УДК 66.061.351

ЭКСТРАКЦИЯ ИТТЕРБИЯ И ЛЮТЕЦИЯ РАСТВОРАМИ МОНО-2-ЭТИЛГЕКСИЛОВОГО ЭФИРА 2-ЭТИЛГЕКСИЛФОСФОНОВОЙ КИСЛОТЫ В УГЛЕВОДОРОДАХ ИЗ АЗОТНОКИСЛЫХ РАСТВОРОВ И ЕЕ МАТЕМАТИЧЕСКОЕ ОПИСАНИЕ

© 2022 г. Е. В. Амбул^{*a,ó*}, Н. Д. Голецкий^{*a,**}, А. И. Медведева^{*a*}, А. А. Наумов^{*a*}, Е. А. Пузиков^{*a*}, М. А. Афонин^{*b*}, Д. Н. Шишкин^{*a*}

а Радиевый институт им. В.Г. Хлопина,

194021, Санкт-Петербург, 2-й Муринский пр., д. 28 ⁶ Санкт-Петербургский государственный технологический институт (технический университет), кафедра редких элементов и наноматериалов на их основе, 190013, Санкт-Петербург, Московский пр., д. 26 *e-mail: goletsky@khlopin.ru

Поступила в редакцию 13.01.2022, после доработки 09.05.2022, принята к публикации 10.05.2022

Исследована экстракция лютеция и иттербия растворами моно-2-этилгексилового эфира 2-этилгексилфосфоновой кислоты в изопаре-М и *м*-нитробензотрифториде (ФЗ), а также растворами бис(2,4,4-триметилпентил)фосфиновой кислоты в изопаре-М. Методом сдвига равновесия показано, что иттербий и лютеций экстрагируются по катионообменному механизму в виде аддукта $Ln[HA_2]_3$ вплоть до 3 моль/л HNO₃, а с дальнейшим ростом концентрации азотной кислоты в водном растворе механизм экстракции меняется на сольватный. Коэффициенты разделения $\beta(Lu/Yb)$ в исследованных экстракционных системах составляют 1.4–1.6. Полученные данные могут быть использованы для проведения последующих расчетов экстракционного каскада для разделения лютеция и иттербия. Проведена математическая обработка экспериментальных данных с получением констант экстракции. Ключевые слова: лютеций, иттербий, жидкостная экстракция, моно-2-этилгексиловый эфир 2-этилгексилфосфоновой кислоты, бис(2,4,4-триметилпентил)фосфиновая кислота, экстракционное разделение, математическое моделирование.

DOI: 10.31857/S0033831122030054, EDN: FPTQBI

ВВЕДЕНИЕ

Лютеций-177 (¹⁷⁷Lu) – терапевтический радиоизотоп, применение которого в медицинских целях обусловлено оптимальными ядерно-физическими характеристиками: удобным периодом полураспада ($T_{1/2} = 6.7$ сут); приемлемой энергией β-частиц (максимальная энергия 0.5 МэВ), которая позволяет уничтожить небольшие опухоли и метастазы размером 1–3 мм, не затрагивая здоровые ткани; мягким сопутствующим γ -излучением с энергией, достаточной для визуализации и отслеживания миграции препарата в организме пациента ($E_{\gamma} = 113$ кэВ (6.4%) и 208 кэВ (11%)) [1, 2]. Продуктом распада ¹⁷⁷Lu является стабильный изотоп ¹⁷⁷Hf. Кроме того, ¹⁷⁷Lu обладает химическими свойствами, подходящими для маркировки белка (например, пептид dotatate [3]) бифункциональными хелатирующими агентами [4].

Основным методом получения препарата ¹⁷⁷Lu высокой удельной активности является облучение нейтронами стартового материала, содержащего ¹⁷⁶Yb: [5]. Облучение иттербиевой мишени, высокообогащенной по изотопу 176, выгодно тем, что в этом случае за счет β^- -распада изотопа ¹⁷⁷Yb образуется моноизотопный продукт – ¹⁷⁷Lu. Таким образом, задача получения изотопно-чистого целевого продукта сводится к его отделению от материала мишени химическими методами.

