УДК 546.799

КАМНЕЛИТЫЕ МАТРИЦЫ НА ОСНОВЕ СПЛАВА БАЗАЛЬТА С УРАНСОДЕРЖАЩИМ СИЛИКАГЕЛЕМ

© 2022 г. В. В. Кулемин, К. В. Мартынов, Е. П. Красавина, И. А. Румер, С. А. Кулюхин*

Институт физической химии и электрохимии им. А.Н. Фрумкина РАН, 119071, Москва, Ленинский пр., д. 31, корп. 4 *e-mail: kulyukhin@ipc.rssi.ru

Поступила в редакцию 27.08.2020, после доработки 17.12.2021, принята к публикации 23.12.2021

Исследовано распределение урана между различными фазами камнелитых матриц, полученных в результате сплавления базальта и урансодержащих коллекторов на основе SiO₂. Установлено, что в результате сплавления базальта с SiO₂ получаются матрицы, содержащие в качестве основных фаз стекло, кварц и шпинель. Изучение физико-химических свойств коллекторов на основе SiO₂, содержащего 30 мас% UO₂(NO₃)₂, показало, что после их термической обработки при температуре 973 К уран в них находится только в виде UO₃. Оценена величина выщелачивания урана в H_2O из SiO₂ после его термической обработки, а также из его сплава с базальтом.

Ключевые слова: каменное литье, силикагель, уран, выщелачивание.

DOI: 10.31857/S003383112202006X, EDN: FOKXWD

В настоящее время в качестве матриц для иммобилизации высокоактивных отходов (ВАО) применяют в основном два типа стекла – алюмофосфатное и боросиликатное; в качестве перспективных также рассматриваются другие типы стекол, например, алюможелезофосфатное, теллуровое и др. [1–4]. Кроме того, для иммобилизации ВАО предлагаются различные по составу керамические и минералоподобные матрицы [1, 5–9].

В работах [10–15] изучалась возможность использования природного базальта в качестве флюса при остекловывании РАО. В частности, была разработана стеклокерамика на основе базальта. Базальт сплавляли с РАО (кальцинатом, золой печи сжигания, трансурановыми отходами и т.п.) при температурах 1573–1673 К, затем проводили термообработку для нуклеации и кристаллизации при 873–973 К в течение 0.5–1 ч и 1173–1223 К в течение 4–8 ч соответственно. В зависимости от состава РАО основными кристаллическими фазами в стеклокерамике были авгит, шпинели (магнезиоферрит, магнетит, герцинит), псевдобрукит, повеллит, фторапатит и др.

Так называемые «боробазальтовые» стеклокерамики представляют собой продукты остекловывания РАО с горными породами и борсодержащими добавками [14–17]. Они включают сложный набор кристаллических фаз (пироксены, фельдшпатоиды, гематит и др.). Материалы обладают достаточно высокой химической устойчивостью, но после отжига при температурах 673–1073 К устойчивость снижается, причем особенно сильно увеличиваются скорости выщелачивания цезия и стронция [14]. Показана возможность включения в такие матрицы до ~5–7 мас% PuO₂ [15].

Существенным недостатком работ [10-17] являлся тот факт, что все операции проводились с радиоактивными порошками. Технологические операции с порошками, тем более радиоактивными, создают много сложностей в том числе связанных с безопасностью производства. В работе [18] предложено использовать вместо радиоактивных порошков коллекторы на основе Al₂O₃, содержащие оксиды радиоактивных элементов. Изучение фазового состава камнелитых матриц, полученных в результате сплавления базальта и урансодержащих коллекторов на основе Al₂O₃, показало, что в результате сплавления базальта с Al₂O₃, содержащим UO₃, получаются матрицы, содержащие в качестве основных фаз стекло, плагиоклаз и шпинель [18]. Кроме того, присутствуют также фазы ильменита

и непрореагировавшего Al₂O₃. Именно две последние фазы и обогащены ураном.

