УДК 53.06+54.052+615.038

ИЗОТОПЫ ТЕРБИЯ В ЯДЕРНОЙ МЕДИЦИНЕ: НАРАБОТКА, ВЫДЕЛЕНИЕ И ПРИМЕНЕНИЕ

© 2022 г.А.Г.Казаков

Институт геохимии и аналитической химии им. В.И. Вернадского РАН, 119991, Москва, ул. Косыгина, д. 19 e-mail: adeptak92@mail.ru

Поступила в редакцию 03.03.2021, после доработки 22.04.2021, принята к публикации 29.04.2021

Тербий имеет четыре короткоживущих радиоактивных изотопа с массовыми числами 149, 152, 155 и 161, являющихся перспективными для применения в различных областях ядерной медицины, однако данная тема на сегодняшний день находится на этапе исследований. В настоящее время активно изучаются условия наработки данных изотопов, выделения без носителя из облученных мишеней, а также проводятся доклинические и клинические испытания радиофармпрепаратов на основе данных нуклидов. Результаты соответствующих работ систематизированы в представленном обзоре, что позволяет определить основные достижения и направления исследований изотопов тербия на сегодняшний день.

Ключевые слова: изотопы тербия, ядерная медицина, наработка, разделение, радиофармпрепараты. **DOI:** 10.31857/S0033831122020010, **EDN:** ECPEZM

ВВЕДЕНИЕ

Активное развитие ядерной медицины создает предпосылки для поиска способов получения и применения все новых радионуклидов. В настоящее время десятки изотопов являются перспективными для визуализации и/или терапии, однако для большинства из них остается открытым вопрос оптимального получения и выделения [1]. Элемент Ть уникален тем, что имеет четыре короткоживущих изотопа, ядерно-физические характеристики которых позволяют применять их в различных терапии и диагностики (табл. 1). областях Так, ¹⁴⁹Тb – единственный среди лантанидов радионуклид для альфа-терапии, уникальность которого для ядерной медицины состоит в том, что данный изотоп также испускает позитроны, и распределение его соединений в организме может быть визуализировано методом позитронноэмиссионной томографии (ПЭТ) [2]. ¹⁵²Тb испускает позитроны, что обеспечивает возможность его применения в ПЭТ. В отличие от используемых в настоящее время ПЭТ-радионуклидов с $T_{1/2}$ не более 70 мин, ¹⁵²Тb распадается значительно медленнее, что существенно облегчает его транспортировку от места получения к клиникам [3]. При этом ¹⁵²Tb также может быть использован для оценки биораспределения как самих изотопов Tb, так и изотопов других лантанидов. ¹⁵⁵Tb испускает низкоэнергетические γ -кванты, что предполагает его эффективное применение в однофотонной эмиссионной компьютерной томографии (ОФЭКТ) без создания значительных дозовых нагрузок для пациента [4]. Наконец, ¹⁶¹Tb рассматривается как более эффективная альтернатива широко применяемому в бета-терапии ¹⁷⁷Lu благодаря дополнительному испусканию Оже-электронов и электронов конверсии [5].

Таким образом, изотопы Тb имеют большой потенциал применения, однако одобренные для применения в медицине радиофармпрепараты (РФП), содержащие данные изотопы, на сегодняшний день отсутствуют и соответствующие разработки находятся в настоящее время на стадии НИР. В настоящем обзоре рассмотрены результаты исследований по наработке перечисленных

КАЗАКОВ

		1 1			1	1
Нуклид	Вид распада, выход на распад, %	T _{1/2}	<i>E</i> _α , МэВ	<i>E</i> _β (ср), МэВ	Наиболее интенсивные ү-линии, кэВ (р, %)	Применение
¹⁴⁹ Tb	$α$ (17), $β^+$ (7)	4.1 ч	3.97	0.73	165 (26) 352 (29)	α-Терапия, ПЭТ
¹⁵² Tb	$\beta^{+}(17)$	17.5 ч	Нет	1.08	344 (65)	ПЭТ
¹⁵⁵ Tb	ЭЗ (100)	5.3 сут	Нет	Нет	87 (32) 105 (25)	ОФЭКТ
¹⁶¹ Tb	β- (100)	6.9 сут	Нет	0.15	26 (23) 49 (17)	β⁻- или Оже-терапия, ОФЭКТ

Таблица 1. Ядерно-физические характеристики медицинских изотопов тербия и области их применения

нуклидов, способам выделения их из облученных мишеней и созданию РФП на их основе.

НАРАБОТКА ИЗОТОПОВ ТЕРБИЯ НА УСКОРИТЕЛЯХ ЗАРЯЖЕННЫХ ЧАСТИЦ И В РЕАКТОРАХ

Для изотопов тербия, исходя из их положения на нуклидной карте, возможна наработка как на ускорителях заряженных частиц, так и в реакторах (для ¹⁶¹Tb). Ниже систематизированы результаты исследований по изучению сечений и выходов ядерных реакций образования ^{149,152,155,161}Tb, полученные при использовании мишеней различного элементного состава.

¹⁴⁹**Тb.** Ядро нейтронно-дефицитного ¹⁴⁹Тb находится далеко от линии стабильности, что является основной трудностью при его наработке.

Рис. 1. Разработанные методы получения ¹⁴⁹Tb для ядерной медицины. Черным цветом выделены клетки с изотопами естественной смеси соответствующего элемента.

Реакция	Обогащение мишени	Энергия частиц, МэВ	Образующиеся другие изотопы Максимум сечения и/или Тb выход		Ссылки
197 Au + p	Моноизотоп	600–3000	Присутствуют, количество не	 1.8 мбарн при 1750 МэВ 	[6]
			обсуждается		
		200–450		0.8 мбарн при 434 МэВ	[8]
$^{nat}Ta + p$	Нет	300-1700	Изобары, количество не	20 мбарн при 1100 МэВ	[12]
151- 2			обсуждается		
151 Eu + 5 He	97.5% ¹⁵¹ Eu	70→40	$A_{\rm Tb-151} = (6.5 - 12)A_{\rm Tb-149}$	150 МБк/мкА	[18]
		50 10	$A_{\text{Tb-150}} = (2.6-5)A_{\text{Tb-149}}$	100 5 45165	51.03
		70→12	^{130,131} 1b	100 мбарн при 47 МэВ	[19]
15201	20 (0/ 1520 1	((20	150-152-51	(230 Mbk/MkA)	[20]
152Gd + p	30.6% ¹³² Gd	66→30	150 152 I b	250 моарн при 45 МэВ; 2600 МГа/(ата 4 т) то	[20]
				2000 WIDK/(MKA ⁻ Ч) ДЛЯ 100%-ного ¹⁵² Gd	
	Нет	68→58	150–153 T b	7 мбарн при 68 МаВ	[21]
	1101	00 / 50	10	/ woupii lipii oo wisb	[21]
$^{142}Nd + ^{12}C$	Нет	120	Не обсуждается	2.2 МБк/(мкА·ч)	[22]
	Нет	100	¹⁵² Tb	8.9 МБк/мкА	[23]
1410 120					
$^{1+1}Pr + ^{12}C$	Моноизотоп	66	Не обсуждается	2.7 МБк/мкА	
		71.5	$A_{\rm m} = 0.08 A_{\rm m}$	86 KEK/(MKA·U)	[24]
		/1.5	$A_{\text{Tb}-151} = 0.00A_{\text{Tb}-149}$ $A_{\text{Tb}-150} = 0.43A_{\text{Tb}-140}$		[27]
		79→44	^{150,151} Tb	27 мбарн при 62 МэВ	[25]

Таблица 2. Изученные экспериментально методы наработки ¹⁴⁹Тb

Изученные методы получения ¹⁴⁹Tb без носителя систематизированы в табл. 2 и проиллюстрированы на рис. 1.

Впервые наработка ¹⁴⁹Ть изучалась в 1960-х гг., когда широко исследовались ядерные свойства α-излучающих лантанидов, получение которых простыми способами затруднительно или невозможно. Для этого использовали реакцию скалывания – облучение мишеней протонами, ускоренными до единиц или десятков ГэВ, при котором происходит вылет из ядра мишени множества нуклонов и образуется большое количество изотопов с массовыми числами меньше, чем у материала мишени. Так, в ряде работ изучалось образование ¹⁴⁹Tb (или его материнского ¹⁴⁹Dy с $T_{1/2}$ около 4 мин) при облучении протонами фольг из моноизотопного ¹⁹⁷Au [6–10]. Экспериментальное функций возбуждения определение реакции 197 Au(*p*,spall) при энергиях протонов от 0.6 до 30 ГэВ показало, что максимум сечения находится в области энергии 1.7–1.8 ГэВ и составляет около 1.8 мбарн [6]. Было установлено, что в данных условиях

РАДИОХИМИЯ том 64 № 2 2022

также образуются короткоживущие α-излучатели 150,151 Dy с $T_{1/2}$ 7 и 19 мин соответственно, распадающиеся в ^{150,151} Tb [7]. Позже были также исследованы функции возбуждения в области 0.2-0.45 ГэВ, максимум сечения составил 0.84 мбарн при 434 МэВ [8]. Несмотря на возможность наработки необходимых количеств ¹⁴⁹Тb таким методом, оставался открытым вопрос отделения его от других образующихся изотопов Тb и ядер других элементов. Проблема была позже решена путем масс-сепарации продуктов облучения после наработки. Так, в 1967 г. в CERN (Швейцария) запущена установка ISOLDE (Isotope Separator On Line DEvice), в конструкции которой реализована данная идея [11]. Пучок протонов энергии 1–1.4 ГэВ направлялся на мишень из Та фольги, которую после облучения нагревали и выдерживали при 2200°С, проводя ионизацию поверхности с помощью лазера. Изотопы в ионном состоянии разгонялись до 60 кэВ, разделялись с использованием масссепарации, после чего целевой нуклид отделяли от изобаров и дочерних продуктов радиохимическими

методами. Облучение на ISOLDE может быть использовано в том числе для получения лостаточных для провеления мелицинских процедур количеств конкретного изотопа после его отделения (соответствующим единицам ГБк). В работе [11] выход ¹⁴⁹Тb при облучении Та-мишени на ISOLDE составил 3.5 МБк/(мкА·ч), при этом было показано, что большая часть ¹⁴⁹Тb образуется при распаде ¹⁴⁹Dy. Изучены кумулятивные сечения реакций образования ¹⁴⁹Тb при облучении Та протонами энергии 0.3-1.7 ГэВ [12], показана сходимость данных с сечениями реакций при облучении ¹⁹⁷Au, проведенных в тех же условиях [6]. На сегодняшний день во всех опубликованных локлинических и клинических исслелованиях ¹⁴⁹Tb был получен именно данным методом на ISOLDE [13–17].