Отделение Lu от Yb является сложной задачей, поскольку оба элемента являются лантанидами и близки по своим физико-химическим свойствам. При этом даже небольшое количество примесей стабильных изотопов лютеция на уровне нескольких десятых мас% способно привести к существенному снижению удельной активности ¹⁷⁷Lu. С учетом достаточно короткого периода полураспада ¹⁷⁷Lu разделение следует проводить с использованием высокоселективных методов: экстракционных или хроматографических [6]. Хроматографическое разделение обычно используется для получения химически чистых индивидуальных элементов, но такой процесс является малопроизводительным – концентрирование с получением фракций до 1 г/л трудно поддается наращиванию производительности [7].

Задачи разделения близких по химическим свойствам элементов решаются также экстракционным методом, в частности, при разделении РЗЭ и трансплутониевых элементов. В промышленности для этих целей в последнее время используются фосфорорганические кислоты, такие как Р507 (моно-2-этилгексиловый эфир 2-этигексилфосфоновой кислоты) [8], Cyanex 272 (бис(2,4,4-триметилпентил)фосфиновая кислота) [9, 10], INET-3 (2,3-диметилбутил)(2,4,4'-триметилпентил)фосфиновая кислота [11], Д2ЭГФК (ди-(2-этилгексил) фосфорная кислота) [12]. Известно также, что при разделении Yb/Lu смесями экстрагентов Суапех 272, Р507 и Д2ЭГФК проявляется синергетический эффект [9, 13].

Моно-2-этилгексиловый эфир 2-этилгексилфосфоновой кислоты, выпускаемый под торговой маркой Р507, является перспективным экстрагентом в технологии получения РЗЭ, поскольку системы на его основе обладают более высокими коэффициентами разделения лантанидов [14].

Задача экстракционного метода максимально быстро отделить ¹⁷⁷Lu, ввиду небольшого периода полураспада, от основной массы иттербия с обеспечением возможности наиболее удобного последующего обращения с выделенным лютецием. Данная работа посвящена оценке возможности применения фосфорорганических экстрагентов Р507 и Суапех-272 для выделения чистого лютеция.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Для исследований использовали азотную кислоту и оксиды иттербия и лютеция квалификации х.ч., моно-2-этилгексиловый эфир 2-этилгексилфосфоновой кислоты (P507) производства фирмы Luoyang Zhongda Chemical Co чистотой не менее 99%, бис-(2,4,4-триметилпентил)фосфиновую кислоту (Cyanex-272) фирмы Cytec Solvay Group (содержание основного вещества 90.6%), изопар-М производства Exxon Mobil и *м*-нитробензотрифторид (ФЗ) химической чистотой 99%.

Растворы металлов Yb и Lu готовили по стандартной методике: навески оксидов металлов (99.99%), взвешенные на аналитических весах Mettler Toledo ML303T/A00 (класс точности II), растворяли при нагревании, не доводя до кипения, в концентрированной азотной кислоте (8 моль/л). Раствор упаривали досуха. Получившуюся смешанную соль после остывания растворяли в 1 моль/л HNO₃, переносили в мерную колбу объемом 25 мл и доводили дистиллированной водой до метки. В результате были получены стандартные растворы 20 г/л Lu и 200 г/л Yb. Рабочие растворы готовили путем разбавления стандартного. Рабочие концентрации варьировали от 0.05 до 200 г/л. Концентрации стандартных растворов контролировали методом атомно-эмиссионной спектрометрии с индуктивно связанной плазмой (ISP-OES) на спектрометре Prodigy Plus. Были выбраны следующие характеристические длины волн излучения атомов Yb и Lu: иттербий – 289.138 и 369.419 нм, лютеций – 291.139 и 302.054 нм.

Экстракционные испытания проводили в пробирках объемом 15 мл. Фазы контактировали в течение 5 мин. Реэкстракцию Lu и Yb из органической фазы проводили растворами 5 моль/л HNO₃. Перед отбором реэкстракта на анализ пробы центрифугировали с целью полного расслоения водной и органической фаз. Затем определяли концентрации иттербия и лютеция в реэкстрактах.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Экстракция РЗЭ из азотнокислых сред растворами фосфорорганических кислот может быть представлена в виде уравнения реакции

$$Ln^{3+}{}_{(B)} + nNO_{3(B)}^{-} + m(HA)_{2(o)} =$$

= $[Ln(NO_3)_nA_{3-n}(HA)_{(2m+n-3)}]_{(o)} + (3-n)H^+{}_{(B)},$ (1)
РАДИОХИМИЯ том 64 № 3 2022

Рис. 1. Влияние равновесной концентрации HNO₃ на коэффициенты распределения Yb (а) и Lu (б) при экстракции растворами P507 в изопаре-М. Исходная концентрация P3Э 0.2–0.4 г/л. Точки – эксперимент, линии – расчет.