В литературе имеются данные о применении силикагелей в качестве коллекторов радиоактивных материалов [19–21]. В связи с этим представляло интерес исследовать распределение радиоактивных элементов в камнелитых матрицах, полученных при сплавлении базальта с силикагелем, содержащим радиоактивные элементы. В качестве исследуемого элемента был выбран уран, который встречается в различных количествах практически во всех видах РАО, образованных при переработке ОЯТ [22]. В дальнейшем предполагается расширить перечень радионуклидов, в том числе для изучения их влияния на фазовый состав, структуру и свойства камнелитой матрицы.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

В работе использовали $UO_2(NO_3)_2 \cdot 6H_2O$ марки х.ч., дистиллированную воду, гранулированный силикагель марки КСКГ (ГОСТ 3956–76) с размером гранул 1–3 мм. SiO₂ использовался в экспериментах без какой-либо механической обработки.

Импрегнирование гранулированных SiO₂ проводили методом пропитки матриц водными растворами UO₂(NO₃)₂ с последующим модифицированием прекурсоров. Объем раствора составлял ~50% свободного объема SiO₂. Количество UO₂(NO₃)₂ в водном растворе соответствовало его содержанию в гранулированных SiO₂, равному 30 мас%. Модифицирование прекурсоров проводили путем их нагревания на воздухе в течение 5 ч при температуре 973 К. Во всех исследованных прекурсорах содержание урана составляло ~14.3 мас%.

В работе исследованы камнелитые матрицы, полученные сплавлением порошкообразного базальта с SiO₂ как чистым, так и содержавшим уран.

Для приготовления исходной смеси куски базальта измельчали до порошкообразного состояния с помощью щековой мельницы. Готовили для сплавления исходные смеси, в которых массовое отношение базальт : коллектор равнялось 1 : 1.

Плавление проводили в корундовых тиглях на воздухе при медленном нагревании до температуры 1623 К с последующим медленным охлаждением до комнатной температуры. Нагревание проводили в

РАДИОХИМИЯ том 64 № 2 2022

муфельной печи ЭКПС (Россия). После полного охлаждения из образовавшейся камнелитой матрицы вырезали образцы для проведения физико-химических исследований. В исследованных камнелитых матрицах содержание урана составляло ~7.2 мас%.

Элементный состав камнелитых матриц, полученных сплавлением базальта с чистым и урансодержащим SiO₂, изучали методом рентгеноспектрального микроанализа, который выполняли на цифровом сканирующем электронном микроскопе (СЭМ) Tescan Vega II XMU (Чехия) с энергодисперсионным рентгеновским спектрометром Oxford Instruments INCA Energy 450 (Великобритания) и детекторами вторичных и обратнорассеянных электронов для получения изображений. Правильность анализа контролировали путем сравнения со стандартными образцами. Результаты анализов рассчитывали с помощью программы INCA Suite v. 4.15 из пакета программ The Microanalysis Suite Issue 18d + SP3.

Рентгенограммы модифицированных прекурсоров SiO₂, содержащих уран, получали на рентгеновском порошковом дифрактометре AERIS фирмы Malvern Panalytical (Нидерланды) при следующих параметрах: излучение Cu K_{α} (длина волны 1.5418 Å), Ni фильтр, 40 кВ, 15 мА. Для каждого образца порошковые рентгенограммы снимали по 3 раза при скорости сканирования 0.27 с⁻¹ и шаге сканирования 20, равном 0.011°.

Эксперименты по выщелачиванию урана из SiO₂, а также камнелитых матриц, полученных сплавлением SiO₂ с базальтом, в H₂O проводили при температуре 298 К в течение 24 ч. В работе использовали образцы размером $5 \times 5 \times 5$ мм. Содержание урана в выщелатах определяли методом масс-спектрального анализа с индуктивно-связанной плазмой (ИСП-МС) на масс-спектрометре марки iCAP Qc (Thermo Scientific, США).

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

На рис. 1 приведены СЭМ-изображения в обратнорассеянных электронах образца камнелитой матрицы, полученного в результате сплавления базальта с SiO₂, не содержавшим урана, при 1573 К на воздухе в течение 5 ч, а в табл. 1 – элементный состав соответствующей матрицы в пересчете на окКУЛЕМИН и др.

