УДК 542.61:546.65/66

ВЛИЯНИЕ СТРОЕНИЯ БИС-КАРБАМОИЛМЕТИЛФОСФИНОКСИДОВ НА ЭКСТРАКЦИЮ РЗЭ(III), U(VI) и Th(IV) ИЗ АЗОТНОКИСЛЫХ РАСТВОРОВ В ПРИСУТСТВИИ ИОННОЙ ЖИДКОСТИ

© 2022 г. А. Н. Туранов^{а,*}, В. К. Карандашев⁶, А. Н. Яркевич⁶

^а Институт физики твердого тела им. Ю. А. Осипьяна РАН, 142432, Черноголовка Московской обл., ул. Академика Осипьяна, д. 2 ⁶ Институт проблем технологии микроэлектроники и особо чистых материалов РАН, 142432, Черноголовка Московской обл., ул. Академика Осипьяна, д. 6 ^в Институт физиологически активных веществ РАН, 142432, Черноголовка Московской обл., Северный проезд, д. 1 *e-mail: turanov@jssp.ac.ru

Поступила в редакцию 29.01.2021, после доработки 21.02.2021, принята к публикации 25.02.2021

Установлено, что экстракционная способность бис[(дифенилфосфинил)ацетамидо]алканов, в молекулах которых два бидентатных фрагмента $Ph_2P(O)CH_2C(O)NAlk$ – объединены через амидный атом азота алкиленовым мостиком, по отношению к ионам P3Э(III), U(VI) и Th(IV) в азотнокислых средах значительно увеличивается в присутствии ионной жидкости бис[(трифторметил)сульфонил]имида 1-бутил-3-метилимидазолия в органической фазе и существенно превышает таковую диарил(диалкилкарбамоилметил)фосфиноксидов. Методом сдвига равновесия определена стехиометрия экстрагируемых комплексов P3Э(III). Рассмотрено влияние строения экстрагента и концентрации HNO₃ в водной фазе на эффективность перехода ионов P3Э(III), U(VI) и Th(IV) в органическую фазу, содержащую ионную жидкость.

Ключевые слова: экстракция, РЗЭ(III), уран(VI), торий(IV), азотная кислота, карбамоилметилфосфиноксиды, ионные жидкости.

DOI: 10.31857/S0033831122020071, EDN: FOLOFA

В процессах переработки отработанного ядерного топлива для извлечения, концентрирования и разделения актинидов и редкоземельных элементов (РЗЭ) широко используются экстракционные методы [1]. Высокой экстракционной способностью по отношению к актинидам и РЗЭ(III) в азотнокислых средах обладают бидентатные нейтральные фосфорорганические соединения, в частности, оксиды диарил(диалкилкарбамоилметил)фосфинов (КМФО) [2, 3]. В последнее время возрос интерес к использованию в экстракционной практике полифункциональных фосфорорганических реагентов [4–7]. Соединения, полученные присоединением нескольких КМФО-групп к пространственно предорганизованной структурной основе, обладают более высокой экстракционной способностью по отношению к ионам актинидов и РЗЭ(III), чем сами КМФО [8]. Однако широкому использованию таких экстрагентов препятствует сложность их синтеза. Синтетически более доступны соединения с двумя КМФО-фрагментами. Экстракционная способность таких реагентов в значительной мере определяется характером соединения координирующих фрагментов в молекуле экстрагента. Показано, что соединение VI, молекула которого содержит два координирующих карбамоилметилфосфиноксидных фрагмента, соединенных через их метиновые группы пентаметиленовой цепочкой, мало отличается

Схема 1. Структуры экстрагентов

от КМФО V по своей экстракционной способности по отношению к Am(III) [9] и РЗЭ(III) [10] в азотнокислых средах. С другой стороны, объединение в одной молекуле двух бидентатных фрагментов $Ph_2P(O)CH_2C(O)NH$ – через амидный атом азота диили триэтиленгликолевой цепочкой, а также алкиленовым или ариленовым мостиком [11, 12] приводит к значительному увеличению экстракционной способности таких соединений по отношению к U(VI), Th(IV) и РЗЭ(III) в азотнокислых средах.

