверсии, при этом наблюдается закономерное снижение этой величины с уменьшением температуры процесса. О меньшей интенсивности протекания процесса также свидетельствует уменьшение кислотности растворов продуктов конверсии.

$$Cs_2U_2O_7 + 6NO_2 + 3/2O_2 + 2nH_2O = 2UO_2(NO_3)_2 \cdot nH_2O + 2CsNO_3 (n = 0, 1, 3 \text{ или } 6),$$
(1)

$$Cs_2U_2O_7 + 4NO_2 + O_2 + H_2O = 2UO_2(OH)NO_3 + 2CsNO_3,$$
(2)

$$s_2 U_2 O_7 + 6HNO_3 + (2n-3)H_2 O = 2UO_2(NO_3)_2 \cdot nH_2 O + 2CsNO_3 (n = 0, 1, 3 или 6),$$
 (3)

$$_{2}U_{2}O_{7} + 4HNO_{3} = 2UO_{2}(OH)NO_{3} + 2CsNO_{3} + H_{2}O.$$
 (4)

Согласно реакциям (1)–(4), процесс конверсии в нитрирующей атмосфере должен приводить к изменению массы образцов. При этом образование новых фаз U и Cs может привести к изменению окраски образцов. Действительно, в результате процесса конверсии Cs₂U₂O₇ в нитрирующей атмосфере цвет образца менялся с оранжевого на ярко-желтый. Продукты конверсии при этом представляли собой плавы, растворение которых в воде приводило к получению желтых растворов. На основании предшествующих исследований можно заключить, что данные продукты представляют собой сольваты, содержащие нитраты металлов и азотную кислоту. Количественные данные, полученные в ходе экспериментов по конверсии Cs₂U₂O₇, представлены в табл. 1. Проведение экспериментов при температуре 403-423 К (опыты. 3 и 4 табл. 1) позволило провести полную конверсию Cs₂U₂O₇ в водорастворимые нитраты U, Cs. В тоже время газофазная конверсия

РАДИОХИМИЯ том 63 № 5 2021

Таким образом, газофазная конверсия $Cs_2U_2O_7$ в нитрирующей атмосфере, образующейся в результате испарения 12 моль·л⁻¹ HNO₃, при температуре 403 К и выше и давлении газовой фазы 2–2.5 атм позволяет провести полную конверсию данного соединения в водорастворимые нитраты Cs и U.

Конверсия (SrCs_{1.1}U_{3.4})O_y. Также как и для $Cs_2U_2O_7$ предварительно была исследована термическая устойчивость (SrCs_{1.1}U_{3.4})O_y при нагреве на воздухе от 1200 до 1773 К (рис. 5).

Первичными данными при этом явились данные ТГА для системы исходных нитратов в высокотемпературной области. Наблюдаемые в данном случае закономерности были аналогичны с вышеописанными для Cs₂U₂O₇.

Значимое разложение в рассматриваемой оксидной системе $SrCs_{1.1}U_{3.4}O_{21}$ также начиналось при температурах выше 1523 К. Таким образом, высо-

	Ц	III		4.0	3.24	2.98	2.95
	грсии от дного	1	C	30	60	100	100
HNO ₃	% конве	Č	S	50	80	100	100
2 моль \cdot л ⁻¹	илось в Ie	U,	MMOJIÞ	0.0234	0.0611	0.0946	0.0911
спарения 12	Растворі вод	Cs,	AILOMM	0.0411	0.0814	0.0946	0.0911
ейся в результате ис	Время	выдержки / Т, К		1 ч / 343	1 ч/383	1 ч / 403	1 ч / 423
разуюш	ı	70	0⁄	16	33	35	48
cфepe, o6	∇u	ţ	.1	0.0058	0.0142	0.0143	0.0186
рирующей атмо		после	выдержки	0.042	0.0578	0.0547	0.0575
U ₂ O ₇ в нит	cka, r		U	0.0202	0.0243	0.0225	0.0217
онверсия Cs ₂	Наве	исходная	C_S	0.0113	0.0136	0.0126	0.0121
Газофазная к			$Cs_2U_2O_7$	0.0362	0.0436	0.0404	0.0389
Таблица 1.	Номер	опыта		1	2	б	4

