УДК 539.183.3:546.654.655.657.665

ИЗУЧЕНИЕ МЕТОДОМ РФЭС КЕРАМИК НА ОСНОВЕ МУРАТАИТА, СОДЕРЖАЩИХ ЛАНТАНИДЫ

© 2021 г. К. И. Маслаков^{*a*}, Ю. А. Тетерин^{*a*, *ó*, *, О. И. Стефановская^{*b*}, С. Н. Калмыков^{*a*, *ó*, *b*}, А. Ю. Тетерин^{*b*}, К. Е. Иванов^{*b*}, С. С. Данилов^{*c*}, С. В. Юдинцев^{*b*}, *d*, Б. Ф. Мясоедов^{*b*}}

^а Московский государственный университет им. М. В. Ломоносова, 119991, Москва, Ленинские горы, д. 1

^б НИЦ «Курчатовский институт», 123182, Москва, пл. Акад. Курчатова, д. 1

⁶ Институт физической химии и электрохимии им. А. Н. Фрумкина РАН,

119071, Москва, Ленинский пр., д. 31, корп. 4

² Институт геохимии и аналитической химии им. В. И. Вернадского РАН, 119991, Москва, ул. Косыгина, д. 19

^д Институт геологии рудных месторождений, петрографии, минералогии и геохимии РАН,

119017, Москва, Старомонетный пер., д. 35

*e-mail: yuteterin@yandex.ru

Поступила в редакцию 03.08.2020, после доработки 03.08.2020, принята к публикации 19.09.2020

Методом рентгеновской фотоэлектронной спектроскопии изучены образцы керамики состава (мас%): 50 TiO₂, 10 CaO, 10 MnO₂, 5 Al₂O₃, 5 Fe₂O₃, 10 ZrO₂, 10 Ln₂O₃ (Ln = La, Ce, Nd, Ho) или 10 CeO₂. По данным рентгенофазового анализа и сканирующей электронной микроскопии, они состоят из муратаита, цирконолита и перовскита, в меньшем количестве имеются кричтонит, пирофанит–ильменит и рутил. В цериевых образцах доминирует Ce³⁺, отношение Ce³⁺: Ce⁴⁺ равно 3 : 1 и не зависит от способа ввода элемента в шихту – в форме CeO₂ или Ce₂O₃. Во всех керамиках преобладает Fe³⁺, его доля составляет 92–94 отн%, тогда как марганец представлен только катионами Mn³⁺.

Ключевые слова: лантаниды, керамика, муратаит, валентность, РФЭС.

DOI: 10.31857/S0033831121060095

ВВЕДЕНИЕ

Высокорадиоактивные отходы ядерной энергетики и оборонной деятельности (ВАО) остекловываются с целью последующего размещения в подземных хранилищах [1–5]. Стекла не вполне отвечают требованиям к матрицам отходов по безопасности и экономичности. Их емкость в отношении отходов довольно низка, особенно у алюмофосфатных стекол [1, 6], что снижает эффективность использования подземного хранилища ВАО. При контакте таких матриц с водами образуются коллоидные частицы, способные к миграции в геологической среде. Стекла – метастабильные образования и со временем будут кристаллизоваться, что вызовет увеличение скорости выщелачивания радионуклидов из-за появления растворимых новообразованных фаз [7]. В будущем предполагается использование новых технологий переработки отработанного ядерного топлива (ОЯТ), включая разделение ВАО на группы элементов [3]. Это делает актуальным поиск новых матриц для иммобилизации актинидов, например, кристаллических материалов на основе титанатов и цирконатов [2–5, 8–10]. К таким перспективным матрицам актинидов и РЗЭ-актинидов относят, в частности [10, 11], керамики на основе фаз серии пирохлор (двукратная элементарная флюоритовая ячейка, Py)-муратаит (трехкратная флюоритовая ячейка, M3) с промежуточными членами M5 и M8 (муратаиты с пяти- или восьмикратной ячейкой). При кристаллизации из расплава они формируются в последовательности: $Py \rightarrow M5 \rightarrow M8 \rightarrow M3$ с образованием зональных зерен с максимальной концентрацией актинидов и редких земель в их центральной части [3, 11].