Еще одним методом наработки ¹⁴⁹Tb является облучение Еи-мишеней ядрами ³Не [18, 19]. Так, в работе [18] облучали обогащенные на 97.5% толстые мишени из ¹⁵¹Eu₂O₃ ядрами ³Не с энергией от 40 до 70 МэВ при среднем токе 0.1-0.2 мкА, определяя выходы изотопов Тb при насыщении. Для ¹⁴⁹Тb такой выход составил от ~3 МБк/мкА при 40 МэВ до 100 МБк/мкА при 70 МэВ. Однако, в каждом случае нарабатывались ядра ^{150–152}Tb с $T_{1/2}$, равным или большим, чем у ¹⁴⁹Tb, активность каждого из которых была от 0.8 до 12 раз больше, чем у ¹⁴⁹Тb. Таким образом, получение целевого изотопа с высокой радионуклидной чистотой в изученных условиях было невозможно, однако через 20 мин после облучения активность ¹⁴⁹Тb составила несколько МБк, поэтому такой метод получения может быть применен для обеспечения доклинических исследований. Позже сечения реакций ¹⁵¹Eu(³He,*xn*)^{149–152}Tb были определены экспериментально при облучении стопки фольг из 97.5%-ного ¹⁵¹Еи при энергии 70→12 МэВ [19]. Максимум сечения реакции образования ¹⁴⁹Тb находился при 47 МэВ и составил чуть менее 100 мбарн, что, по оценкам авторов, позволит наработать до 230 МБк/мкА. Диапазон энергий для получения ¹⁴⁹Tb с минимальным содержанием других ядер Tb составил от 40 до 70 МэВ, однако во всем диапазоне изученных энергий радионуклидная чистота была недостаточна для медицинского применения.

¹⁴⁹Тb по реакции 152 Gd(p,4n) Получение исследовано в работе [20], в которой стопку гадолиниевых фольг, обогащенных по ¹⁵²Gd (30.6%), облучали протонами энергии $66 \rightarrow 30$ МэВ. Определено, что максимум сечения достигается при 45 МэВ и составляет 250 мбарн, а максимальный выход для обогащенной на 100% мишени, по расчетам авторов, составил 2600 МБк/(мкА·ч). Однако примерно при этой же энергии находится и максимум сечения реакции 155 Gd $(p,4n)^{152}$ Tb, составляющего около 800 мбарн. Так как ¹⁵⁵Gd неизбежно будет присутствовать в мишени в случае ее обогащения менее чем на 100%, то ¹⁴⁹Tb будет иметь невысокую радионуклидную чистоту. В то же время даже в случае максимально обогащенной мишени при облучении образуются в заметных количествах ядра ¹⁵⁰Tb и ¹⁵¹Tb с $T_{1/2} = 3.7$ и 17.6 ч соответственно, а высокая стоимость обогащения Gd мишени негативно влияет на перспективность данного метода для практики. В недавней работе [21] путем облучения стопки ^{nat}Gd фольг (гадолиния естественного изотопного состава) определены сечения реакции ${}^{152}\text{Gd}(p,4n){}^{149}\text{Tb}$ при энергиях до 70 МэВ, которые в диапазоне 60-70 МэВ составили лишь от 1 до 8 мбарн. В результате получение ¹⁴⁹Тb с высокой радионуклидной чистотой и достаточной активностью таким методом затруднительно.

На мощных ускорителях заряженных частиц возможна наработка ¹⁴⁹Тb при облучении мишеней из Nd или Pr ядрами ¹²С. Так, в работе [22] исследовали получение целевого нуклида, облучая тонкую мишень из ^{nat}Nd₂O₃ (12 мг/см²) при энергии 108 МэВ, наработанная активность ¹⁴⁹Тb составила чуть менее 3 МБк. В этом случае ¹⁴⁹Ть образуется по реакции 142 Nd(12 C,5*n*) 149 Dy $\rightarrow {}^{149}$ Tb, при этом содержание ¹⁴²Nd в природной смеси изотопов составляет 27.2%. В то же время в ^{nat}Nd также имеются шесть более тяжелых изотопов, из которых в условиях облучения образуются ядра ¹⁵⁰Dy и ¹⁵¹Dy, быстро распадающиеся в ¹⁵⁰Tb и ¹⁵¹Tb. В этой работе также дана оценка условий наработки необходимых для медицины количеств, согласно которой возможно получить 15-30 ГБк целевого нуклида на углеродном пучке с энергией 120 МэВ при токе 50-100 мкА за 10 ч, облучая толстую минешь из обогащенного ¹⁴²Nd (97%). Отношение активностей изотопов ^{150,151}Тb к активности ¹⁴⁹Тb в работе не изучалось.

^{149,152}Tb наработка Одновременная лля дальнейшего мечения антител путем бомбардировки ядрами ¹²С тонких мишеней из металлических Nd и Pr исследована в работе [23]. В последнем случае на моноизотопном ^{nat}Pr нарабатывается ¹⁴⁹Tb по реакции 141 Pr(12 C,4n). Nd мишени были облучены при 100 МэВ, а Pr мишени – при 66 МэВ. При этом в первом случае выход ¹⁴⁹Тb при насыщении составил 8.9 МБк/мкА, во втором – 2.7 МБк/мкА, т.е., несмотря на моноизотопный материал мишени, выход оказался в 3.5 раза меньше, чем в случае облучения Nd. В каждом случае показана возможность одновременной наработки ¹⁵²Тb вместе с ¹⁴⁹Тb для применения в качестве тераностической пары, однако активность образующихся ^{150,151} Tb в работе не определялась.

¹⁴⁹Tb Получение облучении при Pr исследовалось также в работах [24, 25]. В первом случае [24] энергия ядер ¹²С составила 71.5 МэВ, и выход целевого изотопа при облучении тонкой Pr фольги в течение 9.3 ч составил 86 кБк/(мкА·ч). При этом суммарная активность примесей ^{150,151}Tb была равна половине от наработанной активности ¹⁴⁹Тb. Согласно оценке авторов, для наработки клинической дозы ¹⁴⁹Tb необходимо облучать такую же мишень в течение 1 ч при токе 1 мА. В работе [25] экспериментально определяли сечения реакций образования ^{149–151} Tb, облучая Pr₆O₁₁, запечатанный в конверт из алюминиевой фольги, пучками ядер ¹²С при энергии 79→44 МэВ. Авторы указывают на однозначную непригодность изученного метода для производства ¹⁴⁹Тb для медицинского применения из-за наличия значительной активности ^{150,151}Tb при энергиях до 70 МэВ. При дальнейшем увеличении энергии ионов возможно получение целевого изотопа в отсутствие других нуклидов Тb, но в этом случае максимальное сечение реакции его образования составляет лишь 12 мбарн.

На основании полученных результатов (табл. 2) можно заключить, что, несмотря на существование различных путей получения ¹⁴⁹Tb, для всех них требуются мощные ускорители, количество которых в мире мало. Основной проблемой изученных методов являются образование при облучении ^{150,151}Tb с соизмеримыми или большими $T_{1/2}$ и в ряде случаев низкие сечения основной ядерной реакции образования ¹⁴⁹Tb. Таким образом, использование ISOLDE до настоящего времени

РАДИОХИМИЯ том 64 № 2 2022

остается единственным методом получения ¹⁴⁹Tb с высокой радионуклидной чистотой, однако единственная установка в мире, очевидно, не сможет удовлетворить мировой спрос на данный изотоп.

¹⁵²**Tb.** Ядро ¹⁵²**Tb** находится ближе к линии стабильности, чем ¹⁴⁹**Tb**, но, как и в случае последнего, при наработке неизбежно возникает проблема радионуклидной чистоты, так как соседние ядра ^{151,153}**Tb** обладают $T_{1/2}$ 17.6 ч и 2.3 сут соответственно. Существование данных ядер делает необходимым точный подбор энергии облучения. На сегодняшний день изучено несколько способов наработки ¹⁵²**Tb** (рис. 2, табл. 3).

Получение изотопов при облучении Тана ISOLDE является одним из методов получения в том числе и ¹⁵²Tb [26], и во всех представленных работах по применению данного изотопа используется именно этот метод [16, 26–30].