В последнее время наметилась тенденция использования ионных жидкостей (ИЖ) в качестве несмешивающейся с водой фазы при экстракции ионов металлов [13–18]. Было показано, что ионы актинидов и РЗЭ(III) экстрагируются растворами КМФО в ИЖ – гексафторфосфатах и бис[(трифторметил)сульфонил]имидах метилалкилимидазолиев – значительно более эффективно, чем растворами КМФО в молекулярных растворителях [19]. Кроме того, для эффективного извлечения РЗЭ(III) и Ат(III) из растворов HNO₃ или HCl достаточно даже относительно небольшой концентрации ИЖ в органическом растворителе, содержащем КМФО V [20–22].

Сведения об экстракции ионов РЗЭ(III), U(VI) и Th(IV) из азотнокислых растворов соединениями, содержащими два КМФО-фрагмента, в при-

РАДИОХИМИЯ том 64 № 2 2022

сутствии ИЖ в органической фазе ограничены [10, 23].

Цель данной работы – исследование влияния строения реагентов, в молекуле которых содержится два КМФО-фрагмента, на их экстракционную способность по отношению к РЗЭ(III), U(VI) и Th(IV) в азотнокислых средах в присутствии ИЖ в органической фазе. Для этого исследовано межфазное распределение РЗЭ(III), U(VI) и Th(IV) между растворами HNO₃ и органической фазой, содержащей ИЖ бис[(трифторметил)сульфонил]имид 1-бутил-3-метилимидазолия (C₄mimTf₂N) и соединения I-III, отличающиеся длиной алкиленового мостика между координирующими фрагментами, а также соединение IV с пиперазиновым кольцом между фрагментами КМФО. Для сравнения приведены данные по экстракции ионов РЗЭ(III), U(VI) и Th(IV) монофосфорильным КМФО – дибутил(дифенилфосфинил)ацетамидом V – в сопоставимых условиях.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Синтез соединений I–IV [24] и V [25] описан в предыдущих работах. Ионную жидкость бис[(трифторметил)сульфонил]имид 1-бутил-3-метилимидазолия (C₄mimTf₂N) (Merck) и литиевую соль бис[(трифторметил)сульфонил]имида (LiTf₂N) (Sigma–Aldrich) использовали без дополнительной очистки. В качестве органического растворителя применяли 1,2-дихлорэтан марки х.ч.

Методика проведения экстракции РЗЭ(III), U(VI) и Th(IV) в системах с ИЖ описана в предыдущих работах [10–12]. Исходная концентрация каждого из РЗЭ(III), U(VI) и Th(IV) составляла 2 × 10⁻⁶ моль/л, концентрация азотной кислоты в водной фазе варьировалась в интервале 0.3–5.0 моль/л.

Содержание РЗЭ(III), U(VI) и Th(IV) в исходных и равновесных водных растворах определяли методом масс-спектрометрии с ионизацией пробы в индуктивно связанной плазме с использованием масс-спектрометра X-7 (Thermo Electron, США). Содержание ионов металлов в органической фазе определяли после их реэкстракции раствором 0.1 моль/л 1-гидроксиэтан-1,1-дифосфоновой кислоты. Коэффициенты распределения (D) рассчитывали как отношение концентраций ионов металлов в равновесных органической и водной фазах. Погрешность определения коэффициентов распределения не превышала 5%. Концентрацию HNO₃ в равновесных водных фазах определяли потенциометрическим титрованием раствором NaOH.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Ранее было показано, что растворы C₄mimTf₂N дихлорэтане практически не экстрагируют В РЗЭ(III), U(VI) и Th(IV) из азотнокислых растворов (величины D не превышают 10^{-2}) [20]. Однако в присутствии C₄mimTf₂N в органической фазе эффективность экстракции РЗЭ(III) соединением II значительно увеличивается (рис. 1). При этом величина синергетического эффекта $S = D/D_{(0)}$ (где D и $D_{(0)}$ – коэффициенты распределения в присутствии и в отсутствие ИЖ в органической фазе) в случае экстракции Eu(III) $S_{\rm Eu} = 65$. Можно предположить, что синергетический эффект в экстракционной системе C₄mimTf₂N-II-дихлорэтан//РЗЭ(III)-HNO₃ связан с вхождением гидрофобных анионов Tf₂N⁻ в состав экстрагируемых комплексов, что приводит к увеличению их гидрофобности по сравнению с сольватированными нитратами РЗЭ(III), экстрагируемыми растворами соединения II в дихлорэтане. По этой же причине происходит значительное повышение эффективности экстракции РЗЭ(III) и Ат(III) из азотнокислых

