УДК 539.183.3:546.841

СТРУКТУРА СПЕКТРОВ РФЭС КРИСТАЛЛИЧЕСКОЙ ПЛЕНКИ ThO₂

© 2022 г. А. Е. Путков^{*a*, *ó*}, К. И. Маслаков^{*a*}, А. Ю. Тетерин^{*b*}, Ю. А. Тетерин^{*a*, *ó*, *, М. В. Рыжков^{*b*}, К. Е. Иванов^{*b*}, С. Н. Калмыков^{*a*}, В. Г. Петров^{*a*}}

^а Химический факультет Московского государственного университета им. М.В. Ломоносова,

^б НИЦ «Курчатовский институт», 123182, Москва, пл. Акад. Курчатова, д. 1

⁶ Институт химии твердого тела УрО РАН,

620990, Екатеринбург, ул. Первомайская, д. 91

*e-mail: Teterin YA@nrcki.ru

Поступила в редакцию 05.07.2021, после доработки 15.11.2021, принята к публикации 22.11.2021 Получена и проанализирована сложная структура прецизионных рентгеновских фотоэлектронных спектров (РФЭС) валентных и остовных электронов кристаллической пленки ThO₂ (001) на Si (100) и проведены расчеты электронной структуры кластеров ThO₈, Th₁₃O₅₆ и Th₆₃O₂₁₆. Построена гистограмма рассчитанного спектра РФЭС электронов внешних (от 0 до ~15 эВ, ВМО) и внутренних (от ~15 до ~35 эВ, ВВМО) валентных МО и найдено удовлетворительное согласие с экспериментальным спектром. Отмечается значительное перекрывание не только Th 6*d* атомных орбиталей (AO), но и Th 6*p*, 5*f* AO с орбиталями кислорода, что приводит к ковалентному характеру связи в этом диоксиде. На основании величин заселенностей связи проведена оценка вклада в химическую связь электронов ВМО и BBMO. Показано, что электроны BBMO ослабляют химическую связь, обусловленную электронами BMO. Предполагается, что сложная структура в спектрах Th 5*s*- и Th 5*p*-электронов в большой степени обусловлена динамическим эффектом, в результате чего не удается наблюдать структуру спектра Th 5*s*-электронов в ThO₂.

Ключевые слова: диоксид тория, рентгеновские фотоэлектронные спектры, квантово-химические расчеты.

DOI: 10.31857/S0033831122020034, EDN: FNZAYP

ВВЕДЕНИЕ

Диоксид тория может быть использован для получения смешанного ядерного топлива, что повышает безопасность активной зоны реактора и улучшает его эксплуатационные характеристики, а также для наработки делящегося изотопа ²³³U в ториевом топливном цикле [1]. Торий часто рассматривается как менее радиотоксичный аналог плутония для моделирования поведения Pu^{4+} в MOX (смесь оксидов плутония и урана) топливе. Поэтому изучение электронной структуры и природы химической связи в ThO₂ имеет научное и практическое значение.

Рентгеновская фотоэлектронная спектроскопия (РФЭС) ранее применялась при изучении диоксида

тория [2–5]. При этом изучались оксиды ThO_2 , образовавшиеся на поверхности Th_{Met} [2, 5], а также порошки, нанесенные на подложку [3, 4].

В спектрах РФЭС электронов различных оболочек диоксидов актиноидов в диапазоне энергий связи от 0 до 1320 эВ с разной вероятностью возникает сложная структура, обусловленная различными механизмами (образование орбиталей, молекулярных мультиплетное расщепление, многоэлектронное возбуждение, динамический эффект и др.) [6]. Эта структура не позволяет корректно определить из спектров такие традиционные характеристики ионов, как энергии связи электронов и интенсивности их линий. Однако характеристики (параметры) сложной структуры спектров коррелируют с различными

^{119234,} Москва, Ленинские горы, д. 1, стр. 3

Рис. 1. СЭМ изображения поверхности пленки ThO₂, полученные во вторичных (а) и обратно-рассеянных (б) электронах.

физико-химическими свойствами соединений актиноидов (степенью окисления актиноидов, симметрией ближайшего окружения ионов, длиной связи актиноид-лиганд, числом неспаренных Ап 5*f*-электронов, природой химической связи и др.) [6]. Поэтому расшифровка сложной структуры спектров РФЭС соединений актиноидов является актуальной [6, 7]. Спектры ThO₂ отличаются от спектров других диоксидов актиноидов AnO₂ (An = U - Cf) тем, что в них не должно проявляться мультиплетное расщепление, поскольку ИОН тория не содержит неспаренных Th 5f-электронов. Поэтому структура спектров должна быть наименее сложной. Тем не менее, сложная структура спектра Th 5*p*-электронов диоксида тория теоретически не изучена из-за отсутствия корректного спектра РФЭС, а спектр Th 5s-электронов и вовсе не удалось пронаблюдать.

