УДК 546.791+546.799.4

РАДИОХИМИЧЕСКИЙ И ЭЛЕМЕНТНЫЙ АНАЛИЗ СМЕШАННОГО УРАН-ПЛУТОНИЕВОГО ТОПЛИВА, ОБЛУЧЕННОГО В РЕАКТОРЕ БН-600

© 2022 г. В. Н. Момотов^{*a*}, *, Е. А. Ерин^{*a*}, А. Ю. Волков^{*a*}, В. Н. Куприянов^{*a*}, М. И. Хамдеев^{*a*}, Д. Е. Тихонова^{*a*}, А. Ю. Шадрин^{*6*}, **, Ю. С. Хомяков^{*6*}

^а Научно-исследовательский институт атомных реакторов, 433510, Димитровград Ульяновской обл., Западное шоссе, д. 9 ⁶ АО «Прорыв», 107140, Москва, ул. Малая Красносельская, д. 2/8 e-mail: * momotov@niiar.ru, ** anyshadrin@rosatom.ru

Поступила в редакцию 18.11.2020, после доработки 22.12.2020, принята к публикации 29.12.2020

Представлены результаты разрушающего радиохимического и элементного анализа образцов экспериментального смешанного нитридного уран-плутониевого (СНУП) топлива, облученного в реакторе БН-600. Получены данные по нуклидному составу и массовому содержанию U, Pu, Am, Cm, Nd, определены удельная активность ¹⁴C, ³H, ¹⁰⁶Ru, массовое содержание Zr, Mo, Pd, Rh в растворе и нерастворенном остатке СНУП ОЯТ. Рассчитана глубина выгорания СНУП топлива по отношению числа атомов продукта деления – монитора выгорания к числу тяжелых атомов. В качестве мониторов выгорания использовали суммарное накопление изотопов ¹⁴⁵Nd и ¹⁴⁶Nd, а также ¹⁴⁸Nd.

Ключевые слова: смешанное нитридное уран-плутониевое облученное ядерное топливо, разрушающий радиохимический анализ, α-спектрометрия, γ-спектрометрия, жидкостная сцинтилляционная спектрометрия, масс-спектрометрия, изотопное разбавление, атомно-эмиссионная спектрометрия, ионный обмен, экстракционная хроматография.

DOI: 10.31857/S003383112201004X

ВВЕДЕНИЕ

Стратегия развития ядерной энергетики России предполагает создание замкнутого ядерного топливного цикла с реакторами на быстрых нейтронах, для которых в качестве топливной композиции рассматривается смешанное нитридное уран-плутониевое (СНУП) топливо [1]. Для обоснования безопасного использования нитридного топлива, верификации расчетных кодов, установления баланса делящихся материалов и продуктов деления, накопления потенциально радиационно-опасных нуклидов необходимы соответствующие экспериментальные исследования.

В настоящее время экспериментальные данные о составе отработавшего ядерного СНУП топлива (СНУП ОЯТ) ограничены. В литературе приведены результаты радиохимического анализа СНУП топлива, облученного в реакторе БОР-60 [2]. В цитируемой работе определены изотопный состав и массовое содержание нуклидов U, Pu, Ce, Cs, Am, Nd, на основе которых определена глубина выгорания топлива, равная 2.57% тяжелых атомов (т.а.).

В работе [3] приведены данные по удельной активности ¹⁴С. В исследованиях [4, 5] разработана методика определения удельной активности ³Н в СНУП ОЯТ. В работе [6] представлены результаты определения массового содержания нуклидов ²³²U и ²³⁶Pu в СНУП ОЯТ методом α -спектрометрии.

В настоящей работе представлены результаты комплексных исследований образцов экспериментального СНУП топлива, облученного в быстром энергетическом реакторе БН-600. МОМОТОВ и др.