Легкие лантаниды цериевой группы (La, Ce, Nd, Sm, Pr) доминируют в составе РЗЭ-актинидной фракции, а также служат имитатором актинидов в соответствующих степенях окисления: La³⁺ и Nd³⁺ – для Am³⁺ и Cm³⁺, Ce^{3+/4+} – для Pu^{3+/4+}. Поэтому данные о степени окисления лантанидов в керамиках представляют научный и практический интерес. Метод рентгеновской фотоэлектронной спектроскопии (РФЭС) позволяет определить элементный и ионный состав поверхности образцов [12–17]. Ранее этим способом проанализированы Ln и Ап-содержащие стекла и керамики [18-22], в том числе на основе муратаита. Сведений об изучении РФЭС керамик, содержащих La, Ce, Nd и Ho в литературе не обнаружено. Нами исследованы образцы керамики с La, Ce, Nd или Но для определения состава поверхности и прогноза их поведения при длительном хранении и захоронении. Эти элементы выбраны в силу того, что среди продуктов деления в ВАО доминируют La, Ce и Nd. Кроме того, Ce в степенях окисления III и IV служит имитатором актинидов, например Pu(III) и Pu(IV). Гольмий введен для изучения влияния радиуса катиона элемента на фазовый состав керамик с РЗЭ.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Образцы синтезированы плавлением в печи ВТП-12/15 смесей состава (мас%): 50 TiO₂, 10 CaO, 10 MnO₂, 5 Al₂O₃, 5 Fe₂O₃, 10 ZrO₂, 10 Ln₂O₃ (Ln = La, Ce, Nd, Ho) или 10 CeO₂ в стеклоуглеродных тиглях при 1500°С в течение 0.5 ч и охлаждением после ее выключения. Их изучали методами рентгенофазового анализа (РФА) и растровой электронной микроскопии (СЭМ/ ЭДС), часть результатов приведена в работе [23]. Спектры РФЭС записаны на приборе Kratos Axis Ultra DLD с использованием монохроматического излучения Al K_{α} (hv = 1486.7 эВ) с участков 300 на 700 мкм, что в десятки раз больше размеров зерен фаз в керамиках. Для получения неокисленной поверхности делали сколы с образцов и сразу же помещали в спектрометр. Энергии связи (Е_b) измерены относительно E_b C 1s-электронов углеводородов на поверхности образца, равной 285.0 эВ. Ошибка в определении энергии связи и ширины линий составляет менее ±0.05 эВ, погрешность в определении интенсивности пика – не выше ±5%. Фон, связанный с вторично-рассеянными электронами, вычитали методом Ширли [24]. Анализ состава проводили по методике, описанной в работе [25], на глубину до 10 нм [26, 27].

РАДИОХИМИЯ том 63 № 6 2021

Рис. 1. СЭМ-изображение образцов La (а: 1 - муратаит, 2 – перовскит, 3 – цирконолит, 4 – кричтонит), Nd (б: 1, 2 муратаит; 3 – перовскит; 4 – цирконолит; 5 – кричтонит); Ce3 (в: 1 - цирконолит; 2, 3 – муратаит; 4 – перовскит); Ce4 (г: 1, 2 - муратаит; 3 – перовскит; 4 – кричтонит). Macштабные метки равны 100 (а, в), 20 (б) и 50 (г) мкм.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Строение образцов показано на рис. 1, относительное количество и состав фаз – в табл. 1 и 2. Лантаниды распределяются между муратаитом, цирконолитом, перовскитом, кричтонитом. В образцах La, Ce3, Ce4 и Nd наибольшие их концентрации наблюдаются в перовските, в образце Се4 имеются два его типа: с низким и высоким содержанием церия. Фазовый состав керамик с церием несколько различается: образец СеЗ содержит меньше муратаита и в нем присутствует цирконолит. С уменьшением радиуса иона Ln количество перовскита снижается, а в гольмиевом образце он отсутствует. В образце с гольмием наибольшее содержание Но отмечается в цирконолите. Основным концентратором Ln в керамиках является муратаит (все его модификации М5, *M*8 и *M*3), кроме образца La с наибольшим количеством перовскита.

Спектры ионов Ln в керамиках являются комбинацией их спектров в отдельных фазах. В обзорных спектрах образцов наблюдаются линии всех элементов, а также Оже-спектры углерода (С *KLL*), кислорода (О *KLL*) и железа (Fe *LMM*) (рис. 2). Их можно разделить на две части: низкоэнергетическую область (от 0 до 50 эВ) валентных электронов и область остовных электронов (выше 50 эВ). Рассмотрим строение этих областей более подробно.

Образец		С	одержа	ние ком	Фазы и их соотношение, по данным				
	Al ₂ O ₃	CaO	TiO ₂	MnO	Fe ₂ O ₃	ZrO ₂	Ln ₂ O ₃	РФА и СЭМ/ЭДС ^а	
La	5	10	50	10	5	10	10	$Z \sim M \sim P > C >> P/I > R$	
Ce3	5	10	50	10	5	10	$10 (Ce_2O_3)$	$Z > P \sim M > C$	
Ce4	5	10	50	10	5	10	10 (CeO ₂)	M > P > C > P/I	
Nd	5	10	50	10	5	10	10	$M > Z \sim P > C$	
Но	5	10	50	10	5	10	10	M > Z > C	

Таблица 1. Целевой состав образцов и выявленные в них фазы, данные РФА и СЭМ/ЭДС

^а М – муратаит (все модификации), Р – перовскит, Z – цирконолит, С – кричтонит, Р/I – пирофанит/ильменит, R – рутил.