В работах [20, 31–33] изучена наработка¹⁵²Тb при облучении протонами Gd мишеней (естественного изотопного состава или обогашенных) по реакциям 152 Gd(*p*,*n*)¹⁵²Tb и 155 Gd(*p*,4*n*)¹⁵²Tb. Первая реакция могла бы быть оптимальным способом получения ¹⁵²Тb, но недостатком ее использования является содержание ¹⁵²Gd в природной смеси, составляющее лишь 0.2%, в то время как содержание ¹⁵⁵Gd – 14.8%. Сечения реакций ^{nat}Gd с протонами в интервале 7-66 МэВ с шагом 1-2 МэВ исследовались в работе [31]. На основе экспериментальных данных показано, что максимум кумулятивного сечения достигает 100 мбарн при 35 МэВ и сохраняется до 66 МэВ. Однако при дальнейшем расчете сечений реакций образования продуктов облучения в исследованном диапазоне энергий установлено, что невозможно получить продукт с необходимой радионуклидной чистотой даже для мишени из 100%-ного ¹⁵⁵Gd. Таким образом, продемонстрирована невозможность использования ^{nat}Gd-мишеней для наработки ¹⁵²Tb для медицины. Дальнейшее экспериментальное исследование функций возбуждения реакции 155 Gd(p,4n) 152 Tb при 66→32 МэВ показало, что максимум ее сечения находится при 39 МэВ и составляет 900 мбарн [20], в то же время образование нежелательных ядер Ть не изучалось. В работе [32] изучались сечения реакции ${}^{152}\text{Gd}(p,n){}^{152}\text{Tb}$ при малых энергиях (до 8 МэВ), при этом было установлено, что при 5 МэВ

Рис. 2. Разработанные методы получения ¹⁵²Tb для ядерной медицины. Черным цветом выделены клетки с изотопами естественной смеси соответствующего элемента.

сечение не превышает 1 мбарн, а при дальнейшем увеличении энергии начинается образование 153 Tb. Кёстер с соавт. [33] изучали радионуклидный состав облученных при 8 и 12 МэВ мишеней из 99.9%ного 152 Gd, показав, что при 12 МэВ единственной примесью является 153 Tb, активность которого не превышает 1% от активности 152 Tb. Согласно полученным ранее функциям возбуждения данной реакции, при 10 и 11 МэВ содержание 153 Tb будет еще меньше. Таким образом, метод является перспективным, однако в данном случае стоимость обогащения мишени будет оказывать влияние на стоимость полученного 152 Tb.

Наработка ¹⁵²Тb возможна также при облучении Dy мишеней по реакции ¹⁵⁶Dy(*p*,2*p*3*n*)¹⁵²Tb. В работе [34] изучены ее функции возбуждения при энергии до 65 МэВ. Из-за очень низкого содержания ¹⁵⁶Dy в естественной смеси изотопов (0.06%) максимум сечения составляет лишь 1 мбарн. В дополнение к этому, во всем изученном диапазоне энергии нарабатываются другие ядра Tb, и, таким образом, метод не представляет интереса для практики.

Как и в случае ¹⁴⁹Tb, ¹⁵²Tb можно получать с использованием пучков тяжелых ионов (12С или ¹⁶О) [23, 35, 36]. Так, в работе [23] дана оценка отношения активности ¹⁵²Тb к ¹⁴⁹Тb при облучении ^{nat}Nd ядрами ¹²С. Основными реакциями являются 144 Nd(12 C,4n) 143 Nd(12 C,5*n*), И 145 Nd(12 C,3*n*), ведущие к образованию 152 Dy ($T_{1/2} = 2,4$ ч), который распадается в целевой ¹⁵²Tb. Кумулятивный выход ¹⁵²Dy составил 22 МБк/(мкА·ч). Найак с соавт. получали ¹⁵²Тb при облучении ^{nat}La₂O₃ (99.9% ¹³⁹La) ядрами кислорода энергии 85 МэВ [35]. Основная реакция – 139 La(16 O,3*n*) 152 Tb, при этом установлено, что на момент конца облучения активность ¹⁵²Tb составила 15 кБк, а активность ¹⁵¹Тb в 2.5 раза больше. Наработка ¹⁵²Тb при облучении ^{nat}CeO₂ ядрами ¹⁶О энергии 80 МэВ изучена в работе [36]. Метод потенциально может быть применен для получения ¹⁵²Tb, но требует подробного

ИЗОТОПЫ ТЕРБИЯ В ЯДЕРНОЙ МЕДИЦИНЕ

Реакция	Обогащение мишени	Энергия частиц, МэВ	Образующиеся другие изотопы Тb	Максимум сечения и/или выход	Ссылки
$^{nat}Ta + p$	Нет	1000-1400	Изобары, количество не обсуждается	Нет данных	[26]
152 Gd + <i>p</i>	Нет	7–66	^{151,153–156,160} Tb	100 мбарн при 35–66 МэВ	[31]
	30.6% ¹⁵² Gd	1-8	Отсутствуют до 5 МэВ	100 мбарн при 8 МэВ; 0.1 мбарн при 5.5 МэВ	[32]
	99.9% ¹⁵² Gd	8и12	$A_{\text{Tb-153}} = 0.01 A_{\text{Tb-152}}$ при 12 МэВ	Нет данных	[33]
155 Gd + p	99.9% ¹⁵⁵ Gd	62→30	Нет данных	900 мбарн при 39 МэВ	[20]
nat Dy + p	Нет	7–65	$A_{\text{Tb-153-156}} \ge 5A_{\text{Tb-152}}$	1 мбарн при 65 МэВ	[34]
$^{nat}Nd + {}^{12}C$	Нет	100	¹⁴⁹ Tb	22 МБк/(мкА·ч) для ¹⁵² Dy	[23]
$^{139}La + {}^{16}O$	Моноизотоп	85	$A_{\text{Tb-151}} = 2.5A_{\text{Tb-152}}$	33 кБк/(мкА·ч)	[35]
$^{nat}Ce + {}^{16}O$	Нет	80	^{151,153} Dy, ^{151,153} Tb	Нет данных	[36]

Таблица 3. Экспериментально изученные методы наработки ¹⁵²Tb

исследования функций возбуждения для получения продукта с высокой радионуклидной чистотой.

Описанные выше методы наработки систематизированы в табл. 3, из данных которой видно, что оптимальными методами являются использование ISOLDE и облучение обогащенных на 100% мишеней из ¹⁵²Gd протонами при энергии чуть менее 12 МэВ. К их достоинствам можно отнести возможность наработки достаточных количеств ¹⁵²Тb при облучении, но методы также имеют свои недостатки: как было описано выше, ISOLDE – единственная в мире установка, а обогащение Gd мишени существенно повышает стоимость облучения. Методы облучения лантанидов тяжелыми ионами с целью получения ¹⁵²Ть требуют редких мощных ускорителей и долгого облучения.

¹⁵⁵ Тb. ¹⁵⁵ Тb находится ближе к линии стабильности на нуклидной карте, чем ^{149,152} Тb, но его соседние ядра ^{154,156} Тb ($T_{1/2}$ 21 ч и 5.4 сут соответственно) тоже являются радиоактивными и создают проблемы при наработке. В случае ¹⁵⁴ Тb можно дождаться его полного распада для получения ¹⁵⁵ Tb с высокой радионуклидной чистотой, но образования ¹⁵⁶ Tb необходимо избегать. Изученные методы наработки ¹⁵⁵ Tb представлены на рис. 3 и в табл. 4.

Прежде всего стоит отметить, что, как и другие изотопы тербия, ¹⁵⁵Тb может быть легко наработан с использованием протонов высокой энергии на ISOLDE [37].

РАДИОХИМИЯ том 64 № 2 2022

Изучена наработка ¹⁵⁵Тb при облучении Gd мишеней α-частицами, протонами или дейтронами по реакциям $^{nat}Gd(\alpha, pxn)$, $^{nat}Gd(p, xn)$ и $^{nat}Gd(d, xn)$ [31, 38, 39]. При этом содержание каждого из изотопов Gd с массовыми числами 155-158 и 160 в естественной смеси изотопов составляет от 15 до 25%. Очевидно, что в случае таких мишеней велико количествообразующихся примесей, особенно¹⁵⁶Tb. В работе [38] исследованы функции возбуждения реакции ^{nat}Gd(α ,*pxn*) при энергии 80 \rightarrow 14 МэВ. Установлено, что максимальное кумулятивное сечение образования ¹⁵⁵Тb наблюдается при энергиях больше 70 МэВ и составляет 300 мбарн. Во всем исследованном диапазоне энергий в продуктах облучения присутствуют также ядра ^{153,156,158–160}Тb. Наработка ¹⁵⁵Тb при облучении ^{nat}Gd протонами энергии 66→7 МэВ исследована в работе [31]. Функция возбуждения имеет два пика при 21 и 37 МэВ (около 200 мбарн при каждой энергии). Согласно выполненным на основе экспериментов расчетам, при облучении мишени из 100%-ного ¹⁵⁵Gd при энергии 11 МэВ выход ¹⁵⁵Тb на толстой мишени будет составлять 5.6 МБк/(мкА·ч), при этом другие изотопы Тb будут отсутствовать. Однако такое обогащение мишени на практике трудно реализовать, и по этой причине метод не нашел применения. В работе [39] исследованы сечения реакций образования изотопов Тb при облучении ^{nat}Gd дейтронами энергии 21→4 МэВ. Максимум сечения составил 270 мбарн при 21 МэВ, однако, чтобы получить ¹⁵⁵Тb в отсутствие других изотопов Тb, в случае облучения Gd дейтронами тоже необходима