Фаза	Номер на рис. 1	Оксид (мас%)											
		Na ₂ O	MgO	Al ₂ O ₃	SiO ₂	K ₂ O	CaO	TiO ₂	Cr ₂ O ₃	MnO	FeO	Сумма	
Шпинель	1	0.14	16.04	3.51	0.34	0.02		0.29	43.82	0.89	32.68	97.73	
	2		15.66	2.66	0.43	0.10	0.16	0.38	45.34	0.33	31.30	96.35	
Стекло	4	1.64	6.25	10.09	58.41	0.56	8.86	1.78	0.19	0.14	8.58	96.50	
	9	1.78	7.77	9.01	59.87	0.57	10.27	1.38	0.24	0.28	8.06	99.22	
	12	1.56	8.06	9.41	61.28	0.59	9.68	1.42	0.07	0.05	8.24	100.36	
	14	1.32	7.50	9.22	57.92	0.37	9.53	1.37	0.28		8.23	95.76	
Кварц	3	0.92	0.46	2.84	91.09	0.06	1.52	0.28		0.08	1.46	98.70	
	8	0.60	0.03	1.30	97.01	0.04	0.30	0.38	0.03		0.29	99.98	
	10	0.80	0.12	2.00	91.74		0.72	0.38	0.15		0.23	96.14	
	13	0.85	0.06	1.81	96.53	0.03	0.32	0.24			0.58	100.43	
Среднее	16	1.54	5.14	6.03	63.62	0.38	3.87	0.93	5.81	0.13	11.03	98.48	

Таблица 1. Элементный состав камнелитых матриц, полученных в результате сплавления базальта с SiO₂ в массовом отношении 1 : 1, в пересчете на оксиды

сиды. Данные по элементному составу приведены для матрицы, полученной в результате сплавления базальта с SiO₂ в массовом соотношении 1 : 1. Полученный сплав содержит 3 фазы: шпинель, стекло и кварц.

Как и в случае сплавления базальта с Al_2O_3 [18], основные количества Mg, Cr, Mn и Fe находятся в фазе шпинели, содержащей в качестве примесных ионов Ti. Содержание Al в фазе шпинели незначительно, что подразумевает его практически полное замещение в составе шпинели ионами Cr^{3+} и Fe³⁺. Форма зерен шпинели свидетельствует о неполном растворении в расплаве кристаллов, содержащихся в исходном каменном литье (базальте).

Присутствие заметных количеств Na, K, Ca, Ti и Fe в фазе стекла по сравнению с фазами шпинели и кварца подразумевает образование сложного по составу стекла. Поскольку содержание Al и Fe близко между собой, то можно предположить образование Mg–Ca алюможелезосиликатного стекла, обогащенного K, Na и Ti.

Образование фазы кварца связано, по-видимому, с кристаллизацией из пересыщенного кремнеземом расплава при его медленном охлаждении. Как видно из табл. 1, фаза кварца практически не содержит примесных ионов. Максимальное содержание не превышает ~3 мас%. Таким образом, в результате сплавления порошкообразных базальта и SiO₂ образуются фаза шпинели, обогащенная Cr и Fe, фаза Mg–Ca алюможелезосиликатного стекла, обогащенного K, Na и Ti, а также фаза кварца, практически не содержащая примесных ионов.

В работе [18] отмечено, что при сплавлении базальта с нитратом урана наблюдалось сильное газовыделение, в результате которого происходило

Рис. 1. СЭМ-изображение в обратнорассеянных электронах образца сплава базальта с SiO₂ (порошок) в массовом отношении 1 : 1. Цифрами обозначены точки проведения анализа; то же на рис. 3.