Рис. 1. Зависимость коэффициентов распределения Eu(III) от исходного соотношения концентраций соединения II и C₄mimTf₂N в органической фазе при экстракции из раствора 3 моль/л HNO₃ изомолярными смесями соединения II и C₄mimTf₂N в дихлорэтане. [II] + [C₄mimTf₂N] = 0.01 моль/л.

растворов растворами КМФО в инертных растворителях в присутствии гидрофобных пикрат-[26] и Tf₂N⁻ [27] анионов в водной фазе или аниона хлорированного дикарболлида кобальта [28] в органической фазе.

Для сравнения экстракционной способности соединений I–V по отношению к РЗЭ(III) на рис. 2 представлены значения D_{Ln} при экстракции ионов РЗЭ(III) из раствора 3 моль/л HNO₃ растворами этих соединений в дихлорэтане, содержащем C₄mimTf₂N, при одинаковой концентрации КМФО групп в органической фазе.

Можно видеть, что характер объединения двух координирующих фрагментов в молекуле соединений I-IV существенно влияет на эффективность экстракции РЗЭ(III). Экстракционная способность бис-КМФО IV, в молекуле которого координирующие карбамоильные группы заблокированы жестким пиперазиновым фрагментом, значительно снижается по сравнению с его моноаналогом V. Coединения I-III экстрагируют РЗЭ(III) более эффективно, чем их моноаналог V. Одной из причин этого может быть участие дополнительной координирующей группы в комплексообразовании с ионами Ln³⁺. Однако для подтверждения этого предположения требуется проведение структурных исследований экстрагируемых комплексов. Зависимость D_{Ln} от числа метиленовых групп (*n*) в алкиленовом

Рис. 2. Коэффициенты распределения РЗЭ(III) и Y(III) при экстракции из раствора 3 моль/л HNO₃ растворами 0.002 моль/л соединений I–IV и 0.004 моль/л КМФО V в дихлорэтане, содержащем 0.01 моль/л С₄mimTf₂N.

мостике между двумя координирующими группами $Ph_2P(O)CH_2C(O)NAlk$ носит немонотонный характер. Наибольшие значения D_{Ln} наблюдаются при n = 4 (соединение **II**). Вероятно, на эффективность экстракции этими соединениями некоторое влияние оказывают также стерические факторы,

Рис. 3. Соотношение между значениями $D_{\rm Eu}$ при экстракции Eu(III) из растворов 3 моль/л HNO₃ растворами 0.01 моль/л соединений I–IV и 0.02 моль/л КМФО V в дихлорэтане, содержащем 0.1 моль/л C₄mimTf₂N, и значениями коэффициентов распределения $D_{\rm Eu(0)}$ при экстракции Eu(III) растворами тех же экстрагентов в дихлорэтане в отсутствие ИЖ.

РАДИОХИМИЯ том 64 № 2 2022

связанные с размером алкильного радикала R при атоме азота. Уменьшение длины алкиленового мостика в молекуле соединения I сопровождается снижением $D_{I,n}$ (рис. 2). Это может быть связано как с наличием стерических препятствий для комплексообразования с участием связанных через атом азота карбамоильных фрагментов, так и со снижением донорной способности координирующих групп экстрагента I вследствие действия индукционного эффекта. С увеличением *n* от 2 до 4 это действие ослабляется, и величина D_{Ln} возрастает. Снижение D_{Ln} при увеличении *n* от 4 до 6 может быть связано с увеличением расстояния между координирующими центрами молекулы соединения III, что препятствует полидентатной координации с ионом металла.