Внастоящей работе впервые для кристаллической пленки ThO₂ с использованием специальной методики последовательной периодической (через одно сканирование) регистрации спектров электронов различных оболочек в диапазоне энергий связи от 0 до 1320 эВ и стабилизации зарядки образца получены прецизионные спектры РФЭС, определен эффективный заряд тория и относительный вклад электронов внутренних валентных молекулярных орбиталей в ковалентную составляющую химической связи.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ И РАСЧЕТЫ

Приготовление и характеристика образца. Кристаллическую пленку ThO₂ с поверхностной ориентацией (001) на подложке Si (100) размером 9 × 9 × 2 мм³ получали методом реактивного магнетронного напыления с использованием установки Omicron в JRC Карлсруэ (Германия). Подложку перед напылением пленки очищали этанолом и нагревали до ~ 600° C при $p(O_2)$ 2×10^{-6} мбар в течение 40–60 мин. Мишень из металлического тория использовали в качестве источника тория с Ar в качестве распыляющего газа при p(Ar) 5.9 × 10⁻⁴ мбар и O₂ в качестве реактивного газа при $p(O_2)$ 7 × 10⁻⁶ мбар. Подложку Si поддерживали при температуре, близкой к 600°С. Пленку напыляли в течение 60 мин при условиях, которые должны обеспечить толщину пленки от 140 до 360 нм.

Полученный образец изучали методами сканирующей электронной микроскопии (СЭМ), рентгенофазового анализа (РФА) и дифракции обратно-рассеянных электронов (ДОРЭ). Поверхность пленки довольно плотно покрыта зернами около 0.1 мкм в диаметре, которые в электронных изображениях с обратным рассеянием (ОРЭ) имеют тот же контраст, что и сама пленка (рис. 1). Рефлексынадифрактограммеподтверждают что пленка имеет преимущественную TO. ориентацию в кристаллографической плоскости (001) с незначительной долей ориентации (111)

РАДИОХИМИЯ том 64 № 2 2022

Рис. 2. Рентгеновская дифрактограмма пленки ThO₂.

и двумя слабыми отражениями, которые можно отнести к ThSi₂, вероятнее всего, образованного на границе между подложкой и пленкой (рис. 2). Данные ДОРЭ согласуются с результатами РФА и указывают на преимущественную ориентацию пленки в (001) кристаллографической плоскости (рис. 3).

Рентгеновская фотоэлектронная спектроскопия. Спектры РФЭС кристаллической пленки ThO₂ регистрировали на спектрометре Kratos Axis Ultra DLD с монохроматизированным рентгеновским излучением AlK_a (1486.7 эВ). Образец готовили в виде кристаллической пленки на пластинке из Si. Поверхность образца изучали после ее травления ионами ⁴⁰Ar⁺. В результате 2 ат% аргона внедрились в поверхность образца и его линии наблюдались в спектрах при 10.5 (Ar 3p), 24.3 (Ar 3s), 243.4 (Ar 2*p*_{3/2}), 245.6 (Ar 2*p*_{1/2}) и 321.3 эВ (Ar 2*s*). Величины энергий связи электронов E_b (эВ) приведены относительно энергии С 1s-электронов насыщенных углеводородов на поверхности образца, принятой равной 285.0 эВ. Погрешность при измерении величин энергий связи и ширины линий электронов равна ±0.05 эВ, а при измерении относительных интенсивностей – ±5%. Спектральный фон, обусловленный упруго рассеянными электронами, вычитали по методу Ширли [8].

При проведении элементного анализа для коэффициентов чувствительности по отношению к углероду использовали следующие значения: 1.00 (С 1*s*), 2.805 (О 1*s*), 0.119 (О 2*s*), 31.52 (Th $4f_{7/2}$).

РАДИОХИМИЯ том 64 № 2 2022

Рис. 3. Обратная полюсная фигура для пленки ThO₂, по данным ДОРЭ.

Элементный состав пленки $(Th_{1.00}O_{1.95})$ в пределах погрешности измерения соответствовал ThO₂.

Расчеты. Для моделирования электронного ThO₂ выполняли расчеты строения трех конечных фрагментов кристаллической решетки: 279-атомного кластера Th₆₃O₂₁₆, 69-атомного – Th₁₃O₅₆ и «минимального» – ThO₈. Последний фрагмент включает только атом металла и его ближайшее окружение и представляет собой куб из восьми атомов кислорода с атомом актиноида в центре. Геометрия кластеров соответствовала регулярному кристаллу [9] с межатомными расстояниями $R_{Th-O} = 0.2425$ нм.

Расчеты электронной структуры проводили с использованием оригинальной программы неэмпирического полного релятивистского метода дискретного варьирования (РДВ) [10, 11] с обменно-корреляционным потенциалом [12]. Метод РДВ основан на решении 4-компонентного уравнения Дирака-Слэтера для релятивистских преобразующихся волновых функций, неприводимым представлениям двойных точечных групп симметрии (D_{4h} в настоящих расчетах). Более подробно процедура расчетов описана в работе [13].