		-		
Номер сборки	Номер твэла	Координата вырезки от низа твэла, мм	Время эксплуатации сборки в реакторе, эффективных суток	Время выдержки топлива на момент анализа, лет
КЭТВС-1	64	1380–1430	433.1	2.5
КЭТВС-7	5	1540-1552	589.2	2.5

Таблица 1. Данные об исследованных образцах СНУП ОЯТ, облученного в реакторе БН-600

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Исследовали два образца СНУП ОЯТ, облученного в реакторе БН-600. Данные об исследованных образцах представлены в табл. 1.

Нуклидный состав и массовое содержание делящихся материалов, продуктов деления в СНУП ОЯТ изучали в следующей последовательности:

- определение массы СНУП ОЯТ;

 – растворение образца с использованием аппарата растворения, снабженного дефлегматором и системой ловушек;

 – замена дефлегматора на холодильник и частичная перегонка раствора ОЯТ с последующим определением удельной активности трития в конденсате;

– определение удельной активности ¹⁴С в щелочных ловушках;

 – фильтрование исходного раствора через двойной целлюлозный фильтр и анализ нерастворенного остатка на содержание Zr, Mo, Pd, Rh, U и Pu;

 – отбор аликвоты исходного раствора и анализ на содержание Zr, Mo, Pd, Rh;

- разбавление исходного раствора;

 – определение удельной активности ¹⁰⁶Ru в рабочем растворе ОЯТ, на стенках дефлегматора, в растворах ловушек и нерастворенном остатке;

 – α,γ-спектрометрический анализ рабочего раствора ОЯТ для оценки объема аликвоты, необходимой для хроматографического разделения фракций;

 проведение сорбционного выделения нуклидов U, Pu, Am-Cm-редкоземельной фракции для масс-спектрометрических измерений изотопного состава;

 повторение сорбционного выделения нуклидов
U, Pu, Am-Cm-редкоземельной фракции в присутствии комплексной метки для измерения их массового содержания.

Для определения массы топлива на первом этапе образец с оболочкой твэла взвешивали. По завершении растворения топлива оболочку извлекали, промывали, высушивали и взвешивали. Массу топлива в образце находили по разности масс образца с оболочкой твэла и массы оболочки.

Массу образца и оболочки твэла после растворения определяли на аналитических весах AX 205 (Mettler Toledo) с погрешностью взвешивания ±0.25 мг.

Растворение образца топлива, облученного в составе КЭТВС-1, проводили в аппарате, схема которого представлена на рис. 1 [4].

Первая ловушка предназначена для улавливания отлетающего при растворении образца ОЯТ рутения, вторая – для поглощения изотопов иода, три щелочных поглотителя – для улавливания ¹⁴C, выделяющегося в виде углекислого газа. Скорость продувки объема аппарата воздухом составила 1.2 л·ч⁻¹.

Растворение образца топлива, облученного в составе КЭТВС-7, проводили в аппарате растворения, схема которого представлена на рис. 2. Скорость продувки объема аппарата озон-воздушной смесью составила $1.2 \text{ л}\cdot\text{y}^{-1}$, что соответствует скорости подачи озона $2.5 \times 10^{-2} \text{ r}\cdot\text{y}^{-1}$. Смена конструкции аппарата обусловлена результатами радиохимических исследований СНУП ОЯТ, облученного в составе КЭТВС-1, и серией модельных экспериментов по доказательству полноты окисления различных форм углерода до CO₂ и улавливания образующегося углекислого газа щелочными ловушками [3], а также результатами анализа КЭТВС-1 на содержание изотопов иода.

После охлаждения раствора СНУП ОЯТ до комнатной температуры заменяли дефлегматор холодильником и отгоняли часть раствора ОЯТ при температуре 110–120°С. Конденсат собирали в мерную колбу объемом 50 мл. Содержание трития определяли с учетом предварительно установленного коэффициента пропорциональности (K_{np}), учитывающего долю трития, перешедшего из раствора в конденсат. При объеме исходного азотно-

РАДИОХИМИЯ том 64 № 1 2022

Рис. 1. Схема аппарата растворения образца ОЯТ, облученного в составе КЭТВС-1 [2].