Ранее было показано, что бис-КМФО VI, в молекуле которого объединение двух координирую-

Таблица 1. Коэффициенты распределения U(VI) и Th(IV) при их экстракции из раствора 3 моль/л HNO₃ растворами 0.001 моль/л соединений I–IV и 0.002 моль/л соединения V в дихлорэтане ($D_{(0)}$) и в дихлорэтане, со-держащем 0.01 моль/л C₄mimTf₂N (D)

Экстрагент	lgD _{Th(0)}	lgD _{Th}	$lgD_{U(0)}$	lgD _U
I (<i>n</i> = 2)	0.15 [12]	1.40	0.41 [12]	1.48
II $(n = 4)$	2.18 [12]	3.82	0.95 [12]	2.61
III $(n = 6)$	1.74 [12]	3.38	0.55 [12]	1.95
IV	-1.30 [12]	0.40	-1.38 [12]	-0.32
V	1.70	2.08	0.32	0.94

щих групп $Ph_2P(O)CHC(O)NBu_2$ осуществляется через их метиновые группы пентаметиленовой цепочкой, экстрагирует ионы P3Э(III) в присутствии C₄mimTf₂N в органической фазе из растворов 3 моль/л HNO₃ менее эффективно, чем его моноаналог V [10].

Зависимости экстракционной способности соединений I-V от их строения при экстракции U(VI) и Th(IV) из азотнокислых растворов при равных концентрациях карбамоилметилфосфиноксидных групп в экстрагирующих растворах представлены в табл. 1. Следует отметить, что в присутствии ИЖ бис-КМФО I–III более эффективно экстрагируют U(VI) и Th(IV) по сравнению с моноаналогом V.

Сопоставление величин D_{Ln} при экстракции P3Э(III) из азотнокислых растворов в системе (соединения I–V)–C₄mimTf₂N и величинами $D_{Ln(0)}$ при экстракции этими соединениями в дихлорэтане показало, что наблюдается линейная корреляция между этими величинами (рис. 3). Можно видеть, что характер объединения двух координирующих фрагментов в молекуле экстрагентов оказывает значительно более заметное влияние на эффективность экстракции РЗЭ(III) в системе с C₄mimTf₂N, чем в отсутствие ИЖ в органической фазе, а величина синергетического эффекта увеличивается в ряду IV < V < I < III < II (рис. 3).

Присутствие C₄mimTf₂N в органической фазе существенно изменяет характер зависимости коэффициентов распределения ионов металлов от концентрации HNO3 в равновесной водной фазе при экстракции растворами соединения II (рис. 4). В отсутствие ИЖ величины D возрастают с ростом [HNO₂], тогда как в присутствии ИЖ наблюдается снижение D с ростом [HNO₃], которое отмечалось ранее и при экстракции растворами КМФО и других нейтральных экстрагентов в присутствии ИЖ [20, 23]. Это может быть связано с соэкстракцией как HNO₃, так и HTf₂N, присутствующей в водной фазе вследствие заметного перехода ионов Tf₂N⁻ из органической фазы в водную [29], приводящей к снижению концентрации свободного экстрагента в равновесной органической фазе. С ростом [HNO₃] величина синергетического эффекта уменьшается, однако синергизм наблюдается даже в сильнокислых средах (рис. 4). При экстракции из раствора 3 моль/л HNO₃ величины S увеличиваются в ряду РЗЭ(III) от 288 для La до 1420 для Lu (рис. S1) по

Рис. 4. Зависимость коэффициентов распределения U(VI) (1, 3) и Eu(III) (2, 4) от концентрации HNO₃ в водной фазе при экстракции растворами 0.001 (1, 3) и 0.002 (2, 4) моль/л соединения II в дихлорэтане и в дихлорэтане, содержащем 0.01 моль/л C₄mimTf₂N (1, 2).

мере уменьшения ионных радиусов ионов Ln^{3+} и увеличения их энергии гидратации. По-видимому, замещение в экстрагируемом комплексе анионов NO_3^- на более гидрофобные Tf_2N^- оказывает большее влияние на экстракцию более гидратированных ионов РЗЭ. Это приводит к снижению фактора разделения La/Lu ($\beta_{La/Lu} = D_{La}/D_{Lu}$) от 32.3 при экстракции раствором соединения II в дихлорэтане до 7.4 при экстракции этим экстрагентом в присутствии C_4 mimTf₂N в органической фазе (рис. S1).

