УДК 621.039+621.039.72

СОВМЕСТНОЕ УДАЛЕНИЕ N₂О И CH₃I ИЗ ВОЗДУШНОГО ПОТОКА ПРИ ЕГО ПРОПУСКАНИИ ЧЕРЕЗ Ад-СОДЕРЖАЩИЕ НЕОРГАНИЧЕСКИЕ КОМПОЗИТЫ

© 2021 г. С. А. Кулюхин*, М. П. Горбачева

Институт физической химии и электрохимии им. А. Н. Фрумкина РАН, 119071, Москва, Ленинский пр., д. 31, корп. 4 *e-mail: kulyukhin@ipc.rssi.ru

Поступила в редакцию 28.08.2020, после доработки 21.12.2020, принята к публикации 28.12.2020

Исследованы процессы совместного удаления N_2O и CH_3I из воздушного потока при его прохождении через Ag-содержащие неорганические композиты с температурой от ~520 до ~630 К. Показано, что присутствие CH_3I в газовой фазе влияет на степень удаления N_2O из воздушного потока при его пропускании через Ag-содержащие композиты. С другой стороны, присутствие N_2O в газовой фазе увеличивает эффективность поглощения CH_3I на данных композитах более чем на 20–30% по сравнению с расчетной величиной. Установлено, что чем больше содержание AgNO₃ в составе композита, тем ниже степень удаления N_2O .

Ключевые слова: иодистый метил, гемиоксид азота, композиты, серебро, степень удаления

DOI: 10.31857/S0033831121060034

В настоящее время для обычных оксидных топлив реакторов на тепловых нейтронах существует целый ряд возможных стратегий организации ядерного топливного цикла (ЯТЦ). Многие из них включают переработку на основе Пурекс-процесса или другой технологии. Стратегия ЯТЦ для реакторов на быстрых нейтронах имеет смысл лишь в том случае, если предполагается рецикл топлива. Использование нитридных топлив в ядерных реакторах имеет ряд преимуществ по сравнению с обычно используемыми оксидными топливами. Однако при промышленном использовании нитридного топлива нельзя пренебречь наработкой более 14 кг ¹⁴С в центральной зоне реактора при выгорании 20% тяжелых атомов (т.а.). В качестве альтернативы использованию азота естественного изотопного состава можно использовать топливо, обогащенное по ¹⁵N, что позволяет снять проблемы с ¹⁴С [1]. Однако высокие цены на ¹⁵N потребуют высокоэффективного рецикла этого изотопа при переработке отработавшего ядерного топлива (ОЯТ).

При использовании нитридного плотного топлива должны быть разработаны специальные методы его предварительной обработки, переводящие его в формы, сочетающиеся с обычной схемой переработки облученного топлива.

Для смешанного уран-плутониевого нитридного топлива могут быть рассмотрены две схемы переработки в зависимости от того, будет или нет использоваться топливо, обогащенное по 15 N, и будет ли он улавливаться [2].

При использовании нитридного топлива, обогащенного по ¹⁵N, необходимо его предварительное окисление. Выделяющийся в процессе волоксидации ¹⁵N должен быть отделен от отходящих газов и рециклирован в топливо. Чтобы этот процесс был достаточно эффективным, отходящие газы, сопровождающие процесс волоксидации, должны быть отделены от газов аппарата-растворителя, в которых преобладают ¹⁴NO_x. Если это условие не будет выполнено, то изотопный обмен между ¹⁵N₂ и ¹⁴NO_x приведет к трудностям при рециклировании ¹⁵N [2].

Для нитридного топлива с необогащенным по ¹⁵N азотом в качестве начальной ступени переработки предлагается его непосредственное растворение в азотной кислоте без предварительной волоксидации [2]. В процессе растворения летучие продукты деления, включая соединения радиоактивного иода, попадут в газовую атмосферу. Кроме того, при растворении нитридов образуются различные оксиды азота (N₂O, NO и NO₂) [3, 4]. В результате перед сбросом в окружающую среду потребуется очистка газовой фазы как от летучих радиоактивных соединений, так и от оксидов азота. Наиболее труднолокализуемыми газообразными соединениями являются N₂O среди оксидов азота и CH₃I среди летучих соединений радиоактивного иода [5]. В связи с этим проблема локализации N2O и CH3I актуальна и важна.