Таблица 2. Формулы фаз в образцах керамик с лантанидами, данные СЭМ/ЭДС анализа^а

Образец	Фаза	Формулы, рассчитанные исходя из заряда катионов: Ce^{3+} , Fe^{3+} и Mn^{3+}
La Цирконолит		$[(Ca_{0.46}La_{0.03})Zr_{0.81}(Ti_{1.89}Al_{0.22}Mn_{0.45}Fe_{0.13})]_{4.06.90}$
	Муратаит-5	$(Ca_{1.30}La_{0.19}Zr_{0.76}Ti_{7.20}Al_{2.23}Mn_{2.17}Fe_{1.20})_{15.0}O_{24.76}$
	Муратаит-8	$(Ca_{0.76}La_{0.88}Zr_{0.42}Ti_{16.57}Al_{2.67}Mn_{2.60}Fe_{2.06})_{26.0}O_{45.81}$
	Перовскит	$[(Ca_{0.72}La_{0.20})(Ti_{0.96}Al_{0.03}Mn_{0.01}Fe_{0.01})]_{1.92}O_{3.0}$
	Кричтонит	$[(Ca_{0.68}La_{0.81})(Zr_{0.33}Ti_{14.33}Al_{1.64}Mn_{2.12}Fe_{1.49})]_{21.39}O_{38.0}$
Ce3	Цирконолит	$[(Ca_{0.43}Ce_{0.07})Zr_{0.83}(Ti_{1.89}Al_{0.18}Mn_{0.46}Fe_{0.13})]_{4.0}O_{6.93}$
	Муратаит-5	$(Ca_{1.74}Ce_{0.41}Zr_{1.67}Al_{1.22}Ti_{7.70}Mn_{1.75}Fe_{0.50})_{15.0}O_{25.42}$
	Муратаит-8	$(Ca_{2.27}Ce_{0.69}Zr_{1.01}Ti_{12.95}Al_{4.11}Mn_{3.17}Fe_{1.80})_{26.0}O_{43.27}$
	Перовскит	$(Ca_{0.61} Ce_{0.24} Zr_{0.01} Ti_{0.95} Al_{0.05} Mn_{0.03})_{1.89} O_{3.0}$
	Кричтонит	$(Ca_{0.84}Ce_{0.74}Zr_{0.24}Ti_{14.44}Al_{1.58}Mn_{2.07}Fe_{1.49})_{21.41}O_{38.0}$
Ce4	Муратаит-5	$(Ca_{1.62}Ce_{0.32}Zr_{1.51}Ti_{7.32}Al_{1.88}Mn_{1.76}Fe_{0.59})_{15.0}O_{25.21}$
	Муратаит-8	$(Ca_{0.88}Ce_{0.81}Zr_{0.41}Ti_{17.08}Al_{2.42}Mn_{2.37}Fe_{2.01})_{26.0}O_{46.15}$
	Перовскит 1	$[(Ca_{0.69}Ce_{0.19})(Ti_{0.95}Al_{0.06}Mn_{0.03})]_{1.92}O_{3.0}$
	Перовскит 2	$[(Ca_{0.51}Ce_{0.32})(Ti_{0.99}Mn_{0.03}Fe_{0.01})]_{1.85}O_{3.0}$
	Кричтонит	$(Ca_{0.73}Ce_{0.67}Zr_{0.34}Ti_{14.06}Al_{2.0}Mn_{1.95}Fe_{1.66})_{21.40}O_{38.0}$
Nd	Цирконолит	$[(Ca_{0.52}Nd_{0.16})Zr_{0.72}(Ti_{1.89}Al_{0.30}Mn_{0.32}Fe_{0.10})]_{4.0}O_{6.88}$
	Муратаит-5	$(Ca_{2.21}Nd_{0.98}Zr_{3.12}Ti_{7.23}Al_{0.57}Mn_{0.70}Fe_{0.20})_{15.0}O_{26.20}$
	Муратаит-8	$(Ca_{2.88}Nd_{0.88}Zr_{1.74}Ti_{13.73}Al_{2.39}Mn_{3.08}Fe_{1.31})_{26.0}O_{43.76}$
	Перовскит	$[(Ca_{0.58}Nd_{0.14})(Ti_{0.93}Al_{0.14}Mn_{0.07}Fe_{0.04})]_{1.91}O_{3.0}$
	Кричтонит	$(Mn_{2.91}Fe_{2.98}Ti_{14.28}AI_{1.43})_{21.60}O_{38.0}$
	Цирконолит	$[(Ca_{0.50}Ho_{0.48})Zr_{0.81}(Ti_{1.97}Mn_{0.20}Fe_{0.05})]_{4.0}O_{7.04}$
	Муратаит-8	$(Ca_{3.10}Ho_{1.15}Zr_{1.98}Ti_{13.37}Al_{2.71}Mn_{2.72}Fe_{0.94})_{26.0}O_{43.76}$
Но	Муратаит-3	$(Ca_{1.33}Ho_{0.11}Zr_{0.23}Ti_{5.88}Al_{1.40}Mn_{1.17}Fe_{0.87})_{11.0}O_{18.31}$
	Перовскит	$(Ca_{0.80}Ti_{1.0}Mn_{0.09}Fe_{0.03}Zr_{0.01}Ho_{0.04})_{1.96}O_{3.0}$
	Кричтонит	$(Ca_{3,26}Ho_{0,19}Zr_{0,32}Ti_{12,85}Al_{2,34}Mn_{2,21}Fe_{1,55})_{22,77}O_{38,0}$

^а В образцах La, Ce4, Но имеется также пирофанит–ильменит состава (Fe_{0.4}Mn_{0.6})TiO₃, а в образце La – еще и рутил, TiO₂.