Реакция	Обогащение мишени	Энергия частиц, МэВ	Образующиеся другие изотопы Тb	Максимум сечения и/или выход	Ссылки
$^{nat}Ta + p$	Нет	1400	Изобары, количество	Нет данных	[37]
			не обсуждается		
$^{nat}Gd + p$		66→7	Изотопы Тв в большом количестве	200 мбарн при 21 и 37 МэВ	[31]
^{nat} Gd + d		21→4		270 мбарн при 21 МэВ	[39]
$^{nat}Gd+\alpha$		80→14		300 мбарн при 70–80 МэВ	[38]
^{nat} Dy + p		4–64		50 мбарн при 65 МэВ	[41] [34] [43]
^{nat} Dy + d		50→3		5 мбарн при 50 МэВ	[42]
$^{nat}Dy+\alpha$		87→7	Изотопы Tb, <i>А</i> каждого из них не более 0.01 <i>А</i> ть 155	34 мбарн при 87 МэВ	[40]
$^{159}\text{Tb} + p$	Моноизотоп	66→8	¹⁵⁷ Тb, количество не обсуждается	520 мбарн при 48 МэВ	[20]
$^{153}\text{Eu} + \alpha$	Нет	27	153 Gd, 153,154,154m2,156 Tb,	3 кБк/(мкА·ч)	[44]
¹⁴⁸ Nd + ¹⁶ O	100% ¹⁴⁸ Nd	100→67	$A = (0.02 - 1.3)A_{\text{Tb-155}}$ Не обсуждаются	1000 мбарн при 100 МэВ	[46]

Таблица 4. Исследованные методы наработки ¹⁵⁵Tb

мишень из 100%-ного ¹⁵⁵Gd. В результате всех приведенных исследований становится очевидно, что без 100%-ного обогащения мишени получение ¹⁵⁵Tb с использованием Gd мишеней является непригодным для ядерной медицины.

Получение ¹⁵⁵Тb при облучении Dy мишеней α-частицами, протонами и дейтронами исследовано в работах [34, 40-43]. Так, Гейосо с соавт. [40] изучали сечения реакций образования ядер Tb при облучении ^{nat}Dy α-частицами энергии 87→7 МэВ. Максимум сечения составил 34 мбарн при 87 МэВ, при этом сечение образования других изотопов было на два порядка ниже. Выход ¹⁵⁵Тb в данных условиях составил 50 МБк/(мкА·ч), что является перспективным результатом, но исследованный метод требует мощных ускорителей. В работе [41] представлены экспериментально определенные сечения реакция взаимодействия ^{nat}Dy с протонами энергии 36→4 МэВ. Основным каналом наработки ¹⁵⁵Тbвэтомслучаеявляетсяреакция 156 Dy $(p,2n)^{155}$ Ho, после которой ¹⁵⁵Но последовательно распадается в ¹⁵⁵Dy и ¹⁵⁵Tb с *T*_{1/2} 48 мин и 10 ч. Заметно меньший вклад в получение целевого ядра вносит канал ^{nat}Dy $(p,pxn)^{155}$ Dy \rightarrow^{155} Tb. Кумулятивное сечение образования ¹⁵⁵Tb имеет максимум в 1 мбарн при 36 МэВ, и такое низкое значение связано прежде

всего с низким содержанием ¹⁵⁶Dy в ^{nat}Dy. Позже теми же авторами были изучены сечения при 65 \rightarrow 36 МэВ, при этом показано, что сечение достигает 50 мбарн при 65 МэВ [34]. Шахид с соавт. получили близкие значения сечений, облучая ^{nat}Dy протонами с энергией 45 \rightarrow 4 МэВ [43]. Сечения реакций ^{nat}Dy(d,x)¹⁵⁵Tb изучены при энергии 50 \rightarrow 3 МэВ, показано, что сечение образования ¹⁵⁵Tb составляет 5 мбарн при 50 МэВ [42]. В результате при облучении ^{nat}Dy α -частицами, протонами и дейтронами радионуклидная чистота целевого изотопа и сечения реакций являются слишком низкими для дальнейшего применения ¹⁵⁵Tb в медицине.

Изучены функции возбуждения реакции ¹⁵⁹Tb(p,5n)¹⁵⁵Dy при 66 \rightarrow 8 МэВ, после прохождения которой ¹⁵⁵Dy распадается в ¹⁵⁵Tb [20]. Максимум сечения составляет 520 мбарн при 48 МэВ. Метод получения ¹⁵⁵Tb при облучении ¹⁵⁹Tb перспективен, так как при отделении наработанного ¹⁵⁵Dy от макроколичеств облученного Tb и его полном распаде возможно получение ¹⁵⁵Tb без носителя. Необходимо учитывать, что при оптимальной энергии облучения единственным радиоактивным изотопом Tb, образующимся после распада изотопов Dy вместе с ¹⁵⁵Tb, является ¹⁵⁷Tb с $T_{1/2}$

Реакция	Обогащение мишени	Поток или энергия частиц	Образующиеся другие изотопы Тb	Выход или удельная активность	Ссылки
160 Gd + <i>n</i>	98.2% ¹⁶⁰ Gd	$10^{14} n/(cm^2 \cdot c)$	$A_{\rm Tb-160} = 3 \times 10^{-5} A_{\rm Tb-161}$	4.03 ТБк/мг	[49]
		$10^{15} n/(cm^2 \cdot c)$		4.2 ТБк/мг	
$^{nat}Gd + d$	Нет	60→7 МэВ	$A_{\rm Tb-160} = (0.7 - 2)A_{\rm Tb-161}$	3.5 MБк/(мкА·ч)	[51]
nat Dy + p		65→7 МэВ	^{151–156} Тв в больших количествах	3 МБк/(мкА·ч)	[34]
$^{nat}Dy+\alpha$		87→7 МэВ	^{155,156,160} Тb в больших количествах	0.1 МБк/(мкА·ч)	[40]

Таблица 5. Исследованные методы наработки ¹⁶¹Тb

99 лет. Присутствие долгоживущего изотопа крайне нежелательно, однако сечение реакции образования ¹⁵⁷Dy в четыре раза ниже, и, как следствие, активность ¹⁵⁷Tb может оказаться незначительной и приемлемой для применения ¹⁵⁵Tb в медицине.

Показано, что ¹⁵⁵Tb образуется также при облучении ^{nat}Eu₂O₃ α -частицами энергии 27 МэВ по реакции ¹⁵³Eu(α ,2n) [44], при этом выход ¹⁵⁵Tb составляет 3 кБк/(мкА·ч). Вероятно, при исследовании функций возбуждения возможно

подобрать более подходящую энергию пучка, при которой наработанная активность соседних ядер ^{154,156}Tb будет пренебрежимо мала.

Исследовано получение ¹⁵⁵Тb при взаимодействии ¹⁴⁸Nd с ядрами ¹⁶О при энергии 100→67 МэВ [45, 46]. Установлено, что максимум сечения реакции образования ¹⁵⁵Tb составил 1000 мбарн при 100 МэВ, но наработка других ядер Tb в работе не обсуждается.

Рис. 3. Разработанные методы получения ¹⁵⁵Tb для ядерной медицины. Черным цветом выделены клетки с изотопами естественной смеси соответствующего элемента.

РАДИОХИМИЯ том 64 № 2 2022

¹⁶⁰ Dy	¹⁶¹ Dy	¹⁶² Dy	¹⁶³ Dy	¹⁶⁴ Dy
2.3 %	18.9 %	25.6 %	24.9 %	28.3 %
¹⁵⁹ Tb	¹⁶⁰ Тb	¹⁶¹ Тb	¹⁶² Тb	¹⁶³ Тb
100 %	72.3 сут	6.9 сут	7.8 мин	19.5 мин
¹⁵⁸ Gd	¹⁵⁹ Gd	¹⁶⁰ Gd	¹⁶¹ Gd	¹⁶² Gd
24.8 %	18.5 ч	21.9 %	3.7 мин	8.2 мин

(1) 160 Gd(n,γ) 161 Gd \rightarrow 161 Tb

(2)
160
Gd(*d*,*n*

(2) 160 Gd(*d*,*n*) (3) nat Dy(*p*,X) и nat Dy(α ,X)

Рис. 4. Разработанные методы получения ¹⁶¹Тb для ядерной медицины. Черным цветом выделены клетки с изотопами естественной смеси соответствующего элемента

При рассмотрении изученных данных (табл. 4) видно, что основная проблема получения ¹⁵⁵Tb – большое количество изотопов в природных смесях материала мишеней. Перспективным методом является использование ISOLDE (таким методом ¹⁵⁵Тb был получен во всех опубликованных in vivo экспериментах с ним [16, 47, 48]), а также облучение моноизотопного ¹⁵⁹Tb и обогащенных мишеней из ¹⁵⁵Gd. Таким образом, отсутствие простых методов получения и необходимость использования ускорителей с высокой энергией или дорогих мишеней сдерживает производство ¹⁵⁵Tb для ядерной медицины.

¹⁶¹Тb. ¹⁶¹Тb находится на нуклидной карте близко к линии стабильности, что позволяет получать его с помощью легко реализуемых реакций (рис. 4). Изученные методы наработки ¹⁶¹Тb приведены в табл. 5.