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

В обзорном спектре РФЭС кристаллической пленки ThO₂ наблюдаются линии валентных и остовных электронов тория и кислорода, линии адсорбированных на поверхности углеводородов, О *KLL* и С *KLL* Оже-спектры кислорода и углерода,

Рис. 4. Обзорный спектр РФЭС электронов кристаллической пленки ThO₂ (001) на Si (100).

а также слабоинтенсивные линии аргона (рис. 4). Следует отметить, что обзорный спектр РФЭС кристаллической пленки ThO₂ не содержит линий кремния, в то время как на дифрактограмме РФА этой пленки наблюдаются линии ThSi₂ и Si (рис. 2). Это связано с тем, что методом РФЭС изучаются поверхностные слои образца ThO₂, в которых отсутствует кремний.

Электронное ThO₂. Валентная строение электронная конфигурация основного состояния тория – Th $6s^26p^65f^{0}6d^27s^27p^0$, 3F_2 . Эти оболочки тория могут принимать участие в образовании МО в его оксидах [3]. В методе расчета РДВ используется приближение МО ЛКАО (молекулярные орбитали как линейные комбинации атомных орбиталей), что позволяет обсуждать химическую связь в терминах атомных и молекулярных орбиталей. При моделировании электронного строения диоксида тория в настоящей работе проведены расчеты плотности электронных состояний нескольких фрагментов решетки разного размера (рис. 5). Из сравнения результатов, полученных для минимального (ThO₈), промежуточного (Th₁₃O₅₆) и максимального фрагментов (Th₆₃O₂₁₆), следует, что увеличение размера кластера приводит к трансформации дискретных уровней в зонную структуру. При этом положение групп орбиталей и соответствующих зон оказывается близкими. Кроме того, эффекты перекрывания Th 6s, 6p, 5f, 6d, 7s, 7p и O 2s, 2p орбиталей металла и кислорода (образование структуры МО) разных

Рис. 5. Плотность состояний валентных (ВМО от 0 до ~10 эВ, ВВМО от ~10 до ~40 эВ) электронов ThO_2 , найденная в кластерном приближении: $a - ThO_8$, $6 - Th_{13}O_{56}$, $B - Th_{63}O_{216}$.

фрагментов также оказываются однотипными. Поскольку в исследуемом диапазоне энергий связи электронов (0–50 эВ) в кластере $Th_{63}O_{216}$ находятся 2357 молекулярных орбиталей, то для анализа роли атомных состояний в электронной структуре и природы химической связи в диоксиде тория использовались результаты расчета кластера ThO₈, которые находятся в хорошем согласии с данными работы [4], поэтому они подробно рассматриваться в настоящей работе не будут.

Приобразовании химической связи формируются ВМО и ВВМО. Они включают в свой состав дополнительные Th 5f, 7p заполненные состояния, которые являются вакантными в свободном атоме. Из данных расчета следует, что Th 6s AO слабо участвует в образовании MO [4].

Состав ВМО с участием Th 6d, 7s и 7p AO в ThO₈ мало меняется при переходе к UO₈ [14] и другим кластерам легких актиноидов. Эти орбитали вместе с O 2s и O 2p AO образуют «жесткий каркас», в котором перемещаются MO, содержащие основные вклады An 5f AO, в ряду диоксидов: ThO₂, UO₂ [14], NpO₂ [15], PuO₂ [13] и AmO₂ [16].

В ThO₂ так же, как и в диоксидах других легких актиноидов, Th 6*p* AO участвуют в образовании как ВМО, так и ВВМО. При этом в значительной степени перекрываются Th $6p_{3/2,1/2}$ и O 2*s* AO соседних атомов.

В отличие от результатов теории кристаллического поля [17], эффекты ковалентности в ThO₂, наблюдаемые в настоящей работе, являются

значительными, что связано не только с сильным перекрыванием Th 6d AO с орбиталями лигандов, но и существенным перекрыванием Th 5f и O 2p AO.

Структура РФЭС спектра валентных электронов ThO₂. Рассчитанный с учетом плотности состояний валентных электронов (рис. 5, а) и сечений фотоионизации валентных уровней [18] спектр РФЭС ThO₂ в диапазоне энергий связи от 0 до ~50 эВ можно условно разделить на две области (рис. 6). В первой области спектра от 0 до ~15 эВ наблюдается структура, связанная с электронами ВМО, которые в основном образованы из Th 5f, 6d, 7s, 7p и O 2p AO соседних атомов. При 4.5 эВ возникает линия, обусловленная Th 6p-, 5f- и O 2p-электронами ВМО, а при 6.5 эВ наблюдается линия Th 6d-, 5f- и О 2p-электронов ВМО. Существенный вклад в интенсивность полосы ВМО вносят Th 5*f*-и Th 6*d*-электроны. Это связано с тем, что сечение фотоионизации этих электронов значительно больше, чем для О 2*p*-электронов.