	· 1	1		/ 1			1 1	1		
Образец	МО	Al 2 <i>p</i>	Zr $3d_{5/2}$	Ca 2p _{3/2}	Ti 2p _{3/2}	Mn 2p _{3/2}	Fe ²⁺ $2p_{3/2}$, Fe ³⁺ $2p_{3/2}$	Ln $3d_{5/2}$	O 1 <i>s</i>	C 1 <i>s</i>
La	5.0, 7.0, 17.8,	74.3	182.6	347.4	458.9	641.4	708.8 (1.7),	834.8	530.3	285.0
	20.6, 22.6, 25.5,	(1.2)	(1.1)	(1.5)	(1.3)	(2.4),	710.7 (3.0)	(2.1),	(1.2),	(1.3),
	30.8, 37.6, 44.0,					4.6 sat ₁		4.0 sat	531.9	289.0
	48.6					(48%)		(82%)	(1.3)	(2.1)
Ce3	1.7, 4.9, 7.3,	74.4	182.6	347.0	458.4	641.3	709.1 (1.7),	881.6	530.2	285.0
	18.1, 20.8, 22.6,	(1.4)	(1.3)	(1.5)	(1.4)	(2.5),	711.0 (3.0)	(3.2),	(1.4),	(1.3),
	25.2, 30.8, 37.4,					1.7 sat ₁		4.0 sat	531.6	289.1
	43.7, 48.6					(21%),		(133%)	(1.5)	(1.6)
						5.8 sat ₂				
						(43%)				
Ce4	1.9, 4.9, 7.3	74.3	182.6	347.0	458.8	641.5	709.0 (1.7),	881.6	530.2	285.0
	18.1, 20.9, 22.5,	(1.4)	(1.2)	(1.6)	(1.4)	(2.6),	711.0 (3.0)	(2.9),	(1.4),	(1.3),
	25.2, 30.7, 37.4,					4.3 sat ₁		4.0 sat	531.6	288.9
	43.7, 48.7					(44%)		(173%)	(1.5)	(1.6)
Nd ^B	4.9, 7.4, 19.6,	74.2	182.6	347.1	458.8	641.4	709.0 (1.7),	_	530.2	285.0
	22.4, 25.3, 30.7,	(1.3)	(1.1)	(1.5)	(1.4)	(2.5),	710.6 (3.0)	982.1	(1.3),	(1.3),
	37.5, 43.8, 48.6,					4.6 sat ₁		(5.0)	531.7	288.9
	50.8					(53%)			(1.4)	(1.8)
Hor	4.5, 6.9, 10.3,	74.1	182.6	346.9	458.7	641.4	708.8 (1.7),	1352.5	530.2	285.0
	19.5, 22.1, 25.1,	(1.3)	(1.1)	(1.5)	(1.3)	(2.6),	710.5 (3.0)	(3.9)	(1.3),	(1.3),
	30.6, 37.4, 43.5,					5.4 sat ₁			531.7	288.9
	48.5, 50.9					(34%)			(1.4)	(1.5)

Таблица 3. Энергии связи электронов (E_b^a , эВ) и ширины линий (Γ^6 , эВ) спектров образцов

^а Значения $E_{\rm b}$ приведены относительно $E_{\rm b}$ (C 1s) = 285.0 эВ.

⁶ Величины Г даны в скобках.

^в Энергии связи Nd 4*d*-электронов равны 122.5 (2.3) и 125.2 (2.9) эВ.

^г Энергии связи Но 4*d*-электронов: 161.1(2.6), 163.4(1.8), 166.8(4.9) эВ.

Область валентных электронов. В интервале спектра от 0 до 15 эВ наблюдаются линии электронов внешних (ВМО), а в диапазоне от 15 до 50 эВ – внутренних валентных молекулярных орбиталей (ВВМО) (рис. 2, а–г, табл. 3). Спектр электронов ВМО содержит ряд максимумов, но не позволяет получить информацию о составе образца. Слабый максимум при 1.7 эВ (рис. 3, а) связан с Се 4*f*-электронами, не участвующими в химической связи ионов Ce³⁺ [28]. Наблюдаются линии Ca 3*s*-, Mn 3*p*-, Zr 4*s*- и O 2*s*-электронов, интенсивность которых можно использовать для качественного и количественного элементного анализа.