Использование различных жидких ловушек позволяет практически количественно очистить газовый поток от NO и NO₂ [6, 7]. В то же время N_2O («парниковый газ»), который является несолеобразующим оксидом и практически не взаимодействует ни со щелочами, ни с кислотами, представляет главную проблему при локализации оксидов азота [8]. При очистке газовых потоков от N₂O в радиохимических производствах преимуществом обладают методы, основанные либо на высокотемпературном каталитическом разложении N₂O, либо на его сорбции с использованием различных сорбционных материалов [9-12]. В работе [13] описан композит Al₂O₃-2RuO₂-400, который позволяет осуществить практически полное разложение N₂O в воздушном потоке при температуре 738-753 К и времени контакта 7-15 с.

Для локализации CH₃I на АЭС и радиохимических производствах применяют неорганические сорбенты, содержащие в своем составе соединения серебра в количестве 8–12 мас% [14–19].

Несмотря на широкий диапазон исследований по сорбции CH_3I из газовой среды, в настоящее время в литературе отсутствуют данные о влиянии N_2O на сорбцию CH_3I , содержащегося в воздушном потоке. Также отсутствует информация о каталитическом разложении N_2O в присутствии летучих соединений радиоактивного иода, среди которых наибольшую трудность для локализации представляют органические соединения, в том числе CH_3I . В связи с этим цель работы состояла в изучении возможности совместного удаления N₂O и CH₃I из воздушного потока при его пропускании через Agсодержащие композиты.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Для получения композитов в качестве матриц использовали гранулированный γ-Al₂O₃ с размерами гранул 3.0–8.0 мм (ТУ 2163-004-81279372-11) и гранулированный силикагель марки КСКГ (ГОСТ 3956-76) с размером гранул 13 мм.

Безводный AgNO₃, а также кислоты, щелочи, аммиак и гидразин-гидрат, используемые в работе, были марки х.ч.

Неорганические сорбенты на основе γ -Al₂O₃ и SiO₂, содержащие различные соединения серебра, синтезировали по методикам, представленным в работе [20]. Все Ад-содержащие композиты содержали 7 мас% Ад. В композитах, содержащих Ад и Ni, содержание Ад составляло 2 мас%.

Сорбенты Matrix-7AgA3 содержат Ag в виде AgNO₃, сорбент SiO₂–7Ag–Aмк – в виде Ag₂O, сорбенты Matrix-7AgГГ и Matrix-3.5AgГГ–3.5AgA3 – в виде смеси AgNO₃ и Ag⁰. В аббревиатуре A3 обозначает присутствие Ag в сорбенте в форме нитрата, Aмк – сорбент, полученный из аммиачных растворов Ag, и ГГ – сорбент, полученный в результате обработки прекурсора гидразин-гидратом. Сорбенты Matrix-2Ag8Ni–NH₃ содержат Ni в виде NiO и Ag в виде AgNO₃ и Ag⁰. Во всех случаях в качестве Matrix подразумеваются γ -Al₂O₃ и SiO₂. Содержание различных химических форм Ag в синтезированных сорбентах приведено в табл. 1 [20].

Процессы совместного удаления CH₃I и N₂O из воздушного потока с использованием синтезированных композитов исследовали на лабораторной установке, схема которой приведена на рис. 1.

Установка состоит из: ротаметра I, гидрозатвора с глицерином 2, реакционной камеры с N₂O 3, реакционной камеры с CH₃I 4, реактора с исследуемым композитом, помещенным в шахтную печь 5, барботера с раствором 1.2 моль/л NaOH 6, колонки с SiO₂ 7, накопительной емкости для сбора газообразных продуктов реакций с участием N₂O и CH₃I 8.