3
Z
H
Ξ.
г.
Ш
(OI
2
Ţ,
ΒИ
ен
ap
СП
Ň
ате
PT(
ΠĽŃ
с;
ď
ЕK
йс
Цеј
ПÒ
3yF
0a
Q
5
žpe
фе
00
ĹΜ
[a.]
ей
ΗC
уК
dи
Γġ
Ш
ΒE
~
Ćţ
J _{3.4}
<u>_</u>
Š.
Ľ.
S
ΒИ
DCI
Bel
IHC
KC
ая
3H
фа
30
La a
2
a
ИЦ
E
a

1 аолица	4 2. 1 азофазн	ая конвер	JIC) KHO	<u>s1.103.4)</u>	у в нитрирую	щеи атмос	:uepe,	ооразующенся	a B pesylibra	ге испаре	ом 21 кин	Tr. qin	ITINO3		
			Навеска,	Γ		Δm			¢			% KC	онверси	и от	
Номер		Исходи	ная					Время вылержки /	PacTBO	рилось в н	зоде	Ис	ондохо	Q	Ha
OIIbITa	$CsSrUO_{y}^{a}$	Cs	Sr	n	выдержки	Г	%	T, °C	Cs, Mmojib	Sr, mmojiđ	U, MMOJIÞ	Cs	Sr	Ŋ	
-	0.0395	0.0041	0.0025	0.0231	0.0469	0.0074	19	1 ч / 343	0.0162	0.0113	0.0239	50	40	30	3.73
2	0.0463	0.0049	0.0029	0.0271	0.0752	0.0289	62	1 ч/383	0.0365	0.0337	0.1139	100	100	100	2.90
3	0.0343	0.0036	0.0022	0.0201	0.0572	0.0229	67	1 ч / 403	0.0271	0.0249	0.0844	100	100	100	1.81
4	0.0346	0.0036	0.0022	0.0203	0.0619	0.0273	79	1 ч / 423	0.0273	0.0252	0.0851	100	100	100	2.50
а Содерж	ание Cs, Sr, U	в соедине.	нии рассч	ИТЫВАЛИ Р	исходя из бругт	о-состава S	rCs _{1.1} l	J _{3.4} O ₂₁ , получен	ного по резул	ьтатам ТГА	измерени	ій смесі	и исходн	нит]	DATOB.

КУЛЮХИН и др.

котемпературное удаление Cs и Sr из рассматриваемой системы в ходе волоксидации будет затруднительно. Данная система, скорее всего, сохранит свой состав и будет участвовать в следующем за волоксидацией процессе газофазной конверсии.

В ходе газофазной конверсии образцов в нитрирующей атмосфере наблюдали закономерности, аналогичные вышеописанным для $Cs_2U_2O_7$. Происходило увеличение массы образцов (табл. 2), продукты конверсии представляли собой плавы ярко-желтого цвета. При их растворении получали желтые растворы, при этом наблюдалось полное растворение продуктов конверсии, за исключением эксперимента, проведенного при температуре 343 К (опыт 1 табл. 2).

Таким образом, процесс конверсии оксидной системы (SrCs_{1.1}U_{3.4})O_y в нитрирующей атмосфере, образующейся в результате испарения 12 моль· π^{-1} HNO₃, при температуре проведения процесса 383 К и выше и давлении газовой фазы 1.5–2.5 атм позволяет эффективно переводить U, Cs и Sr в водорастворимые соединения.

В заключение следует отметить, что предложенный подход по газофазной конверсии кислородсодержащих соединений U, Sr и Cs в нитрирующей атмосфере позволяет не только полностью перевести исследуемые элементы в водную фазу, но и создать условия для отделения U от Cs и Sr. В зависимости от поставленной задачи путем варьирования температуры нитрирующей атмосферы можно перевести в водорастворимые соединения либо U, Cs и Sr полностью, либо только Cs и Sr, a U оставить в виде оксида, нерастворимого в воде. Данный подход основывается на различной температуре разложения нитратов U, Cs и Sr [21] и может быть реализован при температурах процесса конверсии 573 К и более. Практическое осуществление этого подхода может стать основой будущих исследований.

БЛАГОДАРНОСТИ

Часть измерений была выполнена с использованием оборудования НИЦКП при химическом факультете МГУ им. М.В. Ломоносова и ЦКП ФМИ ИФХЭ РАН.