Увеличение концентрации C₄mimTf₂N в органической фазе сопровождается увеличением D_{Ln} , D_U и D_{Th} (рис. S2). В области относительно низкой концентрации ИЖ угловой наклон зависимости lg D_{Ln} -lg[C₄mimTf₂N] близок к 2, что соответствует переходу РЗЭ(III) в органическую фазу в виде комплексов Mⁿ⁺L_s(NO₃)_{n-2}(Tf₂N)₂ (s – сольватное число).

Стехиометрические соотношения M^{n^+} : лиганд II в комплексах, экстрагируемых в присутствии ИЖ из растворов 3 моль/л HNO₃, определено методом сдвига равновесия. При экстракции U(VI) и Th(IV) тангенс угла наклона зависимостей lgD–lg[II] близок к 2 (рис. S3), что соответствует переходу этих ионов в органическую фазу, содержащую ИЖ, в виде дисольватов. Ранее было показано, что в отсутствие ИЖ соединение **II** экстрагирует U(VI) в виде моносольвата [12]. Увеличение сольватного числа в комплексах, экстрагируемых в системе с ИЖ, может быть связано со слабой координацион-

Таблица 2. Концентрационные константы экстракции $P3\Im(III)$ из растворов $LiTf_2N$ растворами соединения **II** и КМФО **V** в дихлорэтане

Ln(III)	$\lg K_{\mathrm{Ln},1}(\mathrm{II})$	$\lg K_{\mathrm{Ln},2}(\mathrm{II})$	lg $K_{\text{Ln},3}(V)$ [27]
La	16.33 ± 0.03	19.87 ± 0.03	16.70 ± 0.03
Ce	16.43 ± 0.03	19.97 ± 0.03	17.05 ± 0.03
Pr	16.45 ± 0.03	19.99 ± 0.03	17.19 ± 0.03
Nd	16.38 ± 0.04	19.92 ± 0.04	17.16 ± 0.03
Sm	16.42 ± 0.04	19.96 ± 0.04	17.24 ± 0.03
Eu	16.26 ± 0.03	19.86 ± 0.03	17.14 ± 0.03
Gd	16.09 ± 0.05	19.63 ± 0.05	16.83 ± 0.03
Tb	15.89 ± 0.03	19.43 ± 0.03	16.61 ± 0.03
Dy	15.60 ± 0.04	19.14 ± 0.04	16.32 ± 0.03
Но	15.29 ± 0.03	18.89 ± 0.03	15.96 ± 0.03
Er	15.06 ± 0.04	18.60 ± 0.04	15.61 ± 0.03
Tm	14.77 ± 0.03	18.37 ± 0.03	15.30 ± 0.03
Yb	14.60 ± 0.04	18.14 ± 0.04	15.04 ± 0.03
Lu	14.37 ± 0.03	17.91 ± 0.03	14.84 ± 0.03

ной способностью анионов Tf_2N^- [30]. Эти анионы находятся, по-видимому, во внешней координационной сфере экстрагируемого комплекса, тогда как в отсутствие ИЖ ионы U(VI) экстрагируются соединением II в виде координационно-сольватированных нитратов, в которых ионы NO_3^- участвуют в координации ионов UO_2^{2+} .

Тангенс угла наклона зависимостей $lgD_{Ln}-lg[II]$ равен 1.59 ± 0.15 (рис. S3), что указывает на экстракцию ионов РЗЭ(III) из азотнокислых растворов соединением II в присутствии ИЖ в виде смеси моно- и дисольватов. В аналогичных условиях КМФО V экстрагирует ионы РЗЭ(III) в виде дии трисольватов [20]. Уменьшение сольватного числа в комплексах, экстрагируемых в системе бис-КМФО II–C₄mimTf₂N, может быть связано с увеличением дентатности лиганда II при комплексообразовании с ионами РЗЭ(III). Процесс экстракции ионов РЗЭ(III) из азотнокислых растворов растворами бис-КМФО II (L) в присутствии ИЖ может быть описан уравнениями

$$Ln^{3^+}_{(B)} + NO^-_{3(B)} + L_{(o)} +$$

+ 2C₄mimTf₂N⁻_(o) $\leftrightarrow LnL(NO_3)(Tf_2N)_{2(o)} + 2C_4mim^+_{(B)}, (1)$

$$Ln^{3+}_{(B)} + NO^{-}_{3(B)} + 2L_{(o)} + + 2C_4mimTf_2N^{-}_{(o)} \leftrightarrow LnL_2(NO_3)(Tf_2N)_{2(o)} + 2C_4mim^{+}_{(B)}, (2)$$

где символы (в) и (о) относятся к компонентам водной и органической фаз соответственно.