Область остовных электронов. Элементный и ионный состав может быть определен на основании интенсивностей, энергий и структуры линий остовных электронов (табл. 3): Mn 2*p*- (рис. 4, а), Fe 2*p*- (рис. 4, б), C 1*s*- (рис. 4, в), Zr 3*d*- (рис. 4, г) и Al 2*p*- (рис. 5, а), O 1*s*- (рис. 5, б), Ca 2*p*- (рис. 5, в), Ti 2*p*- (рис. 5, г) электронов. Структура спектра Mn

РАДИОХИМИЯ том 63 № 6 2021

2*p*-электронов (рис. 4, а) характерна для Mn³⁺ [29]. Спектр Fe 2*p*-электронов образцов имеет сложную структуру (рис. 4, б), вместо спин-дублета с ΔE_{sl} = 13.1 эВ наблюдается суперпозиция спектров ионов Fe²⁺ и Fe³⁺ [30]. Компоненты этого дублета для Fe²⁺ наблюдаются в общем спектре в виде плеча на сложной структуре спектра Fe³⁺ в области меньшей энергии связи при E_b (Fe 2*p*_{3/2}) = 709.1 эВ с Г(Fe 2*p*_{3/2}) = 1.7 эВ (рис. 4, б). В образцах доминирует Fe³⁺, его количество равно 92–94 отн%.

В спектре С 1*s*-электронов углерода на поверхности образцов наблюдается линия CO_3^{2-} -группы (рис. 4, в). Спектр Zr 3*d*-электронов состоит из дублета с ΔE_{sl} (Zr 3*d*) = 2.4 эВ (табл. 3, рис. 4, г). Энергия связи Zr 3*d*_{5/2}-электронов близка к величине для ZrO₂, равной 182.6 эВ [26].

Энергия связи Al 2*p*-электронов для изученных керамик сравнима со значением для Al₂O₃ [12] (рис. 5, а), для Ca $2p_{3/2}$ -электронов (рис. 5, в) примерно равна 346.0 эВ, что характерно для CaO [25],

Рис. 2. Обзорные спектры керамик на примере образцов Ce4 (a) и La (б).

Рис. 3. Спектры валентных электронов керамик Ce4 (а), La (б), Nd (в) и Ho (г).

РАДИОХИМИЯ том 63 № 6 2021

Рис. 4. Спектры Mn 2p- (а), Fe 2p- (б), C 1s- (в) и Zr 3d-электронов (г) керамики Ce4.

а для Ті $2p_{3/2}$ -электронов (рис. 5, г) мало зависит от состава образцов (табл. 3). Спектр О 1*s*-электронов состоит из двух линий (рис. 5, б, табл. 3) при 530.2 и 531.6 эВ с интенсивностями 85 и 15% соответственно. С учетом выражения (1) [25] длины связей элемент-кислород R_{3-0} определены как 0.210 и 0.186 нм:

$$R_{\text{Э-O}}$$
 (нм) = 2.27 ($E_{\rm b} - 519.4$)⁻¹. (1)

Эти значения характеризуют длины связей элемент-кислород в объеме изученных образцов и на их поверхности. Предполагается, что величина 0.210 нм является усредненной для длин связей кислорода и металлов (Al–O, Ca–O, Ti–O, Mn–O, Fe–O, Zr–O, Ln–O), присутствующих в образце, а значение 0.186 нм относится к связям металлов с гидроксильными группами, адсорбированными на поверхности из окружающей среды.

Структура спектра La 3*d*-электронов образца La обусловлена спин-орбитальным расщеплением с $\Delta E_{sl} = 16.8$ эВ [31] и многоэлектронным возбужде-

РАДИОХИМИЯ том 63 № 6 2021

нием (рис. 6, а, табл. 3) и типична для катиона La³⁺ [14].

Структура спектров Се 3*d*-электронов образцов Се3 и Се4 характерна для смеси ионов Се³⁺ и Се⁴⁺ (рис. 6, б, в). В работе [28] предложена оригинальная методика, позволяющая на основании интенсивности одиночной линии спектра Се 3*d*-электронов при 916.8 эВ определить ионный состав поверхности образца (соотношение количеств Ce³⁺ и Ce⁴⁺). С ее использованием установлено, что в образце Се4 содержится 25 отн% Ce⁴⁺ и 75 отн% Ce³⁺, а в Ce3 – 26 отн% Ce⁴⁺ и 74 отн% Ce³⁺. Состояние Ce³⁺ доминирует независимо от того, в каком виде (СеО₂ или Се₂О₃) элемент вводили в шихту. Это согласуется с данными рентгеновской абсорбционной спектроскопии (РАС), согласно которым церий в этих образцах находится преимущественно в состоянии Ce³⁺ [23].