A	Номер на рис. 3	Оксид (мас%)											
Фаза		Na ₂ O	MgO	Al ₂ O ₃	SiO ₂	K ₂ O	CaO	TiO ₂	Cr ₂ O ₃	MnO	FeO	UO ₃	Сумма
Фрагмент SiO ₂	1		0.39	0.19	38.45		4.67		0.04	0.02	0.65	56.64	101.04
	2	0.27	0.63	0.98	53.35		2.17	0.21	0.11		2.00	13.65	73.36
	3	0.72	4.30	4.39	72.04	0.25	4.36	0.86	0.21	0.13	3.31	5.70	96.27
	4	0.10	0.40	0.57	93.62			0.09	0.19		1.57	1.75	98.3
	5	0.11	0.22	0.60	65.43	0.13	0.37	0.08			0.50	7.48	74.93
	6	0.25	0.12	0.54	69.56		0.14	0.02	0.01		0.21	1.03	71.9
Фрагмент SiO ₂ (среднее)	7	0.30	0.95	1.46	86.29	0.18	1.48	0.30		0.21	1.67	7.25	100.09
Дендритовидные кристаллы	9	1.13	11.92	6.47	51.95	0.46	12.51	0.71	0.06	0.21	7.78	2.58	95.79
Стекло І	11	1.98	1.93	8.49	58.91	1.10	4.78	1.27		0.13	6.40	10.95	95.94
(обогащенное U)	12	2.43	1.83	9.52	57.61	0.89	4.88	1.41		0.16	5.14	14.47	98.33
	13	1.98	2.83	8.33	59.11	1.14	5.44	0.93	0.07	0.09	7.28	9.16	96.36
Стекло II	14	2.27	4.43	8.59	55.72	1.01	6.63	1.16	0.27	0.05	7.00	8.89	96.01
(базальтовое)	15	1.91	4.93	9.73	55.75	0.69	7.68	1.32		0.21	7.29	8.85	98.35
Шпинель	16		18.62	4.79	0.59		0.19	0.83	14.03	0.52	55.95		95.56
	17	0.35	11.83	3.83	1.94	0.06	0.29	1.30	5.39	0.31	64.27		89.57

Таблица 2. Элементный состав фаз образца камнелитой матрицы, полученного в результате сплавления базальта с SiO₂, содержавшим уран, в массовом отношении 1 : 1, в пересчете на оксиды

образование пористой матрицы с большими кавернами. При этом было установлено, что при сплавлении базальта с коллектором, содержащим соединения урана, происходит образование монолитной

Рис. 2. Порошковая рентгенограмма силикагеля, содержащего 30 мас% $UO_2(NO_3)_2$, после термической обработки на воздухе при 973 К в течение 5 ч (* – рефлексы UO_3 [23]).

РАДИОХИМИЯ том 64 № 2 2022

матрицы. Учитывая результаты работы [18], для сплавления с базальтом мы использовали матрицы на основе SiO₂.

Исследование порошковых дифрактограмм SiO₂, содержащей 30 мас% UO₂(NO₃)₂, после прокаливания на воздухе в течение 5 ч при 973 К показало, что уран в составе матрицы находится в виде UO₃ (рис. 2) [23].

На рис. 3 приведено СЭМ-изображение образца камнелитой матрицы, полученной в результате сплавления базальта с SiO₂, содержавшим уран, при 1623 К на воздухе в течение 5 ч, а в табл. 2 – элементный состав фаз этого образца в пересчете на оксиды.

В результате сплавления базальта с SiO₂, содержавшим уран, образуются камнелитые матрицы, основными фазами которых являются не расплавившиеся фрагменты SiO₂, обрамленные дендритовидными кристаллами, и базальтовое стекло с включениями новообразованных кристаллов шпинели (рис. 3).

Рис. 3. СЭМ-изображение в обратнорассеянных электронах образца сплава базальта с SiO₂, содержавшим уран, в массовом отношении 1 : 1.

Высокое содержание урана в SiO₂ обусловлено тем фактом, что уран в систему вносили в виде SiO₂–14.3 мас% U, который не полностью растворился в расплаве базальта. Кроме урана фрагменты SiO₂ локально обогащены Ca, Mg, Al, Ti, Fe, что отражается на их валовом составе (табл. 2).

На границе включений SiO₂ присутствуют дендритовидные кристаллы. При этом они есть не только в кайме включения, но и распределены по стеклу, только там они мельче. Относительно их минеральной принадлежности что-то конкретное сказать затруднительно. По элементному составу они обогащены Mg и Ca и обеднены Al, Si и U относительно базальтового стекла.

Также в системе присутствуют два типа стекла: тип I – стекло, образовавшееся из расплава при кристаллизации дендритовидных кристаллов; тип II – базальтовое стекло.