РАДИОХИМИЯ том 64 № 2 2022

Ранее было показано, что эффективность экстракции ионов РЗЭ(III) и Am(III) растворами нейтральных экстрагентов в присутствии ИЖ, содержащих анион Tf_2N^- , определяется устойчивостью комплекса $LnL_s(Tf_2N)_3$ при его экстракции органическим растворителем [31].

Для определения констант экстракции РЗЭ(III) растворами соединения II в дихлорэтане из растворов, содержащих ионы Tf₂N⁻, рассмотрена зависимость $D_{I,n}$ от концентрации ионов Tf_2N^- в водной фазе при постоянной концентрации II в органической фазе. Тангенс угла наклона зависимости $lgD_{I,n}$ –lg[Tf₂N⁻] близок к 3 для всех РЗЭ(III), что соответствует экстракции РЗЭ(III) в виде комплексов со стехиометрическим соотношением Ln : $Tf_2N^- =$ 1 : 3. При постоянной концентрации ионов $Tf_2N^$ в водной фазе тангенс угла наклона зависимостей lgD_{In} -lg[II] равен 1.40 ± 0.13 (рис. S4), что указывает на переход ионов РЗЭ(III) в органическую фазу в виде комплексов со стехиометрическими соотношениями РЗЭ(III) : II = 1 : 1 и 1 : 2. В аналогичных условиях КМФО V экстрагирует ионы РЗЭ(III) в виде трисольватов [27]. Процесс экстракции ионов РЗЭ(III) из водных растворов, содержащих анионы Tf_2N^- , растворами бис-КМФО II (L) в дихлорэтане может быть описан уравнениями

$$Ln^{3+}_{(B)} + 3Tf_2N^{-}_{(B)} + L_{(o)} \leftrightarrow LnL(Tf_2N)_{3(o)}, K_{Ln,1};$$
 (3)

$$Ln^{3+}_{(B)} + 3Tf_2N^{-}_{(B)} + 2L_{(o)} \leftrightarrow LnL_2(Tf_2N)_{3(o)}, K_{Ln,2}.$$
 (4)

Константы экстракции РЗЭ(III) соединением II из водных растворов, содержащих ионы $Tf_2N^-(K_{Ln,1} u K_{Ln,2})$, рассчитанные по уравнению

$$D_{\rm Ln} = [{\rm Tf}_2 {\rm N}^{-}]^3_{\rm (B)} (K_{\rm Ln,1} [{\rm L}]_{\rm (o)} + K_{\rm Ln,2} [{\rm L}]^2_{\rm (o)}), \qquad (5)$$

где $[L]_{(o)}$ – равновесная концентрация экстрагента в органической фазе, представлены в табл. 2. Для сравнения приведены константы экстракции комплексов LnL₃(Tf₂N)₃, экстрагируемых растворами КМФО V [27]. Из этих данных видно, что устойчивость комплексов LnL₂(Tf₂N)₃ для соединения II превышает таковую для комплексов LnL₃(Tf₂N)₃, экстрагируемых растворами КМФО V. С учетом различия в стехиометрии комплексов РЗЭ(III) с этими лигандами величины D_{Ln} при экстракции РЗЭ(III) раствором соединения II в дихлорэтане из раствора LiTf₂N более чем на два порядка превышают величины D_{Ln} в системе с КМФО V при такой же концентрации экстрагента. Этим объясняются более высокие значения D_{Ln} при экстракции РЗЭ(III) из растворов HNO₃ в системе с соединением II по сравнению с КМФО V (рис. 2).