Сложная структура спектра Nd 3*d*-электронов для образца Nd, обусловленная спин-орбитальным расщеплением с $\Delta E_{sl} = 22.2$ эВ [14], мультиплетным расщеплением и многоэлектронным возбуждением,

Рис. 6. Спектры РЗЭ 3d-электронов (La или Ce) для керамик La (a), Ce3 (б) и Ce4 (в).

Рис. 7. Спектры Nd 4*d*- (а) и Но 4*d*-электронов (б), а также Nd 3*d*- (в) и Но 3*d*-электронов (г) для керамики с неодимом (образец Nd) и с гольмием (образец Ho).

накладывается на структуру О *KLL* Оже-спектра кислорода (рис. 7, в). Несмотря на это, удалось определить энергии связи электронов линий спин-дублета, равные E_b (Nd $3d_{5/2}$) = 982.1 эВ и E_b (Nd $3d_{3/2}$) = 1005.2 эВ, которые характерны для Nd³⁺ в Nd₂O₃ [14] (рис. 7, в, табл. 3). Спектр Nd 4*d*-электронов с ΔE_{sl} = 9.9 эВ [32] накладывается на спектр алюминия Al 2*s* (рис. 7, а). Однако наблюдаемые два максимума при 122.5 и 125.2 эВ характерны для Nd 4*d*-электронов катиона Nd³⁺ в Nd₂O₃ [14].

Спектр Но $3d_{5/2}$ -электронов образца Но с $\Delta E_{sl} = 40.1$ эВ [31] наблюдается при средневзвешенной энергии связи, равной 1351.2 эВ (рис. 7, г). Имеется максимум при 1352.5 эВ, что отвечает энергии связи Но $3d_{5/2}$ -электронов в Ho₂O₃.

РАДИОХИМИЯ том 63 № 6 2021

Наблюдаемые максимумы в спектре согласуются с данными для Ho^{3+} в Ho_2O_3 [14]. Структура спектра Ho 4*d*-электронов образца Ho с $\Delta E_{sl} = 11.3$ эВ [32] частично перекрывается со спектром 3*d*-электронов Zr (рис. 7, б). Поэтому интенсивность линий спектра 4*d*-электронов и содержание гольмия определяются с большой погрешностью. При определении степени окисления металлов в изученных образцах керамик использовались данные работы [33].

Метод РФЭС позволяет анализировать состав и валентное состояние элементов на поверхности образца до глубины 10 нм [27]. Это делает его незаменимым при анализе изменений матриц после взаимодействия с раствором [34]. Остается открытым вопрос, в какой степени данные для этого слоя

МАСЛАКОВ и др.

1 1	, , , , , , , , , , , , , , , , , , , ,	
Образец	Тип данных	Элементный состав в расчете на 1 атом Zr
La	РФЭС, поверхность	$Al_{1.24}Ca_{1.79}Ti_{6.47}Mn_{2.32}Fe_{1.10}Zr_{1.00}La_{1.17}O_{22.65+3.22}C_{5.13+1.02}$
	Валовой состав	$Al_{1.22}Ca_{2.20}Ti_{7.75}Mn_{1.43}Fe_{0.77}Zr_{1.00}La_{0.75}O_{26.7}$
Ce3	РФЭС, поверхность	$Al_{1.27}Ca_{1.72}Ti_{6.62}Mn_{2.57}Fe_{1.41}Zr_{1.00}Ce_{0.92}O_{22.23+5.22}C_{8.53+0.96}$
	Валовой состав	$Al_{1.22}Ca_{2.20}Ti_{7.76}Mn_{1.43}Fe_{0.78}Zr_{1.00}Ce_{0.70}O_{29.80}$
Ce4	РФЭС, поверхность	$Al_{1.28}Ca_{1.78}Ti_{6.36}Mn_{2.18}Fe_{1.27}Zr_{1.00}Ce_{0.64}O_{20.87+3.93}C_{6.50+1.00}$
	Валовой состав	$Al_{1.23}Ca_{2.21}Ti_{7.77}Mn_{1.43}Fe_{0.78}Zr_{1.00}Ce_{0.72}O_{27.07}$
Nd	РФЭС, поверхность	$Al_{1.27}Ca_{1.77}Ti_{6.74}Mn_{2.47}Fe_{0.93}Zr_{1.00}Nd_{0.80}O_{22.49+3.32}C_{6.46+0.93}$
	Валовой состав	$Al_{1.23}Ca_{2.20}Ti_{7.76}Mn_{1.43}Fe_{0.77}Zr_{1.00}Nd_{0.74}O_{26.71}$
Но	РФЭС, поверхность	$Al_{1.20}Ca_{1.70}Ti_{6.55}Mn_{1.83}Fe_{0.99}Zr_{1.00}Ho_{0.70}O_{23.18+3.47}C_{5.37+0.79}$
	Валовой состав	$Al_{1.22}Ca_{2.21}Ti_{7.77}Mn_{1.43}Fe_{0.77}Zr_{1.00}Ho_{0.65}O_{26.60}$

Таблица 4. Элементный состав поверхности изученных образцов по данным РФЭС и их целевой валовой состав, нормированные на один атом циркония^а

^а Для кислорода и углерода приведен состав для двух химических состояний (см. рис. 4, 5).