Эксперимент проводили следующим образом. В предварительно вакуумированную реакционную

Рис. 1. Схема лабораторной установки для изучения локализации N₂O и CH₃I в воздушном потоке. *1* – ротаметр; *2* – гидрозатвор с глицерином; *3* – реакционная камера с N₂O; *4* – реакционная камера с CH₃I; *5* – реактор с исследуемым композитом, помещенным в шахтную печь; *6* – барботер с раствором 1.2 моль/л NaOH; *7* – колонка с SiO₂; *8* – накопительная емкость для сбора газообразных продуктов реакций с участием N₂O и CH₃I.

камеру 3 объемом 125 см³ вводили определенное количество N₂O. Камеру с закрытыми кранами А и Б устанавливали в систему, при этом ввод с краном А подсоединяли к гидрозатвору с глицерином 2, а ввод с краном Б – к реакционной камере для CH₃I 4. Реакционная камера 4 имела обогревательную оболочку, подсоединенную к термостату. В реакционную камеру 4 объемом 125 см³ вводили определенное количество жидкого CH₃I, и закрывали кран В на ее вводе. Камеру 4 устанавливали в систему между реакционной камерой 3 и реактором 5. В реактор 5 помещали 10 г исследуемого композитного материала и устанавливали реактор в шахтную печь. Реактор с исследуемым композитным материалом 5 подсоединяли к барботеру с раствором 1.2 моль/л NaOH 6, который далее был подсоединен к колонке с SiO₂ с комнатной температурой (293-298 К) 7. Силикагель предварительно прокаливали на воздухе при 453 К в течение 5 ч. Далее колонку с SiO₂ подсоединяли к накопительной емкости 8 объемом 1400 см³ для сбора газообразных продуктов с участием N₂O и CH₃I. Накопительную емкость предварительно вакуумировали с помощью форвакуумного насоса.

После монтажа всей лабораторной установки включали нагрев шахтной печи и устанавливали требуемую температуру композита. Одновременно включали термостат, соединенный с обогревательной оболочкой реакционной камеры 4, и после достижения в термостате температуры 343 К открывали кран Б между реакционными камерами 3 и 4.

РАДИОХИМИЯ том 63 № 6 2021

В результате происходило смешивание N_2O и газообразного CH_3I .

После нагрева композита до нужной температуры на установке открывали краны А, В, Г, Д и начинали отбор N₂O и CH₃I из реакционных камер в накопительную емкость 8. Процесс прекращался, когда давление в системе и накопительной емкости становилось равным атмосферному. После этого закрывали краны А и Д, отсоединяли накопительную емкость. Проводили отбор газовой фазы из накопительной емкости в кюветы для измерения ИК спектров. Газовые кюветы для ИК спектроскопии с окнами из KBr имели объем 125 см³ и толщину поглощающего слоя 100 мм. Помимо отбора проб из накопительной емкости, также после полного остывания камеры 4 и реактора 5 до комнатной температуры, проводили отбор проб газовой фазы в кюветы для ИК спектроскопии из газового пространства системы (реакционная камера с N₂O 3, реакционная камера с CH₃I 4, реактор с исследуемым композитом 5, газовые пространства барботера с раствором 1.2 моль/л NaOH 6 и колонки с SiO₂ 7, соединительные шланги). Перед измерением ИК спектров проб газовой фазы из накопительной емкости и системы проводили измерение фоновых ИК спектров используемых кювет.

ИК спектры измеряли на спектрометре Specord M 80. Перед измерением ИК спектров давление в газовых кюветах доводили до атмосферного с помощью газообразного азота. Количественную оценку содержания N₂O и CH₃I проводили по градуировочным кривым для полос v = 2240 и 2980 см⁻¹

	Содержание Ад в химической форме, мас%						
Сороент	AgNO ₃	Ag ₂ O	Ag^{0}				
Al ₂ O ₃ -7AgA3	7.0 ± 0.4	-	_				
Al ₂ O ₃ –7AgΓΓ	2.1 ± 0.2	_	4.9 ± 0.5				
Al ₂ O ₃ -3.5AgΓΓ-3.5AgA3	4.0 ± 0.3	_	3.0 ± 0.3				
Al ₂ O ₃ -2Ag8Ni-NH ₃	1.0 ± 0.1	_	1.0 ± 0.1				
SiO ₂ –7AgA3	7.0 ± 0.3	_	_				
SiO ₂ –7Ag–Амк	_	3.0 ± 0.2	4.0 ± 0.4				
SiO ₂ –7AgΓΓ	1.7 ± 0.1	_	5.3 ± 0.4				
SiO ₂ –3.5АgГГ–3.5АgАз	4.2 ± 0.2	_	2.8 ± 0.3				
SiO ₂ –2Ag8Ni–NH ₃	1.0 ± 0.1	_	1.0 ± 0.1				