Основным способом наработки ¹⁶¹Тb является облучение ¹⁶⁰Gd нейтронами, при этом образуется 161 Gd с $T_{1/2}$ = 3.7 мин, распадающийся в 161 Tb. Сечение захвата тепловых нейтронов для ¹⁶⁰Gd составляет около 1500 мбарн. Содержание ¹⁶⁰Gd в ^{nat}Gd около 22%, поэтому во избежание образования других ядер Gd при облучении (прежде всего ¹⁵⁹Gd, который будет распадаться в стабильный ¹⁵⁹Тb и снижать удельную активность) необходимо использовать обогащенные мишени по ¹⁶⁰Gd. Так, в работе [49] получали ¹⁶¹Тb облучением ¹⁶⁰Gd, обогащенной мишени из 98.2%-ного содержащей не более 0.4% каждого из других

изотопов Gd. В результате облучения потоком нейтронов 10^{14} см⁻² · с⁻¹ в течение 2 недель, а затем – 8×10^{14} см⁻²·с⁻¹ в течение 1 недели активность ¹⁶¹Ть на момент конца облучения составила 15 ГБк. Также экспериментально показана возможность наработки ¹⁶¹Тb с использованием в качестве источника нейтронов реакции ${}^{9}\text{Be} + p$ при 18 МэВ, проведенной на циклотроне [50].

получению ¹⁶¹Tb Альтернативой с использованием нейтронов может выступать циклотрона, котором применение на возможно получение ¹⁶¹Tb по двум реакциям: ${}^{160}\text{Gd}(d,p){}^{161}\text{Gd} \rightarrow {}^{161}\text{Tb}$ и ${}^{160}\text{Gd}(d,n){}^{161}\text{Tb}$. В этом случае также необходимо высокое обогащение мишени по ¹⁶⁰Gd. В работе [51] исследовались кумулятивные сечения образования ¹⁶¹Тb по указанным реакциям при энергии дейтронов 50→5 МэВ. Установлено, что максимум сечения составляет 300 мбарн при энергии дейтронов 10 МэВ, но в изученных условиях облучений всегда дополнительно образуется ¹⁶⁰Tb с $T_{1/2}$ 72 сут по реакции 160 Gd(d,2n) 160 Tb. При этом сечение реакции образования ¹⁶⁰Тb во всем изученном диапазоне составляет от 70 до 200% от кумулятивного сечения образования ¹⁶¹ Тb. Таким образом, авторами сделан вывод о непригодности такого метода наработки ¹⁶¹Тb для ядерной медицины.

Вработах [34,40] изучена наработка медицинских изотопов Tb (в том числе ¹⁶¹Tb) при облучении ^{nat}Dy протонами и α-частицами. Как и в случае ^{152,155}Tb, такой метод неприемлем для ядерной медицины по причине большого количества ядер Тb в продуктах облучения и низких сечений.

Таким образом, из рассмотренных данных (табл. 5) видно, что единственный адекватный метод получения ¹⁶¹Тb для ядерной медицины – использование реактора или других источников нейтронов. Другие изученные методы имеют недостатки, делающие применение данных методов невозможным.

В целом из рассмотренных в данном разделе методов наработки изотопов Тb для ядерной медицины можно сделать следующие заключения. Наработка¹⁴⁹Тbсвысокой радионуклидной чистотой возможна в настоящее время только на ISOLDE. Реакция скалывания также является оптимальным способом получения ^{152,155}Тb, при этом для обоих данных изотопов возможна наработка из обогащенных на 100% Gd мишеней на компактных циклотронах. ¹⁵⁵Tb с высокой чистотой также может быть получен по реакции ¹⁵⁹Tb(p,5n)¹⁵⁹Dy \rightarrow ¹⁵⁵Tb, которая требует более мощных циклотронов, но не требует обогащения мишеней. Единственным оптимальным способом получения ¹⁶¹Tb является облучение Gd мишеней в реакторе. Таким образом, среди четырех изотопов Tb на сегодняшний день получение ^{149,152,155}Tb существенно сдерживается трудностями их наработки, и лишь для ¹⁶¹Tb такие проблемы отсутствуют.

МЕТОДЫ ВЫДЕЛЕНИЯ ИЗОТОПОВ ТЕРБИЯ БЕЗ НОСИТЕЛЯ ИЗ РАЗЛИЧНЫХ ОБЛУЧЕННЫХ МИШЕНЕЙ

Необходимые ядерной для медицины изотопы без носителя должны быть выделены ИЗ облученных мишеней с максимальными выходами и высокой степенью очистки. При этом особенностью выделения является то, что целевой изотоп в ультрамалых количествах должен быть отделен от макроколичеств мишени. При этом существующие методы разделения, макроколичеств, например, Gd и Tb не могут быть применены в медицине для выделения Тb без дополнительного изучения возможности разделить с помощью таких методов макроколичества Gd (материала мишени) и микроколичества Tb (медицинского изотопа). В связи с этим в данном обзоре рассмотрены работы, в которых проводили разделение макроколичеств материала мишени и микроколичеств наработанного Tb, а также, в случае их присутствия, микроколичеств изотопов других элементов. В литературе описано отделение Ть от изобаров, образующихся при получении на ISOLDE, соседних лантанидов (Eu, Gd) а также Nd, Pr, La и Ce при получении целевых изотопов Tb на ускорителях с высокой энергией.

В случаях наработки ¹⁴⁹Tb на ISOLDE требуется дальнейшая очистка от дочерних ¹⁴⁹Gd и ¹⁴⁵Eu и от ¹³³Ce и ¹³³La, образовавшихся из изобаров – ионов ¹³³CeO⁺ и ¹³³LaO⁺ массой 149 а.е.м. [13–17]. Разделение проводят обычно на катионообменной смоле Aminex A5, в качестве элюента выступает α-гидроксиизобутановая кислота (α-HIBA). Сначала

РАДИОХИМИЯ том 64 № 2 2022

элюируется Tb(III) раствором 0.25 М α-HIBA, затем последовательно другие лантаниды раствором 0.5 М α-НІВА. Очистка ¹⁵²Ть от изобаров возможна таким же методом. В недавней работе [37] ¹⁵⁵Tb был выделен из продуктов облучения Та-мишени на ISOLDE, при этом в случае масс-сепарации вместе с ¹⁵⁵Тb выделяется ¹³⁹СеО⁺. На первой стадии разделения в этой работе использовали анионообменную смолу AG1 для удаления фрагментов Au и Zn – материалов подложки. На второй стадии применяли экстракционнохроматографические сорбенты TEVA или UTEVA (основа – четвертичные аммониевые соли и дипентилпентилфосфонат соответственно), позволившие выделить ¹⁵⁵Тb в среде 8 М HNO₃. Выход целевого изотопа за всю процедуру очистки составил 95%, радионуклидная чистота – более 99.9%.

Получение ¹⁶¹Тb предполагает его выделение из облученного Gd₂O₃; методы такого разделения представлены в работых [49, 52-54]. Одним из методов разделения является катионообменная хроматография на сорбенте Aminex A6 [49]. Облученную мишень, содержащую¹⁶¹Тb и следовые количества наработанного Dy, растворяли в HNO₃, упаривали раствор досуха, растворяли в растворе NH₄Cl с pH 3, после чего Gd, Dy и ¹⁶¹Tb сорбировали на колонке. Затем раздельно элюировали Dy(III) и Tb(III) 0.13 М раствором α-HIBA с pH 4.5 и Gd(III) – 0.5 М раствором α-HIBA. Дальше проводили очистку фракций, содержащих ТЬ, на катионообменной смоле AG 50W-X8, после которой получали Tb(III) в солянокислом растворе. В работе [52] исследовалось отделение ¹⁶¹Тb от макроколичеств Gd методом экстракционной хроматографии на сорбенте LN resin (основа – ди-(2-этилгексил)фосфорная кислота, Д2ЭГФК). При изучении коэффициентов распределения Gd(III) и Tb(III) на данном сорбенте было установлено, что максимальное различие в коэффициентах наблюдается в растворах 0.7-0.8 М HNO₃ [52]. Авторы продемонстрировали возможность количественного разделения путем последовательного элюирования Gd(III) в 0.8 М НNO₃ и Tb(III) в 3 М НNO₃ Позже тем же коллективом авторов [53] показано, что в случае облученной мишени массой 100 мг наблюдалось заметное снижение выхода Тb(III) по сравнению с тестовыми экспериментами. Таким образом,

в оптимальных условиях разделения возможен выход ¹⁶¹Tb не более 61%. В работе [54] показана возможность получения ¹⁶¹Tb, выделенного из 5 мг Gd₂O₃ описанным выше методом, с радионуклидной и радиохимической чистотой >99%.

Как указано выше, ^{149,152,155}Tb могут быть получены облучением мишеней из Eu α -частицами или ядрами ³He, при этом образуются следовые количества изотопов Gd. Для выделения изотопов Tb предложен двухстадийный метод разделения, включающий отделение основной массы Eu путем его восстановления в растворе до Eu(II) и осаждения в форме нерастворимого EuSO₄ [44]. Дальнейшее разделение оставшегося Eu и микроколичеств наработанных Gd и Tb проведено методом экстракционной хроматографии с использованием LN resin. Выход Tb за две стадии разделения без учета распада составил 90%, время разделения не превышало 2 ч, коэффициент разделения Eu/Tb – 5×10^5 .