второй области спектра от ~15 Bo ло ~50 эВ наблюдается структура, обусловленная ВВМО, которая возникает электронами ИЗза сильного перекрывания Th 6p и O 2s AO ближайших атомов. Линия при 16.7 эВ обусловлена в основном Th $6p_{3/2}$ - и O 2*s*-электронами, линия при 22.2 эВ - О 2*s*-электронами, линия при 25.5 эВ -Th 6p_{1/2}- и O 2s-электронами. Линия при 41.8 эВ связана в основном с Th 6s-электронами, которые практически не участвуют в образовании ВВМО и уровень Th 6s-электронов можно рассматривать как атомный.

Эффективный заряд тория в ThO₂. В результате ковалентного перекрывания АО тория и кислорода населенности МО и эффективный заряд тория Q_{Th} (e⁻ – электрон) в ThO₂ оказываются иными, чем в ионном приближении (Th $6s^26p^65f^06d^07s^0$, $Q_{\text{Th}4+} = +4e^-$). С учетом валентной атомной конфигурации Th $6s^26p^{65}f^06d^27s^27p^0$ и ионной конфигурации Th $6s^26p^{5.91}5f^{0.70}6d^{1.68}7s^{0.26}7p^{0.52}$ для ThO₂ можно найти, что эффективный заряд тория равен $Q_{\text{Th}} = +0.96 \text{ e}^-$. Эта величина значительно меньше значения $Q_{\text{Th}4+} = +4e^-$, ожидаемого в ионном приближении. Это характеризует определяющую роль ковалентных эффектов в диоксиде тория. Эти результаты качественно согласуются с данными для диоксидов других актиноидов [19, 20]. Величина

РАДИОХИМИЯ том 64 № 2 2022

Рис. 6. Экспериментальный спектр РФЭС и рассчитанный спектр валентных электронов ThO_2 в виде гистограммы (вклады в интенсивность O 2s, 2p-электронов не заштрихованы, вклад Th 4f-электронов отмечен черным, а вклады Th 6s, 6p-электронов отмечены штрихами).

такого небольшого эффективного заряда тория в ThO₂ также согласуется с данными для химических сдвигов линий актиноидов по отношению к металлам в спектрах РФЭС диоксидов актиноидов. Так, для Pu $4f_{7/2}$ -электронов при переходе от металлического Pu к PuO₂ наблюдается сдвиг, равный $\Delta E_b = 4.0$ эВ [13]. Если бы эффективный заряд был равен $Q_{\text{Th}4+} = +4e^-$, то это приводило бы к сдвигу в десятки эВ.

Вклад электронов валентных MO в химическую связь в ThO₂. Для оценки вклада электронов различных МО в химическую связь В работе методами НДВ (нерелятивистский рассчитаны ДB) И РДВ были величины заселенностей перекрывания по Малликену [17, 19] для различных MO в кластерах ThO₈ и Th₆₃O₂₁₆ (табл. 1). Положительные величины заселенностей характеризуют усиление (связывание) связи, ослабление отрицательные величины а (разрыхление) связи.

Результаты расчетов в нерелятивистском и релятивистском приближениях несколько отличаются друг от друга. Например, вклад в заселенность связей Th 5f–O 2p, Th 7s–O 2p, Th 6d–O 2p, 2s, Th 7p–O 2s увеличивается в релятивистском приближении, что характеризует усиление связи. Взаимодействия Th 6s–O 2s, 2p и Th 6p–O 2s, 2p в релятивистском приближении

ПУТКОВ и др.

Взаимодействующие АО	ThO ₈	ThO ₈ (РДВ) ^а		
	(НДВ)	парциальный	полный	п ₆₃ О ₂₁₆ (гдв)
Th $5f_{5/2}$ -O $2p_{1/2}$; O $2p_{3/2}$		1; 24		24
Th $5f_{7/2}$ –O $2p_{1/2}$; O $2p_{3/2}$	48	19; 16	60	33
Th 5f _{5/2} –O 2s		5		5
Th $5f_{7/2}$ —O 2 <i>s</i>	6	6	11	6
Th $7p_{1/2}$ –O $2p_{1/2}$; O $2p_{3/2}$		13; 9		17
Th 7p _{3/2} –O 2 <i>p</i> _{1/2} ; O 2 <i>p</i> _{3/2}	60	2; 35	59	5
Th 7 <i>p</i> _{1/2} –O 2 <i>s</i>		14		9
Th 7 <i>p</i> _{3/2} –O 2 <i>s</i>	28	21	35	12
Th 7 <i>s</i> –O 2 <i>p</i> _{1/2} ; O 2 <i>p</i> _{3/2}	6	8; 17	25	52
Th 7 <i>s</i> –O 2 <i>s</i>	26	22	22	-2
Th $6d_{3/2}$ –O $2p_{1/2}$; O $2p_{3/2}$		5; 74		72
Th $6d_{5/2}$ –O $2p_{1/2}$; O $2p_{3/2}$	184	59; 58	196	108
Th $6d_{3/2}$ –O 2s		13		14
Th $6d_{5/2}$ –O 2s	28	21	34	23
Σ^{6}_{BMO}	386	442	442	378
Th $6p_{1/2}$ –O $2p_{1/2}$; O $2p_{3/2}$		-6; -13		-8
Th 6 <i>p</i> _{3/2} –O 2 <i>p</i> _{1/2} ; O 2 <i>p</i> _{3/2}	-95	-24; -43	-86	-36
Th $6p_{1/2}$ –O 2s		-5		-5
Th 6 <i>p</i> _{3/2} –O 2 <i>s</i>	-35	-23	-28	-26
Th 6 <i>s</i> –O $2p_{1/2}$; O $2p_{3/2}$	-35	-7; -14	-21	-11
Th 6 <i>s</i> –O 2 <i>s</i>	-6	-2	-2	-3
$\Sigma^{6}_{ m BBMO}$	-171	-137	-137	-89
Σ^{6}_{MO}	215	305	305	289