можно распространять на всю керамику. Между результатами РФЭС и РАС образцов имеется некоторое расхождение, проявленное в меньшей доле окисленных форм Се и U при анализе методом РАС [22, 23]. Это может быть связано с окислением элементов на поверхности образца при хранении в среде воздуха. При изучении браннерита показано, что доля такого урана оценивается в 10% от его общего количества [35]. Чтобы уменьшить влияние этого фактора, сколы с образцов при РФЭС исследовании делались непосредственно перед их размещением в спектрометре. Еще одна причина различий данных РФЭС и РАС – более грубая оценка соотношения степеней окисления методом РАС. Поэтому РФЭС дает более корректную оценку содержаний катионов разной валентности. Изучение Се-браннерита показало [36], что расхождение между данными РФЭС для поверхности образца и данными РАС для объема сравнительно невелико. Отметим, что знание состава и валентности элементов в поверхностном слое очень важны, поскольку эта область матрицы подвергается воздействию раствора. Выщелачивание из матриц элементов переменной валентности (III, IV) выше у катионов меньшего заряда и большей основности, т.е. у Ce³⁺ и Pu³⁺, а способность к образованию комплексов у них ниже, чем у Се⁴⁺ и Ри⁴⁺ [37, 38]. По данным РФЭС, состав поверхности образцов (табл. 4) несколько отличен от валового состава керамик (табл. 1). Для понимания точных причин этого расхождения требуются дальнейшие исследования образцов.

выводы

Изучены образцы потенциальной матрицы для иммобилизации актинидов и лантанидов, состоящие в основном из муратаита, цирконолита и перовскита. Методом РФЭС определены состав и валентное состояние элементов в поверхностном слое образцов толщиной до 10 нм. Содержания в нем Mn и Fe выше, Ca и Ti ниже валовых концентраций в образцах. Отношение Ce³⁺ и Ce⁴⁺ в образцах равно 3 : 1 независимо от формы введения церия в шихту. Железо находится в виде Fe³⁺ (92–94 отн%) и Fe²⁺ (6–8 отн%), а марганец присутствует в состоянии Mn³⁺. Средняя длина связи Al–O, Ca–O, Ti–O, Mn–O, Fe–O, Zr–O, Ln–O определена как 0.210 нм.

ФОНДОВАЯ ПОДДЕРЖКА

Исследование выполнено при поддержке РФФИ (проекты №18-29-12032, №20-03-00333) на установке, приобретенной на средства Программы развития МГУ им. М.В. Ломоносова.

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют об отсутствии конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

1. Вашман А.А., Демин А.В., Крылова Н.В., Кушников В.В., Матюнин Ю.И., Полуэктов П.П., Поля-

РАДИОХИМИЯ том 63 № 6 2021

ков А.С., Тетерин Э.Г. Фосфатные стекла с радиоактивными отходами. М.: ЦНИИатоминформ, 1997. 172 с.

- Radioactive Waste Forms for the Future / Eds W. Lutze, R.C. Ewing. Elsevier, 1988. 789 p.
- Лаверов Н.П., Величкин В.И., Омельяненко Б.И., Юдинцев С.В., Петров В.А., Бычков А.В. Изоляция отработавших ядерных материалов: геолого-геохимические основы. М.: ИФЗ РАН, 2008. 280 с.
- Donald I. W. Waste Immobilization in Glass and Ceramicbased Hosts: Radioactive, Toxic, and Hazardous Wastes. UK: Wiley, 2010. 507 p.
- Handbook of Advanced Radioactive Waste Conditioning Technologies: Woodhead Publishing Ser. in Energy, N 12 / Ed. M.I. Ojovan. Cambridge: Woodhead, 2011. 487 p.
- Власова Н.В., Ремизов М.Б., Козлов П.В., Беланова Е.А. // Вопр. радиац. безопасности. 2017. № 3. С. 32–37.
- Malkovsky V.I., Yudintsev S.V., Aleksandrova E.V. // J. Nucl. Mater. 2018. V. 508. P. 212–218.
- Ringwood A.E. // Mineral. Magaz. 1985. Vol. 49. P. 159– 176.
- Lumpkin G.R. // Experimental and Theoretical Approaches to Actinide Chemistry / Eds J.K. Gibson, W.A. de Jong. Wiley, 2018. P. 333–377.
- Stefanovsky S.V., Yudintsev S.V. // Russ. Chem. Rev. 2016. Vol. 85. P. 962–994.
- Laverov N.P., Yudintsev S.V., Stefanovskii S.V., Omel'yanenko B.I., Nikonov B.S. // Radiochemistry. 2011. Vol. 53, N 3. P. 229–243.
- 12. *Нефедов В.И.* Рентгеноэлектронная спектроскопия химических соединений. М.: Химия, 1984. 255 с.
- 13. *Teterin Y.A., Teterin A.Y.* // Russ Chem. Rev. 2004. Vol. 73. P. 541–580.
- Teterin Y.A., Teterin A.Y. // Russ. Chem. Rev. 2002. Vol. 71. P. 347–381.
- Gresch R., Muller-Warmuth W., Dutz H. // J. Non-Cryst. Solids. 1979. Vol. 34. P. 127–136.
- Lam D.J., Paulikas A.P., Veal B.W. // J. Non-Cryst. Solids. 1980. Vol. 42. P. 41–48.
- Pantano C.G. // Glass Science: Experimental Techniques of Glass Science / Eds C.J. Simmons, O.H. El-Bayoumi. Am. Ceram. Soc., 1993. P. 129–160.
- Maslakov K.I., Teterin Yu.A., Stefanovsky S.V., Kalmykov S.N., Teterin A.Yu., Ivanov K.E., Danilov S.S. // J. Non-Cryst. Solids. 2018. Vol. 482. P. 23–29.
- Maslakov K.I., Teterin Y.A., Ryzhkov M.V., Popel A.J., Teterin A.Yu., Ivanov K.E., Kalmykov S.N., Petrov V.G., Petrov P.K., Farnand I. // Phys. Chem. Chem. Phys. 2018. Vol. 20. P. 16167–16175.