(1)

Таблица 1. Данные о содержании химических форм Ад в синтезированных композитах [20]

для N_2O и CH₃I соответственно [21, 22]. Точность измерения ±10%. Использовать полосы v = 1300 и 1264 см⁻¹ для количественной оценки соответственно N_2O и CH₃I не представлялось возможным из-за перекрывания полос поглощения N_2O и CH₃I в данной области ИК спектра (рис. 2).

Скорость воздушного потока (V) в системе составляла 0.2–0.3 л/мин, время контакта газовой фазы с композитным материалом внутри реактора (t) находилось в диапазоне от ~2.5 до ~8.6 с. Температура материала внутри реактора изменялась от ~523 до ~630 К. Точность измерения температуры ±3°С.

Исходное количество N_2O находилось в интервале от ~1.25 до ~2.95 ммоль. Исходное количество CH_3I во всех экспериментах составляло ~11.1 ммоль.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Локализация CH₃I на Ag-содержащих сорбентах может протекать в соответствии со следующими реакциями:

$$CH_3I + AgNO_3 \rightarrow AgI + CH_3NO_3,$$

$$2CH_3I + Ag_2O \rightarrow 2AgI + CH_3OCH_3, \qquad (2)$$

$$2CH_3I + Ag_2O + H_2O \rightarrow 2AgI + 2CH_3OH.$$
(3)

Прямого взаимодействия CH_3I с Ag^0 в составе композитов не происходит. Однако нанометровые частицы Ag^0 могут выступать катализаторами разложения CH_3I с возможной генерацией промежуточных радикальных частиц (CH_3 , Г).

Радикалы I⁻ могут вступать в реакции либо между собой с образованием I₂, либо с соединениями Ад с образованием AgI. Действительно, в ряде экспериментов при локализации CH₃I в отсутствии N₂O на SiO₂–7AgГГ, SiO₂–3.5AgГГ–3.5AgA3, SiO₂–2Ag8Ni–NH₃, Al₂O₃–7AgГГ, Al₂O₃–3.5AgГГ– 3.5AgA3 и Al₂O₃–2Ag8Ni–NH₃ в газовой фазе присутствовали пары I₂ [20], что подтверждалось фиолетовым окрашиванием газовой фазы в накопительной емкости.

Следует отметить, что в качестве катализатора могут выступать также и другие компоненты исследованных композитов. Действительно, пары I_2 также наблюдались при взаимодействии CH₃I с γ -Al₂O₃, не содержащим соединения Ag и нагретым до 423 K, в то время как аналогичного эффекта с SiO₂ не наблюдалось [20].

Использование неорганических композитов, содержащих 5–12 мас% Ag, позволяет практически полностью (>99.999%) удалить CH₃I из воздушного потока при условии, что суммарное содержание AgNO₃ и Ag₂O в композитах, участвующих в реакциях (1)–(3), превышает количество CH₃I, подаваемое на композит [14–18]. Для более четкого выявления влияния N₂O на поглощение CH₃I, а также влияния CH₃I на каталитическое разложение N₂O в экспериментах по изучению совместного удаления CH₃I и N₂O в процессе пропускания воздушного потока через слой различных неорганических композитов использовали количества композитов, рассчитанные на 55–60%-ное поглощение CH₃I.

Для расчета концентрации CH₃I в газовой фазе после ее прохождения через Ag-содержащие сорбенты использовали полосу валентных колебаний метильной группы (2980 см⁻¹), которая также может

Рис. 2. ИК спектры смеси газообразных N₂O и CH₃I.