Таблица 1. Заселенности связей для ThO₂ (на один лиганд, $\times 10^3$), полученные в релятивистском (РДВ) и нерелятивистском (НДВ) расчетах для кластеров ThO₈ и Th₆₃O₂₁₆

^а Парциальный и полный вклады.

⁶ Общие вклады ВМО, ВВМО и МО.

имеют меньший «разрыхляющий» характер, чем в нерелятивистском. Это обусловлено тем, что в релятивистском приближении энергии связи Th 6sи Th $6p_{1/2}$ -электронов существенно увеличиваются по абсолютной величине по сравнению с соответствующими энергиями, рассчитанными в нерелятивистском приближении.

Вклад в заселенность связей ThO₈, включающих внешние валентные MO, равен 442 (табл. 1). Наибольший вклад в усиление связи вносят электроны Th 6*d*–O 2*p*, Th 7*p*–O 2*p*, Th 6*d*–O 2*s*, Th 5*f*–O 2*p*. Электроны внутренних валентных оболочек разрыхляют связь в диоксиде тория, и их общий вклад в заселенность значительный. Наибольший вклад в разрыхление такой связи вносят электроны Th 6*p*–O 2*p*. В совокупности электроны BBMO (–137) на 31% ослабляют связь, обусловленную электронами BMO (442). В результате суммарный вклад валентных электронов в связь в ThO₈ в единицах заселенностей перекрывания равен 305. Для кластера Th₆₃O₂₁₆ электроны BBMO (-89) на 25% ослабляют связь, обусловленную электронами BMO (378), и суммарный вклад в связь равен 289.

Энергии структура связи И спектров остовных электронов. Энергии связи электронов пленки ThO₂ приведены в табл. 2. Эти результаты в основном согласуются с данными для порошка ThO₂ и диоксида тория, образовавшегося на поверхности металла [2]. Из этих данных следует, ЧТО независимо ОТ способа приготовления образцов на поверхности образуется устойчивая (самоорганизующаяся) фаза ThO₂ с решеткой типа СаF₂. Энергия связи Th 4f_{7/2}-электронов пленки ThO₂ на 1.8 эВ больше соответствующей величины для металлического Th [21]. Рассчитанные энергии связи электронов для атома Th [22] несколько

РАДИОХИМИЯ том 64 № 2 2022

превышают соответствующие экспериментальные величины для металлического тория (табл. 2).

Как уже отмечалось, спектр Th 6*s*-электронов практически является атомным и должен состоять из одной линии. Однако в спектре этих электронов с высокоэнергетической стороны от основной линии наблюдается сложная структура (рис. 7, а).

Сложная структура, но менее интенсивная, наблюдается и в спектре Th 5*d*-электронов со стороны больших энергий от дублета основных линий (рис. 7, б). Эта структура связана с shakeир сателлитами и должна наблюдаться в спектрах всех остовных электронов. Интенсивность таких сателлитов должна падать с уменьшением энергии связи электронов.

Спектр Th 5*p*-электронов (рис. 7, в) вместо дублета, обусловленного ожидаемого спинорбитальным расщеплением с ΔE_{sl} (Th 5*p*) = 51.2 эВ, содержит более сложную структуру. Так как $E_{\rm b}$ (Th 5*p*) $\approx 2E_{\rm b}$ (Th 5*d*) (см. табл. 2), то в результате фотоэмиссии Th 5р-электрона образуются конечные состояния: Th $5p^{1-}$ и Th $5d^{2-}5f^{1+}$ (минус соответствует вакансии, плюс – электрону), которые взаимодействуют, в результате чего возникает сложная структура (рис. 7, в). Такая сложная структура спектра U 5*p*-электронов была получена и теоретически рассчитана для U в у-UO₂ [7]. Поскольку величины взаимодействия конфигураций в Th и U практически близки по величине, то теоретические результаты [7] для структуры спектров U 5p- и Th 5p-электронов качественно согласуются.