где Ln^{3+} – катион РЗЭ, а НА – молекула фосфорорганической кислоты. Большинство авторов полагает, что экстрагент присутствует в органической фазе в виде димера (НА)₂ [15], так как значения констант димеризации Р507 и Суапех-272 весьма велико (lg*K* = 20 и 4.2 соответственно [16])

При экстракции РЗЭ растворами Р507 в диапазоне концентраций HNO₃ не выше 4 моль/л наблюдается линейная зависимость логарифмов коэффициентов распределения Yb и Lu от логарифма концентрации HNO₃ с тангенсом угла наклона, близким к –3 (рис. 1). Это позволяет использовать уравнение реакции:

 $Ln^{3+}_{(B)} + 3(HA)_{2(o)} = Ln(HA_2)_{3(o)} + 3H^+_{(B)}; m = 3, n = 0.$ (2)

Константа равновесия данной реакции

$$K_{\rm H} = \frac{\left[{\rm Ln}({\rm HA}_2)_3 \right] \left[{\rm H}^+ \right]^3}{\left[{\rm Ln}^3 + \right] \left[{\rm (HA)}_2 \right]^3}.$$
 (3)

В этом случае коэффициент распределения должен быть обратно пропорционален концентрации протона в кубе и прямо пропорционален концентрации димера экстрагента также в третьей степени:

$$D = K_{\rm H} \frac{\left[\overline{({\rm HA}_2)}\right]^3}{\left[{\rm H}^+\right]^3}.$$
 (4)

Отклонение от линейной зависимости (рис. 1) при концентрации 4 моль/л HNO₃ и выше может

РАДИОХИМИЯ том 64 № 3 2022

быть связано с переходом к экстракции по сольватному (донорно-акцепторному) механизму, который наблюдается, например, при экстракции РЗЭ растворами Д2ЭГФК из кислых сред [17, 18]. Предполагается, что в образовании сольвата принимает участие от 1 до 3 молекул экстрагента [19], однако, учитывая незначительность вклада данной реакции в общий механизм экстракции и отсутствие данных при более высоких концентрациях HNO₃, значение *m* было принято равным 1, как и в работе [4].

$$Ln^{3+}_{(B)} + 3NO^{-}_{3(B)} + (HA)_{2(0)} = H_2[Ln(NO_3)_3A_2)]_{(0)};$$

$$m = 1, n = 3.$$
 (5)

Таким образом, отклонение от линейной зависимости коэффициентов распределения РЗЭ от концентрации HNO₃ в логарифмических координатах в области ее высоких концентраций (свыше 3 моль/л) может быть описано с использованием константы равновесия

$$K_{\rm s} = \frac{\left\lfloor \overline{\mathrm{H}_{2} \left[\mathrm{Ln}(\mathrm{NO}_{3})_{3} \mathrm{A}_{2} \right]} \right\rfloor}{\left[\mathrm{Ln}^{3+} \right] \left[\mathrm{NO}_{3}^{-} \right]^{3} \left[\overline{(\mathrm{HA})_{2}} \right]}.$$
 (6)

Высокие значения коэффициентов распределения иттербия и лютеция при экстракции растворами P507 в изопаре-М осложняют процесс реэкстракции P3Э, что приводит к необходимости использования растворов с высокой концентрацией HNO₃ на этой стадии процесса и затрудняет дальнейшее об-

Концентрация Р507, %	Концентрация Р507, моль/л	<i>К</i> _Н Р507 в изопаре-М		К _Н Р507 в Ф-3		$K_{\rm S}$ (не зависит от разбавителя)	
		Yb	Lu	Yb	Lu	Yb	Lu
5	0.15	2750	4100				
10	0.30	1214	1839	113	173	0.0028	0.0023
15	0.45	763	1147	112	170	0.0038	0.0032
20	0.60	550	850				
30	0.90	363	606	53	80	0.0042	0.0038
40	1.20	236	357	38	56	0.0070	0.0059
50	1.50	161	260	38	55	0.0083	0.0065
75	2.25	120	190				
100	3.00	84	136				