относиться к продуктам реакций (1)–(3), а именно CH_3NO_3 , CH_3OCH_3 и CH_3OH .

Известно, что растворимость CH_3NO_3 и CH_3OCH_3 в 100 г воды составляет 3.6 г при 293 К [23] и 3700 мл при 291 К [24] соответственно. CH_3OH также очень хорошо растворяется в воде. Поэтому, учитывая высокую растворимость данных соединений в воде, можно предположить, что данные соединения будут полностью поглощаются в растворе 1.2 моль/л NaOH.

Кроме того, в процессе барботирования раствора 1.2 моль/л NaOH газовым потоком, содержащим CH₃NO₃, возможно протекание гидролиза с образованием хорошо растворимых соединений:

$$CH_3NO_3 + H_2O \rightarrow HNO_3 + CH_3OH.$$
(4)

С учетом полученных результатов можно сделать вывод о том, что полоса валентных колебаний метильной группы (2980 см⁻¹) в ИК спектре газовой фазы из накопительной емкости относится только к CH_3I , и это позволяет использовать данную полосу в расчетах концентрации CH_3I в газовой фазе.

В табл. 2 приведены данные по совместному удалению CH_3I и N_2O в процессе пропускания воздушного потока через слой различных композитов на основе γ - Al_2O_3 и SiO_2 , содержащих различные соединения серебра и нагретых до температуры ~523 и ~630 К.

В отличие от теоретических ожиданий степень удаления CH₃I для всех Ад-содержащих компози-

РАДИОХИМИЯ том 63 № 6 2021

тов оказалась в диапазоне 81–87%. Поскольку газообразный CH_3I практически не поглощается в растворе NaOH и не сорбируется на SiO₂, можно заключить, что увеличение степени удаления CH_3I более чем на 20–30% по сравнению с расчетной величиной связано с влиянием N₂O, присутствующим в газовом потоке.

Из работы [26] известно, что N₂O может вступать в реакцию с радикалом CH₃

$$N_2O + CH_3 \rightarrow CH_3O' + N_2.$$
 (5)

Образующийся радикал CH₃O[•] может далее вступать в реакцию с CH₃I с образованием диметилового эфира CH₃OCH₃ и радикальной частицы I[•]

$$CH_3O' + CH_3I \rightarrow CH_3OCH_3 + I'.$$
 (6)

В результате реакций (5) и (6) в системе образуется либо AgI, либо I₂. Образующийся молекулярный иод поглощается при барботировании газового потока через раствор 1.2 моль/л NaOH, поэтому во всех экспериментах по совместному удалению CH₃I и N₂O из воздушного потока образования паров I₂ не наблюдалось.

Одновременное протекание процессов (1)–(3), (5) и (6) приводит к заметному увеличению степени удаления CH₃I в системе, состоящей из Agсодержащих композитов и барботера с раствором NaOH.

Следует отметить, что увеличение температуры Ад-содержащего композита практически не сказы-

	(Tubu				-	peakiopa	· · · ·			
Номер	омер пыта Композит	Т _{комп} , К	<i>h</i> , см	<i>t</i> , c	$m(CH_3I)$, ммоль		<i>т</i> (N ₂ O), ммоль		α, %	
опыта					исходное	конечное	исходное	конечное	CH ₃ I	N_2O
1	Al ₂ O ₃ –7AgA3	527	6.5	8.6	~11.0	~1.4	~2.6	~2.4	85–90	5-10
2	Al ₂ O ₃ -3.5 Ag $\Gamma\Gamma$ -3.5 AgA3	523	6.5	5.7	~11.0	~2.1	~2.7	~2.6	80-85	4–5
3	$Al_2O_3-7Ag\Gamma\Gamma$	527	6.3	6.9	~11.0	~1.5	~2.9	~2.4	85–90	15–20
4	Al ₂ O ₃ –2Ag8Ni–NH ₃	525	6.0	6.2	~11.0	~1.9	~2.6	~2.3	80-85	10-15
5	Al ₂ O ₃ –2Ag8Ni–NH ₃	630	6.0	6.3	~11.0	~1.9	~3.0	~2.7	80-85	15-20
6	SiO ₂ –7AgA3	525	6.4	5.5	~11.0	~1.8	~2.5	~2.0	80-85	20–25
7	SiO ₂ –3.5AgГГ–3.5AgАз	525	5.5	5.7	~11.0	~1.5	~2.7	~1.9	85–90	30–35
8	SiO_2 -7Ag $\Gamma\Gamma$	523	6.0	5.9	~11.0	~1.7	~2.6	~1.9	85–90	25-30
9	SiO ₂ –7АgАмк	521	5.7	5.7	~11.0	~2.0	~2.5	~1.6	80-85	35–40
10	SiO ₂ –2Ag8Ni–NH ₃	527	5.3	5.0	~11.0	~1.6	~2.4	~2.1	85–90	10-15