Поскольку в дендритовидных кристаллах урана меньше, чем в фазе базальтового стекла, можно сделать вывод о том, что при образовании дендритовидных кристаллов уран отжимается в расплав и обогащает стекло вокруг кристаллов относительно его содержания в базальтовом расплаве и стекле. Фаза шпинели вообще не содержит урана. В ней содержится меньше Cr и больше Fe, чем в первичной базальтовой шпинели, описанной выше.

Несмотря на то, что во фрагменте SiO_2 есть участки с достаточно высоким содержанием урана, валовое содержание урана в нем близко к содержанию урана в фазе базальтового стекла. Полученные данные подтверждают вывод о том, что при растворении SiO_2 в расплавленном базальте происходит равномерное распределение урана по матрице.

Представляло интерес изучить степень удержания урана в синтезированных образцах при их кратковременном контакте с водой и сравнить их с аналогичными данными для SiO₂–14.3 мас% U.

В результате проведенных исследований установлено, что через 24 ч контакта SiO₂-14.3 мас% U в виде кубиков размером $5 \times 5 \times 5$ мм с H₂O при 298 К скорость выщелачивания урана из исследованных образцов равняется ~7.3 × 10^{-4} г_U/(г_{матрины}·сут). Одновременно было установлено, что скорость выщелачивания урана в воду из КЛ-7.2 мас% U равняется $\sim 2.5 \times 10^{-7} \, \Gamma_U / (\Gamma_{\text{матрицы}} \cdot \text{сут})$. В результате сплавления базальта с SiO₂, содержавшим UO₃, степень выщелачивания урана в воду из камнелитой матрицы уменьшается более чем на 3 порядка. Существуют несколько причин снижения степени выщелачивания урана в воду при переходе от SiO₂ к камнелитым матрицам. Во-первых, камнелитая матрица имеет несопоставимо меньшую пористость по сравнению с SiO₂. Снижение количества пор приводит к бо́льшему затруднению проникновения воды внутрь матрицы к фазам, содержащим уран. Во-вторых, в отличие от SiO₂, в котором уран находится в виде UO₃, в камнелитой матрице уран может входить в структуру стекла и минералов, имеющих меньшую растворимость в воде по сравнению с UO₃. При возможном практическом применении результатов работы необходимо исследовать скорость выщелачивания в соответствии с ГОСТом 29114-91.

В заключение необходимо отметить, что в результате сплавления базальта с SiO₂, содержащим радиоактивные элементы, могут быть получены стекломинеральные матрицы, которые в перспективе могут заменить стекло в процессах иммобилизации РАО. Использование коллекторов на основе SiO₂ позволит исключить трудоемкие процессы манипуляций с радиоактивными порошками с микро- и наноразмерными частицами. Это особенно важно при работе с ВАО, содержащими актиниды (Np, Pu), Cs и Sr.

БЛАГОДАРНОСТИ

Рентгенофазовый анализ проведен на рентгеновском порошковом дифрактометре AERIS фирмы Malvern Panalytical (Нидерланды) Центра коллективного пользования физическими методами исследования в Институте физической химии и электрохимии им. А.Н. Фрумкина РАН.

ФОНДОВАЯ ПОДДЕРЖКА

Исследование выполнено при финансовой поддержке Министерства науки и высшего образования Российской Федерации.

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют об отсутствии конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- 1. Полуэктов П.П., Суханов Л.П., Матюнин Ю.И. // Росс. хим. журн. 2005. Т. 49. № 4. С. 29.
- Блохин П.А., Дорофеев А.Н., Линге И.И., Меркулов И.А., Сеелев И.Н., Тихомиров Д.В., Уткин С.С., Хаперская А.В. // Радиоактивные отходы. 2019. № 2 (7). С. 49.
- Stefanovsky S.V., Stefanovsky O.I., Prusakov I.L., Kadyko M.I., Averin A.A., Nikonov B.S. // J. Non-Cryst. Solids. 2019. Vol. 512. P. 81.
- Jae-Young Pyo, Cheong Won Lee, Hwan-Seo Park, Jae Hwan Yang, Wooyong Um, Jong Heo // J. Nucl. Mater. 2017. Vol. 493. P. 1.
- Materials for Nuclear Waste Immobilization / Eds M.I. Ojovan, N.C. Hyatt. Basel: MDPI, 2019. 220 p.
- Меркушкин А.О. Получение химически устойчивых матриц для иммобилизации актиноидной фракции ВАО: Дис. ... к.х.н.: РХТУ им. Д.И. Менделеева, 2003. 198 с.
- Стефановский С.В., Юдинцев С.В. // Успехи химии. 2016. Т. 85, № 9. С. 962.
- Yudintsev S., Stefanovsky S., Nikonov B., Stefanovsky O., Nickolskii M., Skvortsov M. // J. Nucl. Mater. 2019. Vol. 517. P. 371.