кислого раствора СНУП ОЯТ 250 мл и объеме конденсата 50 мл $K_{\text{пр}} = 0.24 \pm 0.02$ [4].

Активность ³Н в растворе конденсата и ¹⁴С в щелочных растворах поглотителей Петри определяли методом жидкосцинтилляционной спектрометрии.

Оставшуюся после дистилляции часть раствора ОЯТ фильтровали через двойной целлюлозный фильтр «синяя лента» диаметром 11.0 см с размером пор 1–3 мкм для отделения нерастворенного остатка. Колбу с остатками исходного раствора троекратно промывали 25 мл 1 моль/л HNO₃, промывные растворы использовали для обмывки фильтров и объединяли с основным раствором ОЯТ, оставшемся после дистилляции.

Двойной целлюлозный фильтр с нерастворенным остатком СНУП ОЯТ, облученного в составе КЭТВС-1, разделяли. Каждый фильтр растворяли, в полученных растворах определяли содержание U, Pu, Zr, Mo, Pd, Rh.

Уран определяли спектрофотометрическим методом по светопоглощению комплекса урана с арсеназо III, плутоний – методом α-спектрометрии, продукты деления – атомно-эмиссионным спектральным методом. Процедура анализа подробно описана в работе [2].

На финальной стадии в колбу с нерастворенной оболочкой твэла вносили 200 мл 8 моль/л HNO_3 и проводили контрольное растворение при температуре 95–100°С в течение 5 ч. По завершению процесса растворения выполнили α - и γ -спектрометрические анализы растворов после основного и контрольного растворений.

Энергии аналитических линий радионуклидов, их выходы, а также периоды полураспада для расчета удельных активностей радионуклидов при пересчете их объемной активности в концентрацию брали из справочников [7, 8].

Выделение и очистку элементов проводили, используя комбинацию катионо-, анионообменного и экстракционно-хроматографического методов. За основу выделения компонентов ОЯТ взяты методики, разработанные в НИИАР. В выделенных фракциях определяли изотопный состав нуклидов U, Pu, Nd, Am, Cm. Процедура анализа подробно описана в работах [2–6, 9–11].

Количественное определение содержания U, Pu, Nd проводили, повторяя процедуру их выделения в присутствии комплексной метки методом изотоп-

Рис. 2. Схема аппарата растворения образца ОЯТ, облученного в составе КЭТВС-7.

РАДИОХИМИЯ том 64 № 1 2022

Номер образца	Масса образца с оболочкой (m_1), г	Масса оболочки (<i>m</i> ₂), г	Масса топлива (<i>m</i>), г
KЭTBC-1	3.3285	0.5115	2.8170
КЭТВС-7	4.6823	0.7024	3.9799

Таблица 2. Результаты взвешивания образцов

Таблица 3. Результаты радиохимического анализа фрагментов СНУП ОЯТ

Параметр	БОР-60 [2]	БН-600		
Номер сборки	ОЭТВС 160Э	КЭТВС 1	KЭTBC 7	
Выгорание топлива, % т.а.	2.57	5.57	6.84	
Время выдержки на момент анализа, лет	8	2.5	2.5	
Удельная активность ³ Н, Бк/г СНУП ОЯТ	$(8.5 \pm 1.1) \times 10^{6}$	$(2.6 \pm 0.4) imes 10^{6}$	$(1.8 \pm 0.3) \times 10^{6}$	
Удельная активность ¹⁴ С, Бк/г СНУП ОЯТ	_	$(1.2 \pm 0.3) \times 10^7$	$(1.5 \pm 0.3) \times 10^7$	
Удельная активность ¹⁰⁶ Ru, Бк/г СНУП ОЯТ	$(3.8 \pm 0.4) \times 10^8$	$(4.0 \pm 0.4) imes 10^9$	$(6.1 \pm 0.6) \times 10^9$	
Удельная активность ³ Н в конструкционном	_	2.5×10^{5}	_	
материале оболочки твэла, Бк/г				

ного разбавления с масс-спектрометрическим окончанием.