Представленные данные показали, что в условиях равной концентрации карбамоилметилфосфиноксидных групп в экстрагирующем растворе эффективность экстракции РЗЭ(III), U(VI) и Th(IV) из азотнокислых растворов растворами бис-КМФО I-III, молекулы которых содержат два бидентатных фрагмента Ph₂P(O)CH₂C(O)NAlk-, соединенных через амидный атом азота алкиленовым мостиком, значительно увеличивается в присутствии ионной жидкости бис[(трифторметил) сульфонил]имида 1-бутил-3-метилимидазолия в органической фазе по сравнению с моно-КМФО V. Зависимость D_{Ln} от числа метиленовых групп (*n*) в алкиленовом мостике между двумя координирующими группами Ph₂P(O)CH₂C(O)N(R) носит немонотонный характер. Максимальные значения D_{In} наблюдаются при n = 4 (соединение II).

ФОНДОВАЯ ПОДДЕРЖКА

Работа выполнена в рамках Государственного задания 2020 г. ИФТТ РАН, ИПТМ РАН и ИФАВ РАН.

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют об отсутствии конфликта интересов.

ДОПОЛНИТЕЛЬНЫЕ МАТЕРИАЛЫ

Дополнительные материалы для этой статьи доступны по doi 10.31857/S0033831122020071 для авторизированных пользователей.

СПИСОК ЛИТЕРАТУРЫ

- Myasoedov B.F., Kalmykov S.N. // Mendeleev Commun. 2015. Vol. 25, N 5. P. 319. https://doi.org/ 10.10016/j.mencom.2015.09.001
- 2. *Horwitz E.P., Martin K.A., Diamond H., Kaplan L. //* Solvent Extr. Ion Exch. 1986. Vol. 4, N 3. P. 449.

https://doi.org/10.1080/07366298608917877

- Чмутова М.К., Литвина М.Н., Прибылова Г.А., Иванова Л.А., Смирнов И.В., Шадрин А.Ю, Мясоедов Б.Ф. // Радиохимия. 1999. Т. 41. № 4. С. 331.
- Аляпышев М.Ю., Бабаин В.А., Устынюк Ю.А. // Успехи химии. 2016. Т. 85, № 9. С. 943–961; *Alyapyshev M. Yu., Babain V.A., Ustynyuk Yu.A. //* Russ. Chem. Rev. 2016. Vol. 85, N 9. Р. 943. https://doi.org/10.1070/RCR4588
- Leoncini A., Huskens J., Verboom W. // Chem. Soc. Rev. 2017. Vol. 46. P. 7229. https://doi.org/ 10.1039/C7CS00574A
- Wilson A.M., Bailey P.J., Tasker P.A. // Chem. Soc. Rev. 2014. Vol. 43. P. 123. https://doi.org/10.1039/C3CS60275C
- Bhattacharyya A., Mohapatra P.K. // Radiochim. Acta. 2019. V. 107. P. 931.
- Arnand-New F., Bohmer V., Dozol J.F., Gruttner C., Jakobi R.A., Kraft D., Mauprivez O., Rouquette H., Schwing-Weill M.-J., Simon N., Vogt W. // J. Chem. Soc. Perkin Trans. 2. 1996. P. 1175. https://doi.org/10.1039/P29960001175
- Кочеткова Н.Е., Койро О.Э., Нестерова Н.П., Медведь Т.Я., Чмутова М.К., Мясоедов Б.Ф., Кабачник М.И. // Радиохимия. 1986. Т. 28, № 3. С. 338.
- Туранов А.Н., Карандашев В.К., Яркевич А.Н. // Радиохимия. 2012. Т. 54, № 5. С. 439; *Turanov, A.N., Karandashev, V.K., Yarkevich, A.N.* // Radiochemistry. 2012. Vol. 54, N 5. P. 477. https://doi.org/10.1134/S1066362212050104
- Turanov A.N., Karandashev V.K., Sharova E.V., Artyushin O.I., Odinets I.L. // Solvent Extr. Ion Exch. 2010. Vol. 28, N 5. P. 579. https://doi.org/10.1080/07366299.2010.499297
- 12. Туранов А.Н., Карандашев В.К., Яркевич А.Н. // Радиохимия. 2021. Т. 63, № 4. С. 364–371.
- Riano S., Foltova S.S., Binnemans K. // RSC Adv. 2020. Vol. 10. P. 307.
- 14. *Raut D.R., Sharma S., Ghosh S.K., Mohapatra P.K.* // Sep. Sci. Technol. 2017. Vol. 52. P. 1430.
- 15. *Khodakarami M., Alagha L. //* Sep. Purif. Technol. 2020. Vol. 232. ID 115952.
- 16. *Murakami S., Matsumiya M., Yamada T., Tsunashima K. //* Solvent Extr. Ion Exch. 2016. Vol. 34. P. 172.
- 17. *Kolarik Z.* // Solvent Extr. Ion Exch. 2013. Vol. 31. P. 24. https://doi.org/10.1080/07366299.2012.700589
- Iqbal M., Waheed K., Rahat S.B., Mehmood T., Lee M.S. // J. Radioanal. Nucl. Chem. 2020. Vol. 325. P. 1.
- Nakashima K., Kubota F., Maruyama T., Goto M. // Anal. Sci. 2003. Vol. 19. P. 1097. https://doi.org/ 10.2116/analsci.19.1097