Выделение Тb из облученных Pr мишеней с выходом 99% описано в работе [15]. Для отделения Тb от материала мишени и следовых количеств Gd использовали несколько актов экстракции и реэкстракции раствором Д2ЭГФК в циклогексане.

Метод выделения изотопов Tb из облученной Nd мишени предложен в работе [22]. Мишень растворяли в 2 MHCl, переносили раствор на колонку с катионообменной смолой Dowex 50, элюировали Tb(III) раствором 0.35 M α -HIBA, при этом выход составил не менее 90%. В другой работе Nd мишень растворяли в 6 M HNO₃, упаривали раствор досуха, растворяли в 0.16 M α -HIBA, элюировали через катионообменную смолу Aminex A5 [23]. В процессе разделения с колонки последовательно элюировались Nd(III), Dy(III), Tb(III), Gd(III). Затем Tb фракции упаривали, прокаливали осадок при температуре 450°C для разложения α -HIBA, выход за все стадии разделения составил 96%.

Для разделения макроколичеств La и микроколичеств Tb был успешно применен метод экстракции [35]. С помощью многократной экстракции Tb раствором Д2ЭГФК из 0.1 М HCl и реэкстракции в 1 М HCl было достигнуто количественное выделение Tb.

При получении изотопов Тb путем облучения Семишеней тяжелыми ионами нарабатывались также ^{151–153}Dy [36]. Ть выделяли методом многократной экстракции–реэкстракции раствором Д2ЭГФК, его выход при этом составил 60%.

Изученные методы разделения систематизированы в табл. 6. Из данных таблицы видно, что для всех методов наработки изотопов Тb, несмотря на сложность задачи выделения изотопов Тb, включающей их отделение от большой массы лантанидов (материала мишеней) и изотопов других образующихся при наработке лантанидов, разработаны методы, обеспечивающие количественное выделение изотопов Тb и высокую степень очистки. Чаще всего при этом используются ионообменная хроматография с раствором α-HIBA в качестве элюента или экстракционная хроматография с сорбентом на основе Д2ЭГФК. Стоит отметить, что единственным исключением является выделение ¹⁶¹Тb из облученного Gd, где при увеличении массы мишени наблюдается снижение выхода.

ПЕРСПЕКТИВЫ ИСПОЛЬЗОВАНИЯ ИЗОТОПОВ ТЕРБИЯ В ЯДЕРНОЙ МЕДИЦИНЕ

На сегодняшний день исследования по применению изотопов Tb в ядерной медицине включают в себя описание *in vitro* и *in vivo* экспериментов, контроль качества и клинические исследования, и полученные данные систематизированы в работах [2–5, 55, 56], основанных на использовании отдельных изотопов Tb. В настоящем же обзоре рассмотрены основные достижения проведенных экспериментов по наработке, выделению и применению всех изотопов Tb, что дает возможность провести сравнение достигнутых на сегодняшний день успехов в наработке и выделении изотопов Tb с успехами в их применении. Кроме того, перечислены использованные в работах хелаторы и условия связывания изотопов Tb с ними.

¹⁴⁹Тb показал эффективность против лейкемических клеток *in vitro* при мечении данным изотопом моноклонального антитела WM-53 [13]. В работе [14] проводили сравнение цитотоксичности меченного ¹⁴⁹Тb и ²¹³Вi моноклонального антитела d9, при этом было установлено, что эффект от а-излучения ¹⁴⁹Тb ниже при той же активности ²¹³Вi, но больший $T_{1/2}$ позволяет проводить более точный контроль качества РФП на основе

Материал мишени	Другие элементы без носителя	Изотопы Tb, которые можно выделить	Метод разделения	Выход, %	Ссылки
Ta	Gd, Eu, Ce, La	¹⁴⁹ Tb	Масс-сепарация, затем	~50	[15]
	Ce	^{152,155} Tb	ионообменная хроматография	95	[37]
Gd	Dy	¹⁶¹ Tb	Ионообменная хроматография	90	[49]
	-		Экстракционная хроматография	100 (5 мг)	[52, 54]
Eu	Gd	^{149,152,155} Tb	Осаждение, затем экстракционная хроматография	61 (100 мг) 90	[53] [44]
Pr	Gd	¹⁴⁹ Tb	Экстракция	99	[15]
Nd	_	^{149,152,155} Tb	Ионообменная хроматография	90	[22]
	Dy, Gd			96	[23]
La	_	¹⁵² Tb	Экстракция	100	[35]
Ce	Dy			60	[36]

Таблица 6. Методы выделения изотопов тербия без носителя из различных облученных мишеней

¹⁴⁹Тb. Продемонстрирована *in vivo* возможность уничтожения конъюгатом ¹⁴⁹Тb с моноклональным антителом Rituximab одиночных лейкемических клеток [15]. Изучено *in vivo* биораспределение и терапевтический эффект противолейкемического конъюгата cm09, меченного каждым из четырех изотопов тербия, показавших и положительный терапевтический эффект (в случае ¹⁴⁹Тb и ¹⁶¹Тb), и возможность визуализации опухолей методами ПЭТ (¹⁵²Тb) и ОФЭКТ (^{155,161}Тb) [16]. Умбрихт с соавт. [17], используя мышиную модель, показали возможность применения конъюгата ¹⁴⁹Tb-PSMA-617 как для терапии нейроэндокринных опухолей, так и для их визуализации методом ПЭТ.

В недавних исследованиях были проведены доклинические испытания меченного комплексом ¹⁵²Tb-DOTANOC (структурные формулы описанных в данном разделе хелаторов представлены на рис. 5) соматостатинового рецептора [28]. В результате эксперимента было показано, что качество ПЭТвизуализации с использованием ¹⁵²Тb не уступает ОФЭКТ-визуализации с использованием того же соединения, меченного ¹⁷⁷Lu, и, следовательно, комплекс ¹⁵²Тb может быть применен для оценки распределения терапевтического изотопа ¹⁷⁷Lu. Недавно впервые были проведены клинические комплекса ¹⁵²Tb-DOTATOC, исследования показавшие возможность визуализации нейроэндокринных новообразований, В том числе метастазов малого размера [27].

РАДИОХИМИЯ том 64 № 2 2022

Продемонстрирована возможность визуализации биораспределения комплекса ¹⁵²Tb методом ПЭТ, результаты которой сходятся с данными *ex vivo*, что позволит вычислять дозовую нагрузку, создаваемую данным изотопом для каждого органа [29]. В работе [30] проведены доклинические и клинические исследования, в ходе которых была успешно визуализирована аденокарциома простаты с использованием конъюгата ¹⁵²Tb-PSMA-617.

В работе [47] продемонстрирована возможность визуализации опухолей мышей с использованием ¹⁵⁵Tb, связанного с четырьмя различными биоконъюгатами. Джейкобссон с соавт. изучили биораспределение пористых кремниевых наночастиц, связанных с ¹⁵⁵Tb и покрытых мембранами эритроцитов, в организме мышей и показали, что такие конъюгаты могут быть в дальнейшем использованы в медицине с применением всех четырех изотопов Tb [48].

В исследовании [49] продемонстрирована in vivo возможность получения ОФЭКТ-изображений ¹⁶¹Tb-DOTATATE, использованием с более качественных в сравнении с ¹⁷⁷Lu-DOTATATE. Грюнберг с соавт. в *in vitro* и *in vivo* исследованиях установили [57], что некоторые конъюгаты на основе ¹⁶¹Тb могут эффективнее, чем конъюгаты на основе ¹⁷⁷Lu, уничтожать и визуализировать новообразования, содержащие характерный для многих опухолей белок L1CAM. Показано in vitro и *in vivo*, что ¹⁶¹Тb в составе конъюгата сm09 также эффективнее уничтожает раковые клетки двух выбранных линий [58]. В результате *in vivo* экспериментов установлено [59], что применение ¹⁶¹Тb-ст09 не создает дополнительной дозовой нагрузки для почек в сравнении с ¹⁷⁷Lu-cm09, несмотря на испускание электронов конверсии и Оже-электронов. Применение ¹⁶¹Tb-PSMA-617 in vitro и in vivo против опухолей простаты показало преимущества перед ¹⁷⁷Lu-PSMA-617 [60]. В работе [61] предложены новые комплексы, меченные ¹⁶¹Тb, для потенциального применения в ядерной медицине. Marin с соавт. установили клинические протоколы лля оптимальной визуализации поведения ¹⁶¹Ть методом ОФЭКТ [62].

В перечисленных выше работах для хелатирования изотопов Тb использовали широко применяемые в РФП на основе лантанидов хелаторы DOTA, DTPA и производные DOTA (рис. 5). Известной проблемой связывания лантанилов с

DOTA (1,4,7,10-tetraazacyclododecanetetraacetic acid)

DTPA (diethylenetriaminepentaacetic acid)

соединениями данного типа является медленная кинетика комплексообразования, которая в случае использования быстро распадающихся изотопов является серьезным недостатком. Как правило, для быстрого и количественного связывания лантанидов с DOTA используют растворы с рН 4-6, которые нагревают почти до температуры их кипения [5]. В работе [2] ¹⁴⁹Ть связывали с DOTA в растворе L-лактата с pH 4.7 при 95°C, при этом количественное связывание лостигалось за 10 мин. В другой методике количественное мечение было проведено в тех же условиях за 15 мин из раствора α-HIBA. в котором выделяли ¹⁴⁹Tb [16]. В случае связывания ¹⁶¹ Тb, который распадается значительно медленнее, мечение проводили в течение 1 ч при слабом нагревании (при 37°С) из ацетатного буфера [57]. В работе [13] ¹⁴⁹Ть связывали с циклическим ангидридом DTPA в растворе ацетатного буфера с рН 7 за 30 мин. Связывание изотопов Tb с DOTANOC, DOTATOC и DOTATATE проволили при 95°С из

DOTATATE (DOTA-(Tyr³)-octreotate)

Рис. 5. Использованные в работах хелаторы для связывания изотопов Тb.