Из данных табл. 2 следует, что линия спектра Th 5*s*-электронов должна наблюдаться при 288.7 эВ. Сечение фотоионизации Th 5*s*-оболочки равно 9.39 кбарн и более чем в четыре раза превышает соответствующее значение для Th 6*s*-оболочки (табл. 2). Поэтому интенсивность спектра Th 5*s*-электронов должна быть значительно выше интенсивности спектра Th 6*s*-электронов. Однако спектр Th 6*s*-электронов хорошо наблюдается (рис. 7, а), а спектр Th 5*s*-электронов не удается наблюдать как для металлического Th_{мет}, так и ThO₂ (табл. 2).

Для ThO₂ $E_{\rm b}$ (Th 5s) $\approx E_{\rm b}$ (Th 5p) + $E_{\rm b}$ (Th 5d) (табл. 2). Из близости величин этих энергий следует, что взаимодействие между основным

РАДИОХИМИЯ том 64 № 2 2022

Рис. 7. Структура спектров РФЭС электронов ThO₂: (a) Th 6*s*; (б) Th 5*d*; (в) Th 5*p*.

конечным состоянием Th $5s^{1-}$ и дополнительным конечным состоянием с двумя вакансиями и одним возбужденным электроном Th $5p^{1-}5d^{1-}5f^{1+}$ может существенно изменить структуру спектра Th 5s-электронов. Такое взаимодействие конфигураций в конечном состоянии приводят к столь сложной структуре, что практически невозможно накопить спектр РФЭС Th 5s-электронов. Это относится ко всем изученным методом РФЭС диоксидам актиноидов AnO₂ (An = Th–Cf) [6].

Действительно, согласно расчетам методом Хартри-Фока [25]. величина кулоновского интеграла $(5s5d|R^1|5p5f)$ составляет 16.13 эВ, т.е. практически совпадает с величиной кулоновского интеграла, определяющего динамический эффект в спектре Th 5p. Рассчитанные энергии **ДВVМЯ** вакансиями конечных состояний с $5p^{1-}_{1/2}5d^{1-}_{3/2}5f^{1+}_{5/2},$ И одним электроном

Th nl_i , O nl_i	ThO ₂ ^r	ThO2 ^{<i>A</i>}	Th _{met} ^e	Th _{theor} ^{**}	σ				
BMO	5.7 (3.9)	5.8		6.0 (6 <i>d</i> ,7 <i>s</i>)					
Th 6 <i>p</i> _{3/2}	16.7 (2.7)	16.5	16.1	17.3	4.99				
Th $6p_{1/2}$	25.5 (2.6)	25.5	24.0	25.8	1.78				
Th 6 <i>s</i>	41.8 (3.9)	41.9	40.9	41.4	2.20				
Th $5d_{5/2}$	86.4 (1.6)	86.3	84.9	87.3	42.8				
Th $5d_{3/2}$	93.3 (2.1)	93.3	92.0	94.1	29.3				
Th 5p _{3/2}	175.2 (2.7)	175.1	176.7	180.8	27.9				
	178.6 (2.4)	178.6							
	195.8 (9.7)	194.1							
Th $5p_{1/2}$	234.2 (8.4)	233.4	233.3	232.0	8.96				
Th 5s	[288.7] ³			290.2	9.39				
Th $4f_{7/2}$	334.4 (1.5)	334.3	332.6	335.0	323				
Th $4f_{5/2}$	343.7 (1.5)	343.6	341.9	344.4	253				
Th $4d_{5/2}$	675.3 (4.8)	675.6	674.7	676.6	223				
Th $4d_{3/2}$	712.6 (4.8)	712.7	711.9	713.7	148				
Th $4p_{3/2}$	966.5 (8.0)	966.7	965.9	967.2	102				
Th $4p_{1/2}$	1168.1(13)			1171	24.5				
O 2 <i>p</i>	~5.7 (3.9)	~5.8	_	_	0.27				
O 2 <i>s</i>	~22.2 (3.7)	~22.0	_	_	1.91				
O 1s	530.1 (1.4)	530.2	_	_	40				

Таблица 2. Энергии связи $E_{\rm b}^{\rm a}$ (эВ), ширины линий $\Gamma^{\rm 6}$ (эВ) и сечения фотоэффекта $\sigma^{\rm B}$ при hv = 1486.6 эВ

^а Экспериментальные величины энергий связи приведены относительно *E*_b(C 1*s*) = 285.0 эВ насыщенных углеводородов.

⁶ Величины Г (эВ) приведены в скобках.

^в Сечения фотоионизации (килобарн на атом) [23].

^г Монокристалл.

^д Порошок ThO₂ [3].