Для определения глубины выгорания топлива в качестве мониторов использовали величину накопления ¹⁴⁸Nd и суммарное накопление ¹⁴⁵Nd и ¹⁴⁶Nd.

При анализе образца СНУП ОЯТ, облученного в составе КЭТВС-1, из исходного раствора ОЯТ отбирали аликвоты для определения содержания Zr, Mo, Pd, Rh методом атомно-эмиссионной спектрометрии. Использовали аналитические линии определяемых элементов, свободные от наложения спектральных линий U и Pu: Mo 317.043; Pd 342.124, 340.458; Rh 343.489, 339.682; Ru 342.832; Zr 339.198, 327.926, 327.305 нм. Массовое содержание Mo, Zr, Rh, Pd, Ru рассчитывали по градуировочным зависимостям, построенным по образцам сравнения. Процедура анализа подробно описана в работе [2].

Изотопный и элементный состав СНУП ОЯТ определяли с использованием аналитического оборудования, описанного в работах [2–6, 12].

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Результаты взвешивания образцов СНУП ОЯТ представлены в табл. 2.

По завершении процесса растворения и отделения нерастворенного остатка проводили контрольное растворение оболочек твэла. По данным α- и γ-спектрометрических измерений растворов, содержание α-излучателей в контрольном растворе составляет $(3 \pm 0.3) \times 10^{-30}$ % от их количества в исходном растворе, γ -излучателей – 0.1 ± 0.01 %.

Результаты определения глубины выгорания, удельных активностей ³H, ¹⁴C, ¹⁰⁶Ru в CHУП ОЯТ, облученном в реакторе БН-600, в сравнении с результатами, полученными нами ранее для CHУП топлива, облученного в реакторе БОР-60, представлены в табл. 3.

Расхождение результатов определения удельной активности трития обусловлено различными видами реакторных установок и режимами облучения топливной композиции, а также степенью диффузии ³Н через оболочку твэла.

В исследованиях [13, 14] утверждается, что одним из основных факторов, определяющих удельную активность трития в ОЯТ, является температура топлива в момент облучения. С ростом температуры содержание трития в топливной композиции уменьшается. В работах [14–16] показано, что тритий, образующийся в процессе облучения ОЯТ, диффундирует через оболочку твэла на 95–99%. Полученные нами данные по удельной активности трития в оболочке твэла согласуются с результатами работы [17], где удельная активность трития в оболочке твэла с урановым оксидным топливом и выгоранием 6.6–7.1% составила 1.2 × 10⁵ Бк/г.

Вместе с тем, в работе [18] установлено, что содержание трития в оболочке твэла реактора ВВЭР-440 имеет значительный разброс и находится в диапазоне от 3.9×10^6 до 3.4×10^7 Бк/г. Авторы отмечают, что неравномерность распределения трития наблюдается как по высоте, так и по окружности