РАДИОХИМИЯ том 64 № 2 2022

ИЗОТОПЫ ТЕРБИЯ В ЯДЕРНОЙ МЕДИЦИНЕ

	1		
Иготоп	Оптимальные метолы наработки из изученных	Выделение из облученной	Стадия исследований по
11501011	Оптимальные методы наработки из изученных	мишени	применению
¹⁴⁹ Tb	Ta(<i>p</i> ,spall)	Изучено	Доклинические
¹⁵² Tb	Ta(p ,spall), ¹⁵² Gd(p , n)	Изучено	Клинические
¹⁵⁵ Tb	Ta(<i>p</i> ,spall), 155 Gd(<i>p</i> , <i>n</i>), 159 Tb(<i>p</i> ,5 <i>n</i>) 159 Dy $\rightarrow {}^{155}$ Tb	Изучено	Доклинические
¹⁶¹ Tb	160 Gd $(n,\gamma)^{161}$ Gd \rightarrow^{161} Tb	Изучено	Доклинические

Таблица 7. Современное состояние исследований, связанных с изотопами 149,152,155,161 Тb

растворов α-HIBA или ацетатного буфера в течение 15–40 мин [27, 28, 49]. С одной стороны, схожесть химических свойств лантанидов позволяет хелатировать Tb уже известными соединениями, но с другой – необходимость нагревания при синтезе комплексов создает предпосылки для исследований, направленных на поиск новых хелаторов, лишенных такого недостатка, что особенно актуально в случае ¹⁴⁹Tb с его $T_{1/2} = 4$ ч.

ЗАКЛЮЧЕНИЕ

В настоящем обзоре представлены результаты исследований по наработке, выделению и применению четырех изотопов Tb, перспективных для использования в ядерной медицине; данные систематизированы в табл. 7.

Показано, что изученные методы наработки изотопов ^{149,152,155} Тb в отличие от методов наработки ¹⁶¹ Тb имеют трудности, поэтому разработка новых методов и оптимизация изученных является актуальной задачей.

Для каждого из изученных радионуклидов Tb существуют методы выделения из соответствующих облученных мишеней без носителя.

Сегодня широко изучается применение ^{149,152,161}Тb. в то время как сведения об исследованиях с ¹⁵⁵Тb ограничены. Показано, что ¹⁴⁹Ть перспективен для таргетной альфа-терапии, в том числе предложено его тераностическое применение, основанное на испускании им позитронов. ¹⁵²Тb перспективен для ПЭТ, что подтверждается недавними клиническими исследованиями РФП на его основе. Наконец, ¹⁶¹Tb по результатам многих исследований является лучшей альтернативой ¹⁷⁷Lu, который также нарабатывают в реакторе. Для связывания изотопов Тb использовали широко применяемые в РФП на основе лантанидов хелаторы, которые образуют с ними устойчивые комплексы, но комплексообразование характеризуется медленной кинетикой. Предположительно, одним из новых направлений исследований с изотопами Tb станет поиск хелатора, лишенного таких недостатков.

В заключение можно отметить, что, хотя коммерческое производство изотопов тербия к настоящему времени не налажено и только одна установка в мире может производить ^{149,152,155} Tb, все изученные изотопы обладают большим потенциалом применения в медицине, и, несомненно, будут появляться все новые исследования, нацеленные на создание соответствующих РФП.

БЛАГОДАРНОСТИ

Автор благодарит академика Б.Ф. Мясоедова и С.Е. Винокурова (лаборатория радиохимии ГЕОХИ РАН) за полезные комментарии к работе.

ФОНДОВАЯ ПОДДЕРЖКА

Исследование выполнено при финансовой поддержке РФФИ в рамках научного проекта № 20-13-50166.

КОНФЛИКТ ИНТЕРЕСОВ

Автор заявляет об отсутствии конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Blower P.J.* // Dalton Trans. 2015. Vol. 44, N 11. P. 4819–4844.
- Müller C., Reber J., Haller S., Dorrer H., Köster U., Johnston K., Zhernosekov K., Türler A., Schibliet R. // Pharmaceuticals. 2014. Vol. 7, N 3. P. 353–365.

- Uusijärvi H., Bernhardt P., Rosch F., Helmut R., Maecke H.R., Forssell-Aronsson E. // J. Nucl. Med. 2006. Vol. 47, N 5. P. 807–814.
- Müller C., Domnanich K.A., Umbricht C.A., van der Meulen N.P. // Br. J. Radiol. 2018. Vol. 91, N 1091. ID 20180074.
- Talip Z., Favaretto C, Geistlich S., van der Meulen N.P. // Molecules. 2020. Vol. 25, N 4. P. 966.
- Franz E.M., Friedlander G. // Nucl. Phys. 1966. Vol. 76. P. 123–128.
- Charalambus S. // Nucl. Phys., Sect. A. 1967. Vol. 94, N 1. P. 26–32.
- Heydegger H.R. // Nucl. Phys., Sect. A. 1972. Vol. 196.
 P. 156–160.
- Stehney A.F., Steinberg E.P. // Nucl. Instrum. Meth. 1968. Vol. 59, N 1. P. 102–108.
- 10. Steinberg E.P., Stehney A.F., Stearns C., Spaletto I. // Nucl. Phys. A. 1968. Vol. 113, N 2. P. 265–271.
- 11. Köster U., Fedoseyev V.N., Andrevev A.N., Cederkäll Bergmann U.C., Catherall *R*., J., Dietrich M., De Witte H., Fedorov D.V., Fraile L., Franchoo S., Fynbo H., Georg U., Giles T., Gorska M., Hannawald M., Huyse M., Joinet A., Jonsson O.C., Kratz K.L., Kruglov K., Lau Ch., Lettry J., Mishin V.I., Oinonen M., Partes K., Peräjärvi K., Pfeiffer B., Ravn H.L., Seliverstov M.D., Thirolf P., Van de Vel K., Van Duppen P., Van Roosbroeck J., Weissman L. // Nucl. Instrum. Methods Phys. Res. Sect. B: Beam Interact. Mater. At. 2003. Vol. 204. P. 347-352.
- Verhoeven H., Cocolios T.E., Dockx K., Farooq-Smith G.J., Felden O., Formento-Cavaier R., Gebel R., Köster U., Neumaier B., Scholten B., Spahn I., Spellerberg S., Stamati M.E., Stegemann S. // Nucl. Instrum. Meth. Phys. Res. Sect. B Beam Interact. Mater. At. 2020. Vol. 463. January. P. 327–329.
- 13. Abbas Rizvi S.M., Henniker A.J., Goozee G., Allen B.J. // Leuk. Res. 2002. Vol. 26, N 1. P. 37–43.
- Miederer M., Seidl C., Beyer G.-J., Charlton D.E., Vranješ-Durić S., Comor J.J., Huber R., Nikula T., Apostolidis C., Schuhmacher C., Becker K.-F., Senekowitsch-Schmidtke R. // Radiat. Res. 2003. Vol. 159, N 5. P. 612–620.
- Beyer G.-J., Miederer, M., Vranješ-Durić S., Čomor J.J., Künzi G., Hartley O., Senekowitsch-Schmidtke R., Soloviev D., Buchegger F. // Eur. J. Nucl. Med. Mol. Imaging. 2004. Vol. 31. N 4, P. 547–554.
- Müller C., Zhernosekov K., Köster U., Johnston K., Dorrer H., Hohn A., Van Der Walt N.T., Türler A., Schibli R. // J. Nucl. Med. 2012. Vol. 53. N 12, P. 1951– 1959.
- Umbricht C.A., Köster U., Bernhardt P., Gracheva N., Johnston K., Schibli R., van der Meulen N.P., Müller C. // Sci. Rep. 2019. Vol. 9, N 1. P. 1–10.