Таблица 2. Данные по удалению N₂O и CH₃I из воздушного потока при его пропускании через Ag-содержащие композиты ($V_{rasa} = 0.2-0.3$ л/мин, содержание влаги в воздухе 3–4 об%, $S_{peakropa} = 2.85$ см²)^a

a h – высота слоя композита в реакторе, t – время контакта газовой фазы с композитом в реакторе, a – степень удаления CH₃I и N₂O.

вается на степени удаления CH₃I. Так, для композита Al₂O₃–2Ag8Ni–NH₃ увеличение его температуры с ~523 до ~630 К практически не сказывается на степени удаления CH₃I (увеличение степени удаления ~4.5%) (опыты 4 и 5 в табл. 2). Независимость степени удаления CH₃I как от типа композита, так и от температуры подтверждает вывод о ключевой роли реакций (5) и (6) в процессе локализации CH₃I.

Протекание реакций (5) и (6) должно приводить не только к заметному удалению CH_3I , но и к заметному разложению N_2O . Однако степень удаления N_2O относительно невысока и не превышает ~19 и ~36% для композитов на основе γ -Al₂O₃ и SiO₂ соответственно (табл. 2). Можно предположить, что в системе одновременно протекают процессы, связанные как с разложением N_2O , так и с его образованием.

Согласно работе [4], образование N₂O при термическом разложении нитратов *d*-элементов может быть представлено следующими реакциями:

$$M(NO_3)_n \cdot mH_2O \to M_xO_y + (HNO_3, NO, NO_2, O_2, H_2O), (7)$$

2NO \Rightarrow N_2O_2, (8)

$$N_2O_2 + NO = N_2O + NO_2.$$
 (9)

Аналогичные реакции могут протекать при разложении AgNO₃ в составе композита. Именно из-за протекания реакций образования N₂O при термическом разложении AgNO₃ в составе композита нами не обнаружено заметного снижения количества N₂O в воздушном потоке.

Действительно, анализ данных табл. 1 и 2 позволяет сделать вывод о том, что чем больше содержание $AgNO_3$ в составе композита, тем ниже степень удаления N_2O . Однако степень удаления N_2O в присутствии CH_3I выше, чем в его отсутствие (табл. 3).

При оценке степени удаления N_2O необходимо принять во внимание тот факт, что в процессе барботирования ~11.0% N_2O поглощается в растворе 1.2 моль/л NaOH из воздушного потока с температурой ~298 К [27]. В этих же условиях не происходит поглощения газообразного CH₃I в растворе 1.2 моль/л NaOH, а также поглощения N_2O и CH₃I на колонке с SiO₂. Однако в настоящее время отсутствуют данные о поглощении N_2O в растворе 1.2 моль/л NaOH из воздушного потока с температурой ~520 К и более.