- Maslakov K.I., Stefanovsky S.V., Teterin A.Yu., Teterin Yu.A., Marra J.C. // Glass Phys. Chem. 2009. Vol. 35. P. 22–28.
- Maskakov K.I., Teterin A.Yu., Teterin Yu.A., Ivanov K.E., Yudintsev S.V., Stefanovskii S.V. // Radiochemistry. 2012. Vol. 54. P. 115–121.
- Маслаков К.И., Тетерин Ю.А., Стефановская О.И., Калмыков С.Н., Тетерин А.Ю., Иванов К.Е., Юдинцев С.В., Мясоедов Б.Ф. // Радиохимия. 2020. Т. 62, № 5. С. 400–408.
- Stefanovsky S.V., Yudintsev S.V., Nickolsky M.S., Stefanovsky O.I., Skvortsov M.V. // J. Nucl. Mater. 2020. Vol. 529. Article ID 151958.
- 24. Shirley D.A. // Phys. Rev. B. 1972. Vol. 5. P. 4709-4714.
- 25. Sosulnikov M.I., Teterin Yu.A. // J. Electron Spectrosc. Relat. Phenom. 1992. Vol. 59. P. 111–126.
- Немошкаленко В.В., Алешин В.Г. Электронная спектроскопия кристаллов. Киев: Наук. думка, 1976. 336 с.
- Ngo D., Liu H., Kaya H., Chen Z., Kim S.H. // J. Am. Ceram. Soc. 2019. Vol. 102. P. 6649–6657.
- Maslakov K.I., Teterin Yu.A., Popel A.J., Teterin A.Yu, Ivanov K.E., Kalmykov S.N., Petrov V.G., Springell R., Scott T.B., Farnan I. // Appl. Surf. Sci. 2018. Vol. 448. P. 154–162.
- Ilton E.S., Post J.E., Heaney P.J., Ling F.T., Kerisit S.N. // Appl. Surf. Sci. 2016. Vol. 366. P. 475–485.
- Yamashita T., Hayes P. // Appl. Surf. Sci. 2008. Vol. 254. P. 2441–2449.
- Trzhaskovskaya M.B., Yarzhemsky V.G. // Atom. Data Nucl. Data Tables. 2018. Vol. 119. P. 99–174.
- Yarzhemsky V.G., Nefedov V.I., Trzhaskovskaya M.B., Band I.M., Szargan R. // J. Electron Spectrosc. Relat. Phenom. 2002. Vol. 123, N 1. P. 1–10.
- 33. NIST X-ray Photoelectron Spectroscopy Database. Version 4.1. Gaithersburg: National Inst. of Standards and Technology, 2012.
- Ngo D., Liu H., Chen Z., Kaya H., Zimudzi T.J., Gin S., Mahadevan T., Du J., Kim S.H. // NPJ Mater. Degrad. 2020. Vol. 4. N 1. https://doi.org/10.1038/s41529-019-0105-2.
- Finnie K.S., Zhang Z., Vance E.R., Carter M.L. // J. Nucl. Mater. 2003. Vol. 317. P. 46–53.
- Aluri E.R., Bachiu L.M., Grosvenor A.P., Forbes S.H., Greedan J.E. // Surf. Interface Anal. 2017. Vol. 49. P. 1335–1344.
- 37. *Runde W.* // Los Alamos Sci. 2000. N 26, Vol. 2. P. 392–411.
- Choppin G.R. // J. Radioanal. Nucl. Chem. 2007. Vol. 273, N 3. P. 695–703.

РАДИОХИМИЯ том 63 № 6 2021