	Изотопный состав, мас%			Массовое содержание, кг/т (U + Pu) _{ису}			
Изотоп		БН-600			БН-600		
	bOP-60, O91BC 1609 [2]	КЭТВС-1	КЭТВС-7 БОР-60		КЭТВС-1	КЭТВС-7	
³ H	2.4×10^{-5}	_	_	_	7.4×10^{-6}	5.1×10^{-6}	
¹⁴ C	_	_	_	_	0.07	0.09	
²³² U	_	1.37×10^{-7}	_	_	1.1×10^{-6}	_	
²³⁴ U	0.004(2)	$1.97 \times 10^{-3}(1)$	< 0.01	0.03(1)	0.016(2)	_	
²³⁵ U	0.414(3)	0.216(3)	0.113(6)	3.16(7)	1.77(2)	0.89(5)	
²³⁶ U	0.026(1)	0.024(3)	0.037(8)	0.20(1)	0.20(2)	0.29(6)	
²³⁸ U	95.555(4)	99.758(5)	99.85(3)	771.3(16)	818.94(5)	796.3(2)	
ΣU				774.69	820.93	797.48	
²³⁶ Pu	-	1.60×10^{-6}	_	_	2.50×10^{-6}	_	
²³⁸ Pu	0.035(6)	0.056(1)	0.09(2)	0.05(1)	0.077(2)	0.12(3)	
²³⁹ Pu	93.81(1)	89.450(12)	86.66(3)	137.0(29)	123.60(17)	116.12(4)	
²⁴⁰ Pu	6.029(1)	9.998(10)	12.42(2)	8.87(18)	13.78(13)	16.71(3)	
²⁴¹ Pu	0.114(2)	0.470(2)	0.72(2)	0.17(1)	0.660(3)	0.97(3)	
²⁴² Pu	0.012(1)	0.026(1)	0.11(2)	0.014(1)	0.037(2)	0.15(3)	
ΣΡυ				146.10	138.15	134.19	
¹⁴² Nd	0.89(1)	0.24(1)	0.464(3)	0.028(1)	0.014(1)	0.031(1)	
¹⁴³ Nd	25.27(3)	26.41(2)	25.86(24)	0.086(2)	1.360(2)	1.749(2)	
¹⁴⁴ Nd	22.87(5)	21.52(1)	22.27(30)	0.78(2)	1.089(1)	1.506(2)	
¹⁴⁵ Nd	18.31(3)	18.19(1)	18.04(20)	0.63(1)	0.979(1)	1.221(1)	
¹⁴⁶ Nd	15.92(3)	16.44(1)	16.43(24)	0.55(1)	0.873(1)	1.111(2)	
¹⁴⁸ Nd	10.38(3)	10.52(1)	10.38(23)	0.37(1)	0.578(1)	0.702(2)	
¹⁵⁰ Nd	6.36(2)	6.28(1)	6.55(18)	0.23(1)	0.367(1)	0.443(1)	
ΣNd				2.67	5.26	6.76	
²⁴¹ Am	_	92.59(11)	95.26(2)	$5.7 \times 10^{-2}(4)$	0.22(1)	0.30(2)	
^{242m} Am	_	1.52(8)	1.01(1)	_	$3.6 \times 10^{-3}(3)$	$3.0 \times 10^{-3}(2)$	
²⁴³ Am	_	5.89(7)	3.73(1)	_	$1.4 \times 10^{-2}(2)$	$1.2 \times 10^{-2}(8)$	
ΣAm				0.057	0.238	0.315	
²⁴² Cm	_	37.5(15)	2.04(2)	$9.7 \times 10^{-7}(8)$	$2.8 \times 10^{-4}(2)$	$4.0 \times 10^{-5}(4)$	
²⁴³ Cm	-	42.4(85)	66.33(4)	-	$3.2 \times 10^{-4}(7)$	$1.3 \times 10^{-3}(1)$	
²⁴⁴ Cm	_	20.1(75)	31.63(3)	$1.0 \times 10^{-4}(1)$	$1.5 \times 10^{-4}(6)$	$6.2 \times 10^{-4}(6)$	
ΣCm				1.0×10^{-4}	7.5×10^{-4}	1.4×10^{-3}	

Таблица 4. Изотопный состав и массовое содержание нуклидов в СНУП ОЯТ

оболочки твэла, и делают заключение о том, что основная часть трития попадает в оболочку через участки с поврежденной защитной оксидной пленкой циркония.

Из данных, представленных в табл. 3, видно, что величины выгорания образцов СНУП ОЯТ и удельной активности 14 С в них изменяются симбатно. С ростом выгорания анализируемого образца ОЯТ на 23% удельная активность 14 С возросла на 25%.