- Zagryadskii V.A., Latushkin S.T., Malamut T.Y., Novikov V.I., Ogloblin A.A., Unezhev V.N., Chuvilin D.Y. // At. Energy. 2017. Vol. 123, N 1. P. 55– 58.
- 19. Moiseeva A.N., Aliev *R*.*A*.. Unezhev V.N., Zagrvadskiv V.A., Latushkin S.T., Aksenov N.V., Gustova N.S.. Voronuk *M*.*G*., Starodub G.Y.. Ogloblin A.A. // Sci. Rep. 2020. Vol. 10, N 1. P. 1-7.
- Steyn G.F., Vermeulen C., Szelecsényi F., Kovács Z., Hohn A., van der Meulen N.P., Schibli R., van der Walt T.N. // Nucl. Instrum. Meth. Phys. Res. Sect. B: Beam Interact. Mater. At. 2014. Vol. 319. P. 128–140.
- Formento-Cavaier R., Haddad F., Alliot C., Sounalet T., Zahi I. // Nucl. Instrum. Meth. Phys. Res. Sect. B: Beam Interact. Mater. At. 2020. Vol. 478. June. P. 174–181.
- Zaitseva N.G., Dmitriev S.N., Maslov O.D., Molokanova L.G., Starodub G.Y., Shishkin S.V., Shishkina T.V., Beyer G.J. // Czechoslov. J. Phys. 2003. Vol. 53. N S1. P. A455–A458.
- Sarkar S., Allen B.J., Iman S., Gouzee G., Leigh J., Meriaty H. // Second Int. Conf. on Isotopes. Sydney, 1997. P. 104.
- 24. *Maiti M., Lahiri S., Tomar B.S.* // Radiochim. Acta. 2011. Vol. 99, N 9. P. 527–534.
- Maiti M. // Phys. Rev. C: Nucl. Phys. 2011. Vol. 84, N 4. P. 1–7.
- Allen B.J., Goozee G., Sarkar S., Beyer G.J., Morel C., Byrne A.P. // Appl. Radiat. Isot. 2001. Vol. 54. N 1. P. 53–58.
- Baum R.P., Singh A., Benešová M., Vermeulen C., Gnesin S., Köster U., Johnston K., Müller D., Senftleben S., Kulkarni H.R., Türler A., Schibli R., Prior J.O., Van Der Meulen N.P., Müller C. // Dalton Trans. 2017. Vol. 46, N 42. P. 14638–14646.
- Müller C., Vermeulen C., Johnston K., Köster U., Schmid R., Türler A., van der Meulen N.P. // EJNMMI Res. 2016. Vol. 6. N 1.
- Cicone F., Gnesin S., Denoël T., Stora T., van der Meulen N.P., Müller C., Vermeulen C., Benešová M., Köster U., Johnston K., Amato E., Auditore L., Coukos G., Stabin M., Schaefer N., Viertl D., Prior J.O. // EJNMMI Res. 2019. Vol. 9. ID 53.
- Müller C., Singh A., Umbricht C.A., Kulkarni H.R., Johnston K., Benešová M., Senftleben S., Müller D., Vermeulen C., Schibli R., Köster U., van der Meulen N.P., Baum R.P. // EJNMMI Res. 2019. Vol. 9, N 1. P. 1–10.
- Vermeulen C., Steyn G.F., Szelecsényi F., Kovács Z., Suzuki K., Nagatsu K., Fukumura T., Hohn A., van der walt T.N. // Nucl. Instrum. Methods Phys. Res. Sect. B: Beam Interact. Mater. At. 2012. Vol. 275. P. 24–32.
- Güray R.T., Özkan N., Yalçln C., Rauscher T., Gyürky G., Farkas J., Fülöp Z., Halász Z., Somorjai E. // Phys. Rev. C: Nucl. Phys. 2015. Vol. 91, N 5. P. 1–9.

РАДИОХИМИЯ том 64 № 2 2022

- Köster U., Assmann W., Bacri C.-O., Faestermann T., Garrett P., Gernhäuser R., Tomandl I. // Nucl. Instrum. Meth. Phys. Res. Sect. B: Beam Interact. Mater. At. 2020. Vol. 463. February. P. 111–114.
- Tárkányi F., Ditrói F., Takács S., Hermanne A., Ignatyuk A.V. // Appl. Radiat. Isot. 2015. Vol. 98. P. 87– 95.
- Nayak D., Lahiri S., Ramaswami A., Manohar S.B., Das N.R. // Appl. Radiat. Isot. 1999. Vol. 51. N 6. P. 631–636.
- Lahiri S., Nayak D., Das S.K., Ramaswami A., Manohor S.B., Das N.R. // J. Radioanal. Nucl. Chem. 1999. Vol. 241, N 1. P. 201–206.
- Webster B., Ivanov P., Russell B., Collins S., Stora T., Ramos J.P., Köster U., Robinson A.P., Read D. // Sci. Rep. 2019. Vol. 9, N 1. P. 10884–10893.
- Gayoso R.E., Sonzogni A.A., Nassiff S.J. // Radiochim. Acta. 1996. Vol. 72, N 2. P. 55–60.
- Szelecsényi F., Kovács Z., Nagatsu K., Zhang M.R., Suzuki K. // J. Radioanal. Nucl. Chem. 2016. Vol. 307, N 3. P. 1877–1881.
- Gayoso R.E., Barral M.A., Nassiff S.J. // J. Radioanal. Nucl. Chem. 1997. Vol. 218, N 2. P. 223–227.
- Tárkányi F., Ditrói F., Takács S., Hermanne A., Ignatyuk A.V. // Ann. Nucl. Energy. 2013. Vol. 62. P. 375–381.
- Tárkányi F., Ditrói F., Takács S., Csikai J., Hermanne A., Ignatyuk A.V. // Appl. Radiat. Isot. 2015. Vol. 83. P. 18– 24.
- Shahid M., Kim K., Naik H., Kim G. // Nucl. Instrum. Meth. Phys. Res. Sect. B: Beam Interact. Mater. At. 2019. Vol. 464. December. P. 74–83.
- Kazakov A.G., Aliev R.A., Bodrov A.Y., Priselkova A.B., Kalmykov S.N. // Radiochim. Acta. 2018. Vol. 106, N 2. P. 135–140.
- Giri P.K., Mahato A., Singh D., Linda S.B., Kumar H., Tali S.A., Ali R. // Indian J. Pure Appl. Phys. 2019. Vol. 57. September. P. 619–623.
- Giri P.K., Singh D., Linda S.B., Mahato A., Kumar H., Tali S.A., Afzal Ansari M., Kumar R., Singh R.P., Muralithar S. // Indian J. Pure Appl. Phys. 2019. Vol. 57, N 8. P. 552–556.
- Müller C., Fischer E., Behe M., Köster U., Dorrer H., Reber J., Haller S., Cohrs S., Blanc A., Grünberg J., Bunka M., Zhernosekov K., van der Meulen N.P., Johnston K., Türler A., Schibli R. // Nucl. Med. Biol. 2014. Vol. 41, N S. P. 58–65.
- 48. Jakobsson U., Mäkilä E., Rahikkala A., Imlimthan S., Lampuoti J., Ranjan S., Heino J., Jalkanen P., Köster U.,

Mizohata K., Santos H.A., Salonen J., Airaksinen A.J., Sarparanta M., Helariutta K. // Nucl. Med. Biol. 2020. Vol. 84–85. P. 102–110.

- Lehenberger S., Barkhausen C., Cohrs S., Fischer E., Grünberg J., Hohn A., Köster U., Schibli R., Türler A., Zhernosekov K. // Nucl. Med. Biol. 2011. Vol. 38, N 6. P. 917–924.
- Szelecsényi F., Fenyvesi A., Steyn G.F., Brezovcsik K., Kovács Z., Biró B. // J. Radioanal. Nucl. Chem. 2018. Vol. 318, N 1. P. 491–496.
- Tárkányi F., Hermanne A., Takács S., Ditrói F., Csikai J., Ignatyuk A.V. // J. Radioanal. Nucl. Chem. 2013. Vol. 298, N 2. P. 1385–1392.
- Monroy-Guzman F., Salinas E.J. // J. Mex. Chem. Soc. 2015. Vol. 59, N 2. P. 143–150.
- Aziz A., Artha W.T. // Indones. J. Chem. 2017. Vol. 16, N 3. P. 283–288.
- Aziz A. // J. Phys. Conf. Ser. 2020. Vol. 1436. N 1. ID 012097.
- 55. *Müller C., Schibli R.* // Front. Oncol. 2013. Vol. 3. September. P. 1–10.
- 56. Zhang J., Singh A., Kulkarni H.R., Schuchardt C., Müller D., Wester H.J., Maina T., Rösch F., van der Meulen N.P., Müller C., Mäcke H., Baum R.P. // Semin. Nucl. Med. 2019. Vol. 49, N 5. P. 422–437.
- Grünberg J., Lindenblatt D., Dorrer H., Cohrs S., Zhernosekov K., Köster U., Türler A., Fischer E., Schibli R. // Eur. J. Nucl. Med. Mol. Imaging. 2014. Vol. 41, N 10. P. 1907–1915.
- Müller C., Reber J., Haller S., Dorrer H., Bernhardt P., Zhernosekov K., Türler A., Schibli R. // Eur. J. Nucl. Med. Mol. Imaging. 2014. Vol. 41, N 3. P. 476–485.
- Haller S., Pellegrini G., Vermeulen C., van der Meulen N.P., Köster U., Bernhardt P., Schibli R., Müller C. // EJNMMI Res. 2016. Vol. 6, N 1. P. 1–11.
- Müller C., Umbricht C.A., Gracheva N., Tschan V.J., Pellegrini G., Bernhardt P., Zeevaart J.R., Köster U., Schibli R., van der Meulen N.P. // Eur. J. Nucl. Med. Mol. Imaging. 2019. Vol. 46, N 9. P. 1919–1930.
- Nizou G., Favaretto C., Borgna F., Grundler P.V., Saffon-Merceron N., Platas-Iglesias C., Fougère O., Rousseaux O., van der Meulen N.P., Müller C., Beyler M., Tripier R. // Inorg. Chem. 2020. Vol. 59. N 16, P. 11736–11748.
- Marin I., Rydèn T., van Essen M., Svensson J., Gracheva N., Köster U., Zeevaart J.R., van der Meulen N.P., Müller C., Bernhardt P. // EJNMMI Phys. 2020. Vol. 7. N 1.