Анализ данных табл. 3 показывает, что практически все Ag-содержащие композиты имеют низкую каталитическую активность в процессах разложения N_2O . Кроме того, можно также заключить, что практически не происходит поглощения N_2O в растворе 1.2 моль/л NaOH из воздушного потока с температурой ~520 К и более, т.е. практически отсутствует взаимодействие горячего потока воздуха, содержащего N_2O , с водным раствором NaOH. В результате степень удаления N_2O из воздушного

522

Номер опыта	Композит	<i>Т</i> _{комп} , К	<i>h</i> , см	<i>t</i> , c	$m(N_2O)_{HCX}$, ммоль	α(N ₂ O), %
1	Al ₂ O ₃ –7AgA3	525	5.4	4.0	1.3	1–2
2	Al ₂ O ₃ –3.5AgΓΓ–3.5AgA3	529	6.3	4.2	1.3	5-10
3*	Al ₂ O ₃ –3.5AgΓΓ–3.5AgA3	524	5.5	5.2	1.4	< 0.001
4	Al ₂ O ₃ -7AgΓΓ	533	6.4	3.1	1.3	5-10
5*	Al ₂ O ₃ -7AgΓΓ	525	5.5	3.7	1.4	< 1
6	Al ₂ O ₃ -2Ag8Ni-NH ₃	527	6.0	5.2	1.3	1–2
7*	Al ₂ O ₃ -2Ag8Ni-NH ₃	527	4.8	3.4	1.3	< 0.001
8	SiO ₂ –7AgA3	536	4.6	2.3	1.3	2–3
9	SiO ₂ –3.5AgГГ–3.5AgAз	537	4.5	4.3	1.3	3–4
10	SiO ₂ -7AgΓΓ	530	4.5	4.0	1.3	< 1
11	SiO ₂ -7АgАмк	537	4.6	4.1	1.3	1–2
12	SiO ₂ –2Ag8Ni–NH ₃	526	4.7	5.5	1.3	4–5

Таблица 3. Данные по удалению N₂O из воздушного потока при его пропускании через Аg-содержащие композиты ($V_{raзa} = 0.2-0.3 \text{ л/мин}$, содержание влаги в воздухе = 3–4 об%, $S_{peakropa} = 3.44 \text{ см}^2$)^a

^а*h* – высота слоя композита в реакторе, *t* – время контакта газовой фазы с композитом в реакторе, *a* – степень удаления N₂O. Звездочкой отмечены опыты без барботера с 1.2 моль/л NaOH.

потока при его пропускании через Ag-содержащие композиты с $T \sim 520$ К и более не превышает $\sim 10\%$.

В заключение следует отметить, что присутствие CH_3I в газовой фазе влияет на степень удаления N_2O из воздушного потока при его пропускании через Ag-содержащие композиты, так же как и присутствие N_2O в газовой фазе увеличивает эффективность поглощения CH_3I на данных композитах. Из этого можно заключить, что в системе газоочистки блоки по удалению N_2O должны быть установлены после блоков с Ag-содержащими композитами, предназначенных для удаления CH_3I .

Кроме того, использование в системе газоочистки барботеров с растворами щелочи позволит провести очистку газовых потоков от продуктов взаимодействия CH₃I с Ag-содержащими сорбентами, а именно от CH₃NO₃, CH₃OCH₃ и CH₃OH.

ФОНДОВАЯ ПОДДЕРЖКА

Исследование выполнено при финансовой поддержке Министерства науки и высшего образования Российской Федерации (№ госрегистрации АААА-А18-118021990023-6).

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют об отсутствии конфликта интересов.

РАДИОХИМИЯ том 63 № 6 2021

СПИСОК ЛИТЕРАТУРЫ

- Росатом задумался о повышении экологической безопасности топлива для «АЭС будущего» // Электронный ресурс: https://1prime.ru/ energy/20200205/830893475.html. Дата посещения: 20.10.2020.
- 2. Переработка нитридного топлива на основе PUREX-процесса // Электронный ресурс: https://poznayka. org/s5958t2.html. Дата посещения: 20.10.2020.
- Kulyukhin S.A., Shadrin A.Yu., Voskresenskaya Yu.A., Bessonov A.A., Ustinov O.A. // J. Radioanal. Nucl. Chem. 2015. Vol. 304, N 1. P. 425.
- Устинов О.А., Кулюхин С.А., Шадрин А.Ю., Воскресенская Ю.А., Бессонов А.А. // Атом. энергия. 2014. Т. 117, № 6. С. 329.
- Iodine Pathways and Off-Gas Stream Characteristics for Aqueous Reprocessing Plants – A Literature Survey and Assessment: Report INL/EXT-13-30119. 2013. 39 p.
- Устинов О.А., Шадрин А.Ю., Баташов М.В., Литвиннюк Л.В., Никулин С.Л. // Атом. энергия. 2018. Т. 124, № 2. С. 86.
- 7. Устинов О.А., Якунин С.А. // Атом. энергия. 2016. Т. 120, № 2. С. 112.
- Рябков Д.В., Зильберман Б.Я., Мишина Н.Е., Андреева Е.В., Водкайло А.Г., Шадрин А.Ю., Костромин К.В. Патент РФ № 2596816. Заяв. 30.06.2015. Опубл. 10.09.2016 // Б.И. 106. № 25.
- 9. Konsolakis M. // ACS Catal. 2015. Vol. 5, N 11. P. 6397.