РАДИОХИМИЯ том 63 № 5 2021

ФОНДОВАЯ ПОДДЕРЖКА

Исследование выполнено при финансовой поддержке Российского фонда фундаментальных исследований в рамках научного проекта № 18-33-01208 и Министерства науки и высшего образования Российской Федерации.

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют об отсутствии конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- 1. Goode J.H. ORNL-TM-3723. USA. 1973. 137 p.
- Agency N.E. State-of-the-Art Report on the Progress of Nuclear Fuel Cycle Chemistry. 2018. 299 p.
- Metalidi M.M., Shapovalov S.V., Ismailov R.V., Skriplev M.I., Beznosyuk V.I., Fedorov Y.S. // Radiochemistry. 2015. Vol. 57, N 1. P. 98.
- Сеелев И.Н., Аксютин П.В., Жабин А.Ю. // IX Рос. конф. по радиохимии с международным участием «Радиохимия 2018»: Тез. докл. СПб., 2018. С. 326.
- Сеелев И.Н., Мацеля В.И., Васильев А.В., Курский И.А. // IX Российская конференция по радиохимии с международным участием «Радиохимия 2018»: Тез. докл. СПб., 2018. С. 328.
- Двоеглазов К.Н., Шадрин А.Ю., Медведев М.Н., Лакеев П.В., Зверев Д.В., Макаров А.О., Шудегова О.В., Павлюкевич Е.Ю., Дмитриева О.С. // ІХ Российская конференция по радиохимии с международным участием «Радиохимия 2018»: Тез. докл. СПб., 2018. С. 273.
- Двоеглазов К.Н., Шадрин А.Ю., Шудегова О.В., Павлюкевич Е.Ю., Богданов А.И., Зверев Д.В. // Вопр. атом. науки и техники. Сер.: Материаловедение и новые материалы. 2016. Т. 87, № 4. С. 81.
- Westphal B.R., Bateman K.J., Morgan C.D., Berg J.F., Crane P.J., Cummings D.G., Giglio J.J., Huntley M.W., Lind R.P., Sell D.A. // Nucl. Technol. 2008. Vol. 162, N 2. P. 153.
- Неволин Ю.М., Путков А.Е., Кулюхин С.А., Петров В.Г., Ширяев А.А., Калмыков С.Н. // IX Российская конференция по радиохимии с международным участием «Радиохимия 2018»: Тез. докл. СПб., 2018. С. 305.

- Kulyukhin S.A., Nevolin Y.M., Gorbacheva M.P., Gordeev A.V. // J. Radioanal. Nucl. Chem. 2017. Vol. 311, N 2. P. 1023.
- 11. Kulyukhin S.A., Nevolin Y.M., Gordeev A. V. // Radiochemistry. 2017. Vol. 59, N 3. P. 247.
- Кулюхин С.А., Неволин Ю.М., Калмыков С.Н. // IX Российская конференция по радиохимии с международным участием «Радиохимия 2018»: Тез. докл. СПб., 2018. С. 413.
- 13. Kulyukhin S.A., Nevolin Y.M., Gordeev A.V. // Radiochemistry. 2019. Vol. 61, N 3. P. 312.
- 14. Kulyukhin S.A., Nevolin Y.M., Gordeev A.V. // Radiochemistry. 2019. Vol, 61. N 1. P. 5.
- Cordfunke E.H.P., Van Egmond A.B., Van Voorst G. // J. Inorg. Nucl. Chem. 1974. Vol. 37, N 6. P. 1433.

- Cordfunke E.H.P., Westrum E.F. // Thermochim. Acta. 1988. Vol. 124. P. 285.
- JCPDS—Int. Centre for Diffraction Data. PDF 01-081-1215, Cs₂U₂O₇.
- Cordfunke E.H.P., Loopstra B.O. // J. Inorg. Nucl. Chem. 1967. Vol. 29, N 1. P. 51–57.
- 19. Fee D.C., Johnson I., Davis S.A., Shinn W.A., Staahl G.E., Johnson C.E. ANL-76-126. USA, 1977. 36 p.
- Huang J., Yamawaki M., Yamaguchi K., Ono F., Yasumoto M., Sakurai H., Sugimoto J. // J. Alloys Compd. 1998. Vol. 271–273. P. 625.
- 21. *Haynes W.M.* CRC Handbook of Chemistry and Physics. CRC, 2016. 97th Ed. 2652 p.