В процессе растворения ОЯТ рутений распределяется по всем элементам аппарата растворения: частично остается в растворе ОЯТ, конденсируется на внутренних стенках дефлегматора и соединительных шлангов, водяного холодильника, попадает в раствор первого поглотителя Петри, содержащего раствор HNO₃, переходит в раствор конденсата, получаемый на стадии определения удельной активности трития, остается в нерастворенном остатке СНУП ОЯТ. В табл. 3 приведено суммарное содержание ¹⁰⁶Ru, полученное по результатам γ-спектрометрического анализа перечисленных растворов и смывов с внутренних стенок элементов аппаратов растворения и дистилляции.

Установлено что увеличение удельной активности ¹⁰⁶Ru в образцах СНУП ОЯТ опережает рост глубины выгорания топлива. При увеличении глу-

· · · · ·	· · ·			
Элемент	Mo	Pd	Rh	Zr
Содержание в растворе СНУП ОЯТ, кг/т	4.70	2.35	0.87	4.18
Содержание в нерастворенном остатке СНУП ОЯТ, кг/т	0.22	0.21	0.23	0.01

Таблица 5. Содержание Мо, Pd, Rh, Zr в СНУП ОЯТ

бины выгорания на 23% удельная активность ¹⁰⁶Ru возросла на 52%. Данный экспериментальный факт требует дополнительной проверки.

Изотопы иода не обнаружены ни в какой-либо из ловушек аппарата растворения, ни в исходном растворе, ни в конденсате, полученном для определения удельной активности трития. Согласно расчетам, выполненными с использованием программы SCALE 4.4A, удельная активность ¹²⁹I в СНУП ОЯТ БН-600 с выгоранием 70 МВт сут/кг(U_{исх}) и выдержкой после облучения 2 года должна составлять 2.93 × 10⁹ Бк/т, остальные изотопы иода либо отсутствуют, либо содержатся в пренебрежимо малых количествах, например, содержание ¹³¹I составляет 6.5×10^{-11} Бк/т.

С учетом массы анализируемого образца ОЯТ, облученного в составе КЭТВС-1, в исходном растворе объемом 200 мл расчетное содержание ¹²⁹I должно составить 8.2×10^3 Бк, а удельная активность ¹²⁹I составит 41 Бк/мл. Для радиохимических исследований образцов ОЯТ используют стократное разведение исходного раствора. Определить содержание ¹²⁹I в разбавленном растворе на фоне других компонентов ОЯТ нам не удалось. Для определения иода необходима разработка специальных процедур его выделения из образца ОЯТ.

Результаты определения изотопного состава и массового содержания нуклидов U, Pu, Nd, Am, Cm в CHУП ОЯТ представлены в табл. 4. В скобках указаны значения суммарной абсолютной погрешности в единицах последних разрядов результата для доверительной вероятности 0.95.

При фильтровании раствора СНУП ОЯТ через двойной целлюлозный фильтр на верхнем фильтре наблюдали налет светло-серого цвета. Массу осадка зафиксировать не удалось, поскольку исходная масса целлюлозного фильтра оказалась больше, чем масса фильтра с осадком. Данный экспериментальный факт, вероятно, связан с деструкцией целлюлозы под действием α- и γ-излучающих нуклидов. По данным работ [19–21], масса осадков при растворении в азотной кислоте уранового оксидного ОЯТ составляет не более 0.6% от массы растворенного топлива. В исследовании [22] установлено, что при растворении облученного МОКС-топлива с выгоранием от 31.7 до 54.7 ГВ/т в 3 моль π^{-1} HNO₃ при 95°С масса нерастворенного осадка не превышает 1.3% от массы ОЯТ. При исследовании растворения модельного нитридного ОЯТ [23] объем 7.8 и 9.44 моль π^{-1} HNO₃, необходимый для проведения растворения, рассчитывали исходя из конечной концентрации металлов в растворе 280 и 400 г/л соответственно. Показано, что масса нерастворенного остатка составляет 1.8 и 2.26% соответственно.