^е Энергии для металлического Th [21] уменьшены на 0.5 эВ.

^ж Результаты работы [22].

³ Величина, найденная с учетом данных табл. 2 (2-й столбец) и работы [24].

 $5p^{1-}_{1/2}5d^{1-}_{5/2}5f^{1+}_{5/2}$ и $5p^{1-}_{3/2}5d^{1-}_{3/2}5f^{1+}_{5/2}$, равные 342.16, 335.94 и 296.46 эВ соответственно, близки к теоретической энергии связи состояния $5s^{1-}$, равной 307.65 эВ. Поэтому в случае спектров Th 5s-электронов можно ожидать расщепление линии аналогично Th $5p_{3/2}$.

Наиболее интенсивным наблюдается спиндублет спектра Th 4*f*-электронов с величиной расщепления ΔE_{sl} (Th 4*f*) = 9.3 эВ, с которой согласуется соответствующее теоретическое значение 9.3 эВ [22], и характерными shake-up сателлитами, обусловленными многоэлектронным возбуждением, с интенсивностью 12% при 7.2 эВ и 3% при 15.4 эВ со стороны бо́льших энергий связи от основных линий (рис. 8, а).

Спектр Th 4*d*-электронов рассматриваемого диоксида также состоит из дублета с величиной ΔE_{sl} (Th 4*d*) = 37.3 эB, которая несколько отличается

от теоретического значения 37.1 эВ [22], и структуры shake-up сателлитов, связанных с многоэлектронным возбуждением (рис. 8, б). Структура спектра Th $4p_{3/2}$ -электронов накладывается на спектр O *KLL* Оже-электронов кислорода (рис. 8, в). Структура O *KLL* Оже-спектра, обусловленная электронами внешних и внутренних MO, рассмотрена ранее для UO₂ [26].

Энергия связи О 1*s*-электронов кислорода равна 530.1 эВ (табл. 1). С учетом выражения (1) [27]

$$R_{\text{3-O}}(\text{HM}) = 2.27 (E_{\text{b}} - 519.4)^{-1}$$
 (1)

можно оценить, что длина связи R_{3-O} элементкислород равна 0.212 нм. Эта величина на 13% меньше экспериментального значения $R_{Th-O} =$ 0.2425 нм [9]. Отметим, что выражение (1) получено экспериментально для октаэдрического окружения, а торий в ThO₂ окружен 8 ионами кислорода

РАДИОХИМИЯ том 64 № 2 2022

(симметрия D_{4h}), т.е. находится в центре куба, что могло привести к погрешности выше 5%.

ЗАКЛЮЧЕНИЕ

Получены прецизионные спектры РФЭС в диапазоне от 0 до 1320 эВ для монокристаллической пленки ThO₂ (001) на Si, содержащие сложную структуру.

Для моделирования структуры спектра валентных электронов ThO₂ выполнены расчеты трех фрагментов кристаллической решетки: 279-атомного кластера Th₆₃O₂₁₆, 69-атомного – Th₁₃O₅₆ и «минимального» – ThO₈.

Показано, полуколичественной что для интерпретации структуры спектра валентных электронов ΜΟΓΥΤ использоваться результаты ThO₈. расчета кластера Экспериментально полтверждено возникновение заполненных Th 5f-состояний во внешней валентной зоне (0.7e⁻). Определен эффективный заряд иона тория в ThO₂, равный +0.94е-. Показано, что с увеличением размера кластера вклад электронов внутренних валентных МО в разрыхление связи существенно уменьшается.

На качественном уровне обсуждены механизмы возникновения сложной структуры в спектрах остовных электронов, параметры которой коррелируют с электронным строением и физикохимическими свойствами рассматриваемого диоксида.

БЛАГОДАРНОСТИ

Выражаем благодарность Томасу Гудеру (Thomas Gouder), Рэйчел Элоирди (Rachel Eloirdi), Алисе Зайберт (Alice Seibert) из Европейской Объединенного исследовательского комиссии. центра, Директората ядерной безопасности за изгтовление образца тонкой пленки ThO₂. Яну Фарнану (Ian Farnan), Джулио Лампронти (Giulio Lampronti)и Алексею Попелю (Aleksej Popel) факультета наук о Земле Кембриджского университета за предоставление и характеризацию образца методами СЭМ, РФА и ДОРЭ.

РАДИОХИМИЯ том 64 № 2 2022

Рис. 8. Структура спектров РФЭС электронов ThO₂: (a) Th 4f, (б) Th 4d, (в) Th $4p_{3/2}$.

ФОНДОВАЯ ПОДДЕРЖКА

Работа поддержана грантом РФФИ № 20-03-00333 и выполнена с использованием оборудования, приобретенного за счет средств Программы развития Московского государственного университета.