- Туранов А.Н., Карандашев В.К., Яркевич А.Н. // Радиохимия. 2013. Т. 55, № 4. С. 314; Turanov A.N., Karandashev V.K., Yarkevich A.N. // Radiochemistry. 2013. Vol. 55, N 4. P. 382. https://doi.org/10.1134/S1066362213040073
- 21. Прибылова Г.А., Смирнов И.В., Новиков А.П. // Радиохимия. 2012. Т. 54, № 5. С. 435.
- 22. Pribilova G., Smirnov I., Novikov A. // J. Radioanal. Nucl. Chem. 2012. Vol. 295. P. 83.
- 23. *Turanov A.N., Karandashev V.K., Baulin V.E. //* Solvent Extr. Ion Exch. 2012. Vol. 30, N 3. P. 244. https://doi.org/10.1080/07366299.2011.639248
- Яркевич А.Н., Брель В.К., Махаева Г.Ф., Серебрякова О.Г., Болтнева Н.П., Ковалёва Н.В. // ЖОХ.
 2015. Т. 85, № 7. С. 1120; Yarkevich A.N., Brel V.K., Makhaeva G.F., Serebryakova O.G., Boltneva N.P., Kovaleva N.V. // Russ. J. Gen. Chem. 2015. Vol. 85, N 7. P. 1644.

https://doi.org/10.1134/S1070363215070129

 Туранов А.Н., Карандашев В.К., Харитонов А.В., Лежнев А.Н., Сафронова З.В., Яркевич А.Н., Цветков Е.Н.//ЖОХ. 1999. Т. 69, №7. С. 1109; Turanov A.N., Karandashev V.K., Kharitonov A.N., Lezhnev A.N., Safronova Z.V., Yarkevich A.N. Tsvetkov E.N. // Russ. J. Gen. Chem. 1999. Vol. 69, N 7. P. 1068.

- Naganawa H., Suzuki H., Tachimori S., Nasu A., Sekine T. // Phys. Chem. Chem. Phys. 2001. Vol. 3. P. 2509.
- Туранов А.Н., Карандашев В.К., Яркевич А.Н. // Радиохимия. 2018. Т. 60, № 2. С. 153; *Turanov, A.N., Karandashev, V.K., Yarkevich, A.N.* // Radiochemistry. 2018. Vol. 60, N 2. Р. 170–176. https://doi.org/10.1134/S1066362218020078
- Rais J., Tachimori S. // J. Radioanal. Nucl. Chem. Lett. 1994. Vol. 188, N 2. P. 157.
- Gaillard C., Boltoeva M., Billard I., Georg S., Mazan V., Ouadi A., Ternova D., Henning C. // ChemPhysChem. 2015. Vol. 16. P. 2653. https://doi.org/ 10.1002/cphc.201500283
- 30. *Binnemans K.* // Chem. Rev. 2007. Vol. 107. P. 2593. https://doi.org/ 10.1021/cr050979c
- Turanov A.N., Karandashev V.K., Sharova E.V., Genkina G.K., Artyushin O.I., Baimukhanova A. // Radiochim. Acta. 2018. Vol. 106. P. 355.