Результаты определения содержания Mo, Pd, Rh, Zr в растворе и нерастворенном остатке СНУП топлива, облученного в реакторе БН-600 в составе КЭТВС-1, представлены в табл. 5.

Наличие Mo, Pd, Rh, Zr зафиксировано только на верхнем целлюлозном фильтре, на нижнем указанные элементы не обнаружены. Содержание указанных элементов в растворе, полученном после растворения верхнего фильтра, эквивалентно их содержанию в нерастворенном остатке СНУП ОЯТ. Суммарная масса Mo, Pd, Rh, Zr в нерастворенном остатке СНУП ОЯТ, облученного в реакторе БН-600 в составе КЭТВС-1, по результатам проведенных измерений составила 0.0019 г, что составляет 0.07% от массы растворенного ОЯТ.

Результаты определения содержания урана и плутония в нерастворенном остатке СНУП топлива, облученного в реакторе БН-600 в составе КЭТВС-1, представлены в табл. 6.

Представленные в табл. 6 данные свидетельствуют о том, что содержание U и Pu на верхнем и нижнем фильтрах сопоставимо. Близкие значения указанных величин свидетельствуют о том, что бо́льшая часть U и Pu, найденных нами в растворах после растворения фильтров, была сорбированы целлюлозой.

Превышение содержания U на верхнем фильтре по сравнению с нижним, возможно, свидетельствует о наличии нерастворенных урансодержащих соединений. Масса нерастворенного U, оцененная по разнице масс U на верхнем и нижнем фильтрах, составляет 2.5 мг, или 0.09% от общего содержания урана в анализируемом образце ОЯТ. Таблица 6. Результаты определения массового содержания U и Pu на целлюлозных фильтрах

Фильтр	Верхний	Нижний
Содержание U, мг	8.5 ± 0.4	6.0 ± 0.3
Содержание Ри, мг	0.6 ± 0.06	0.8 ± 0.08
Доля U на фильтре, % от общего	0.3	0.2
Доля Pu на фильтре, % от общего	0.02	0.03

ЗАКЛЮЧЕНИЕ

Впервые проведены разрушающие радиохимические исследования и получены экспериментальные данные по составу отработавшего смешанного нитридного уран-плутониевого топлива, облученного в энергетическом быстром реакторе. Предложена и проверена на реальном ОЯТ комплексная методика проведения разрушающих радиохимических исследований, включая растворение, фракционирование компонентов ОЯТ и измерения с использованием ядерно-физических методов анализа: α-, у-, жидкостно-сцинтилляционной, масс-спектрометрии с изотопным разбавлением, эмиссионного спектрального анализа. Измерены изотопный состав и массовое содержание нуклидов U, Pu, Am, Ст, Nd, определены удельные активности ¹⁰⁶Ru, ¹⁴С, ³Н, массовые содержания Mo, Pd, Rh, Zr в растворе и нераствортнном остатке СНУП ОЯТ.

Полученные данные позволяют провести расчетный анализ и верификацию расчетных кодов с целью обоснования радиационной безопасности при обращении со СНУП ОЯТ, оптимизировать методы его переработки.

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют об отсутствии конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Алексеев С.В., Зайцев В.А.* Нитридное топливо для ядерной энергетики. М.: Техносфера, 2013. 240 с.
- Ерин Е.А., Момотов В.Н., Волков А.Ю. и др. // Радиохимия. 2017. Т. 59, № 4. С. 325.
- Момотов В.Н., Ерин Е.А., Волков А.Ю., Тихонова Д.Е., Куприянов А.С., Шадрин А.Ю. // Радиохимия. 2021. Т. 63, № 3. С. 276–280.