- Cornelissen G., Rutherford D.W., Arp H.P.H., Dörsch P., Kelly Ch.N., Rostad C.E. // Environ. Sci. Technol. 2013. Vol. 47, N 14. P. 7704.
- Kaczmarczyk J., Zasada F., Janas J., Indyka P., Piskorz W., Kotarba A., Sojka Z. // ACS Catal. 2016. Vol. 6, N 2. P. 1235.
- 12. Ivanova Yu.A., Sutormina E.F., Isupova I.A., Vovk E.I. // Kinet. Catal. 2017. Vol. 58, N. 6. P. 793.
- 13. Кулюхин С.А., Румер И.А., Горбачева М.П., Бессонов А.А. // Радиохимия. 2020. Т. 62, № 2. С. 130.
- Кулюхин С.А. // Успехи химии. 2012. Т. 81, № 10. С. 960.
- State of the Art Report on Iodine Chemistry: Report NEA/CSNI. 2007. N R1. 60 p.
- Insights into the Control of the Release of Iodine, Cesium, Strontium and Others Fission Products in the Containment by Severe Accident Management: Report NEA/CSNI. 2000. N R9. P. 43–75.
- Кулюхин С.А., Мизина Л.В., Коновалова Н.А., Румер И.А., Занина Е.В. // Радиохимия. 2014. Т. 5, № 4. С. 353.
- Кулюхин С.А., Мизина Л.В., Коновалова Н.А., Румер И.А., Занина Е.В. // Радиохимия. 2015. Т. 57, № 3. С. 227.
- 19. Истомин И.А., Степанов С.В., Пашковский Р.В. // Вопр. радиац. безопасности. 2019. № 4. С. 39.

- 20. Кулюхин С.А., Горбачева М.П., Румер И.А. // Радиохимия. 2021. Т. 63. № 1. С. 59
- 21. База данных ИК спектров IR-Spektrensammlung der ANSYCO GmbH // Электронный ресурс: http://www.ansyco.de. Дата посещения: 20.10.2020 г.
- 22. База данных NIST Standard Reference Database Number 69 // Электронный ресурс: http://webbook. nist.gov/chemistry/. Дата посещения: 20.10.2020.
- Свойства вещества: метилнитрат // Электронный pecypc: http://chemister.ru/Database/ properties. php?dbid=1&id=6112. Дата посещения: 20.10.2020.
- 24. Диметиловый эфир // Электронный ресурс: https://ru.wikipedia.org/wiki/Диметиловый эфир. Дата посещения: 20.10.2020.
- Wingen L.M., Sumner A.L., Syomin D., Ramazan K.A., Finlayson-Pitts B.J. // Mater. 5th Conf. on Atmospheric Chemistry: Gases, Aerosols, and Clouds, 2003. Электронный pecypc: https://ams.confex.com/ams/ annual2003/techprogram/paper_51985.htm. Дата посещения: 20.10.2020.
- 26. Deng F., Yang F., Zhang P., Pan Y., Zhang Y., Huang Z. // Energy Fuels. 2016. Vol. 30, N 2. P. 1415.
- Gorbacheva M.P., Krasavina E.P., Mizina L.V., Rumer I.A., Krapukhin V.B., Kulemin V.V., Lavrikov V.A., Kulyukhin S.A. // Theor. Found. Chem. Eng. 2019. Vol. 53, N 4. P. 638.