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют об отсутствии конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

 Химия актинидов. Т. 1 / под ред. Дж. Каца, Г. Сиборга, Л. Морсса. Пер. на русский яз. под ред. Б.Ф. Мясоедова. М.: Мир, 1997. С. 523 (The Chemistry of the Actinide Elements. Vol. 1 / Eds. J.J. Katz, G.T. Seaborg, L.R. Morss. London: Chapman and Hall, 1986). ПУТКОВ и др.

- 2. Veal B.W., Lam D.J., Diamond H., Hoekstra H.R. // Phys. Rev. B. 1977. Vol. 15, T 6. P. 2929.
- 3. *Тетерин Ю.А., Баев А.С., Гагарин С.Г., Климов В.Д.* // Радиохимия. 1985. Т. 27, № 1. С. 3.
- Teterin Yu.A., Ryzhkov M.V., Teterin A.Yu., Vukcevic L., Terekhov V.A., Maslakov K.I., Ivanov K.E. // Nucl. Technol. Radiat. Prot. 2008. Vol. 23, N 2. P. 34.
- Teterin A.Yu., Ryzhkov M.V., Teterin Yu.A., Vukcevic L., Terekhov V.A., Maslakov K.I., Ivanov K.E. // Radiochemistry. 2009. Vol. 51. P. 560.
- Teterin Yu.A., Teterin A.Yu. // Russ. Chem. Rev. 2004. Vol. 73. P. 541.
- Maslakov K.I., Yarzhemsky V.G., Teterin Yu.A., Teterin A Yu., Ivanov K.E. // Radiochemistry. 2020. Vol. 62, N 5. P. 608.
- 8. Shirley D. // Phys. Rev. B. 1972. Vol. 5. P. 4709.
- Keller C. Gmelin Handbuch der anorganishen Chemie. Teil CI: Thorium. Verbindungen mit Edelgasen, Wasserstoff, Sauerstoff. Berlin: Springer, 1978.
- Rosen A., Ellis D.E. // J. Chem. Phys. 1975. Vol. 62. P. 3039.
- Adachi H. // Technol. Rep. Osaka Univ. 1977. Vol. 1392. P. 569.
- Gunnarsson O., Lundqvist B.I. // Phys. Rev. B. 1976. Vol. 13. P. 4274.
- Teterin Yu.A., Maslakov K.I., Teterin A.Yu., Ivanov K.E., Ryzhkov M.V., Petrov V.G., Enina D.A., Kalmykov St.N. // Phys. Rev. B. 2013. Vol. 87. P. 245108.
- 14. *Teterin Yu.A., Teterin A.Yu. //* Radiochemistry. 2005. Vol. 47. P. 440.

- Teterin Yu.A., Teterin A.Yu., Ivanov K.E., Ryzhkov M.V., Maslakov K.I., Kalmykov St.N., Petrov V.G., Enina D.A. // Phys. Rev. B. 2014. Vol. 89. P. 035102.
- Teterin Y.A., Maslakov K.I., Ryzhkov M.V., Teterin A.Y., Ivanov K.E., Kalmykov S.N., Petrov V.G. // Nucl. Technol. Radiat. Prot. 2015. Vol. 30, N 2. P. 83.
- Mulliken R.S. // Annu. Rev. Phys. Chem. 1978. Vol. 29. P. 1.
- Yarzhemsky V.G., Teterin A.Yu., Teterin Yu.A., Trzhaskovskaya M.B. // Nucl. Technol. Radiat. Prot. 2012. Vol. 27. P. 103.
- Kelly P.J., Brooks M.S., Allen R. // J. Phys. Colloq. 1979. Vol. 40. P. C4–184.
- 20. *Gubanov V.A., Rosen A., Ellis D.E.* // J. Phys. Chem. Solids. 1979. Vol. 40. P. 17.
- 21. Fuggle J.C., Burr A.F., Watson L.M., Fabian D.F., Lang W. // J. Phys. F: Metal Phys. 1974. Vol. 4. P. 335.
- 22. *Trzhaskovskaya M.B., Yarzhemsky V.G. //* At. Data Nucl. Data Tables. 2018. Vol. 119. P. 99.
- 23. Band I.M., Kharitonov Yu.I., Trzhaskovskaya M.B. // At. Data Nucl. Data Tables. 1979. Vol. 23. P. 443.
- Bearden J.A., Burr A.F. // Rev. Mod. Phys. 1967. Vol. 39. P. 125.
- 25. *Amusia M.Ya., Chernysheva L.V., Yarzhemsky V.G.* Handbook of Theoretical Atomic Physics, Data for Photon Absorption, Electron Scattering, and Vacancies Decay. Berlin: Springer, 2012.
- Teterin Yu.A., Ivanov K.E., Teterin A.Yu., Lebedev A.M., Utkin I.O., Vukchevich L. // J. Electron Spectosc. Relat. Phenom. 1999. Vol. 101–103. P. 401.
- 27. Sosulnikov M.I., Teterin Yu.A. // J. Electron Spectrosc. Relat. Phenom. 1992. Vol. 59. P. 111.