РАДИОХИМИЯ том 64 № 1 2022

- Момотов В.Н., Ерин Е.А., Волков А.Ю., Тихонова Д.Е., Куприянов А.С. // Радиохимия. 2020. Т. 63, № 1. С. 1–6.
- Момотов В.Н., Ерин Е.А., Волков А.Ю., Куприянов В.Н. Тихонова Д.Е. // Изв. вузов. Физика. 2018. Т. 61, № 12-2 (732). С. 64.
- 6. Момотов В.Н., Ерин Е.А., Волков А.Ю., Баранов А.Ю. // Радиохимия. 2020. Т. 62, № 1. С. 66.
- Evaluated Nuclear Structure Date File (ENSDF). Brookhaven National Laboratory, USA. ENSDF database: http://www.nnds.bnl.gov/ensdf/index.sxp
- Попов Ю.С. Таблицы удельных активностей нуклидов 88 ≤ Z ≤ 105. Димитровград, 1979. 33 с.
- 9. Момотов В.Н., Ерин Е.А., Волков А.Ю., Куприянов В.Н. // Радиохимия. 2020. Т. 62, № 5. С. 428–437.
- 10. Момотов В.Н., Ерин Е.А., Волков А.Ю., Куприянов В.Н. // Радиохимия. 2021. Т. 63, № 2. С. 160–171.
- 11. Момотов В.Н., Ерин Е.А., Волков А.Ю., Куприянов В.Н. // Радиохимия. 2021. Т. 63, № 2. С. 172–184.
- 12. Путьмаков А.Н., Попов В.И., Лабусов В.А. // Завод. лаборатория. Диагностика материалов. Спец. выпуск. 2007. Т. 73. С. 26.
- 13. *Neeb K.*-H. The Radiochemistry of Nuclear Power Plants with Light Water Reactors. Berlin: de Gruyter, 1997. P. 130–131.
- 14. Wolfe R., Knieper J., Stocklin G. // Radiochim. Acta. 1981. Vol. 29. P. 153.
- 15. Устинов О.А., Кащеев В.А., Шадрин А.Ю., Тучкова А.И., Семенов А.А., Лесина И.Г., Анкин А.С. // Атом. энергия. 2018. Т. 125, Вып. 4. С. 217.
- Андреев Б.М., Зельвенский А.Д., Катальников С.Г. Тяжелые изотопы водорода в ядерной технике. М.: ИздАТ, 2000. 344 с.
- 17. *Robinson S., Jubin R., Giaquinto J. //* WM2014 Conf. Phoenix, AZ, March 2–6, 2014. P. 3-11
- 18. Бабенко А.Г., Мехедов Б.Н., Попов С.В. Шалин А.Н. // Атом. энергия. 1991. Т. 71, Вып. 3. С. 259–261.
- Бураков Б.Е., Похитонов Ю.А., Рязанцев В.И., Савин Р.А., Сапрыкин В.Ф., Рэнс П.Д. // Радиохимия. 2010. Т. 52, № 4. С. 342.
- Adachi T., Ohnuki M., Yoshida N., Sonobe T., Kawamura W., Takeishi H., Gunji K., Kimura T., Suzuki T., Nakahara Y., Muromura T., Kobayashi Y., Okashita H. Yamamoto T. // J. Nucl. Mater. 1990. Vol. 174. P. 60–71.
- 21. *Liu F., Yan T.H., Li B., Ye G.A.* // J. Radioanal. Nucl. Chem. 2020. Vol. 326. P. 337–341.
- 22. Ikeuchi H., Shibata A., Sano Y, Koizumi T. // Procedia Chem. 2012. Vol. 7. P. 77–83.
- Шадрин А.Ю., Двоеглазов К.Н., Глушенков А.Е. Арсеенков Л.В., Давыдов А.В., Чеботарёв А.А., Лобачёв Е.А. // Вопр. радиац. безопасности. 2013. № 4. С. 45–54.