- Малинина Г.А. Строение и гидролитическая устойчивость самарий-, гафний- и урансодержащих стеклокристаллических материалов для иммобилизации твердых радиоактивных отходов: Дис. ... к.х.н. М.: Радон, 2016. 117 с.
- Ершов Б.Г., Минаев А.А., Попов И.Б., Юрик Т.К., Кузнецов Д.Г., Иванов В.В., Ровный С.И., Гужавин В.И. // Вопр. радиац. безопасности. 2005. № 1. С. 13.
- 11. Саидл Я., Ралкова Я. // Атом. энергия. 1966. Т. 10. С. 285.
- Lebeau M.-J., Girod M. // Am. Ceram. Soc. Bull. 1987. Vol. 66. P. 1640.
- Welch J.M., Schuman R.P., Sill C.W., Kelsey P.V. Jr., Henslee S.P., Tallman R.L., Horton R.M., Owen D.E., Flinn J.E. // MRS Online Proc. Library Archive. 1981. Vol. 6: Symp. D—Scientific Basis for Nuclear Waste Management IV. P. 23–30. https://doi.org/10.1557/PROC-6-23
- 14. *Кузнецов Д.Г., Иванов В.В., Попов И.Б., Ершов Б.Г. //* Радиохимия. 2009. Т. 51. С. 63.
- 15. *Matyunin Yu.I., Alexeev O.A., Ananina T.N. //* GLOBAL 2001 Int. Conf. on Back End of the Fuel Cycle: From Research to Solutions. Paris, 2001. CD-ROM.
- 16. Попов И.Б., Иванов В.В., Кузнецов Д.Г., Ершов Б.Г. // Радиохимия. 2010. Т. 52, № 5. С. 454–457.
- 17. *Кузнецов Д.Г., Иванов В.В., Попов И.Б., Ершов Б.Г.* // Радиохимия. 2012. Т. 54, № 2. С. 178–181.
- Martynov K.V., Kulemin V.V., Gorbacheva M.P., Kulyukhin S.A. // Ann. Nucl. Energy. 2021. Vol. 163. Paper N 108555.
- Dzekun E.G., Korchenkin K.K., Mashkin A.N., Kolupaev D.N., Nardova A.K., Parfanovich B.N., Filippov E.A. // Proc. Int. Conf. on Decommissioning and Decontamination and on Nuclear and Hazardous Waste Management (Spectrum'98). Denver, USA, Sept. 13–18, 1998. Vol. 1. P. 732.
- Egorov N.N., Nardova A.K., Filippov E.A., Starchenko V.A. // Proc. Int. Conf. «Waste Management 1999» (WM'99). Tucson, USA, Feb. 28–March 4, 1999. P. 43.
- Корченкин К.К., Машкин А.Н., Дзекун Е.Г., Парфанович Б.Н., Филиппов Е.А. Использование силикагеля для промежуточного хранения долгоживущих радионуклидов. http://www.iaea.org/inis/collection/ NCLCollectionStore/_Public/33/026/33026304.pdf (дата посещения: 20.01.2021).
- Praveena N., Jena Hr., Bera S., Kumar R., Jha S.N., Bhattacharyya D. // Prog. Nucl. Energy. 2021. Vol. 131. Article N 103579. https://doi.org/10.1016/j.pnucene.2020.103579
- 23. JCPDS—Int. Centre for Diffraction Data. PDF 01-012-0043, UO₃.

РАДИОХИМИЯ том 64 № 2 2022