Таблица 1. Значения констант равновесий реакций (2) (K_H) и (5) (K_S) для растворов Р507 в легком и тяжелом разбавителях

ращение с продуктами. Альтернативным вариантом может быть снижение концентрации Р507, однако оно приводит к снижению производительности процесса, так как уменьшается насыщение экстрагента. При концентрации Р507 15% (0.45 моль/л) максимальное насыщение экстракта иттербием стремится к 0.075 моль/л (рис. 2), что соответствует мольному соотношению РЗЭ : Р507 = 1 : 6 в органической фазе и уравнению (2), а также косвенно подтверждает участие молекул димера Р507 в образовании соединений с РЗЭ.

Известно, что использование тяжелых фторированных разбавителей, например, Ф3, также приводит к снижению коэффициентов распределения РЗЭ, поэтому представляло интерес исследование

Рис. 2. Изотермы экстракции Yb в 15%-ных растворах P507 и Cyanex-272 в изопаре-М из 1 моль/л HNO₃.

влияния данного разбавителя на экстракцию РЗЭ растворами Р507. Характер зависимости коэффициентов распределения РЗЭ от концентрации HNO₃ при экстракции Yb и Lu растворами Р507 в ФЗ не зависит от природы разбавителя (рис. 3), однако влияние сольватного механизма начинает проявляться несколько раньше (начиная с 3 моль/л HNO₃), чем при экстракции растворами Р507 в изопаре-М.

Зависимости коэффициентов распределения иттербия и лютеция от концентрации P507 в изопаре-М в логарифмических координатах (рис. 4) имеют линейный вид с тангенсом наклона, близким к 2, а не к 3, что может быть следствием повышения степени ассоциации молекул экстрагента при увеличении его концентрации. Это приводит к снижению значений констант экстракции P3Э с ростом концентрации P507 (табл. 1). Величины концентрационных констант равновесия уравнения (5) оказались одинаковыми для изопара-М и Ф3, причем для лютеция они оказались ниже, чем для иттербия.

Для учета данного эффекта, вызванного влиянием разбавителя, может быть использовано уравнение

$$gK = \lg K^0 + a\lg(C^0_{HA}), \qquad (7)$$

где $C_{\rm HA}$ – концентрация Р507, $C_{\rm HA}{}^0$ – концентрация неразбавленного экстрагента, lg K^0 – константа равновесия реакции (2) или (5) для неразбавленного Р507. Похожие зависимости использованы в работе [14], где влияние концентрации Р507 на логарифмы констант экстракции РЗЭ из хлоридных сред описывалось членом $BC_{\rm HA}{}^{\nu}$.

На рис. 5 представлена линейная зависимость логарифмов констант равновесий (2) и (5) от лога-

Рис. 3. Влияние равновесной концентрации HNO₃ на коэффициенты распределения Yb (a) и Lu (б) при экстракции растворами P507 в Ф-3 (исходная концентрация P3Э 0.2–0.4 г/л).

Рис. 4. Влияние концентрации Р507 в изопаре М (0.15, 0.3, 0.45, 0.9, 1.2, 1.5, 2.25, 3 моль/л) на коэффициенты распределения Yb (a) и Lu (б) при их экстракции из растворов HNO₃ различной концентрации (исходная концентрация РЗЭ 0.2 г/л).

рифма относительной концентрации Р507. Рассчитанные методом наименьших квадратов значения угловых коэффициентов a и значений параметров lg K^0 представлены в табл. 2. К сожалению, полученные значения lg K^0 оказались различными для этих двух разбавителей, что не позволило сократить число используемых параметров.

Практически параллельный ход зависимостей коэффициентов распределения РЗЭ от концентра-

ции Р507 и от концентрации HNO₃ свидетельствует о том, что значения коэффициентов разделения Yb и Lu будут несколько увеличиваться при понижении концентрации экстрагента, оставаясь в диапазоне 1.4–1.6 (коэффициенты разделения были получены как отношение экспериментально полученных коэффициентов распределения из растворов, содержащих Yb и Lu в различных соотношениях). При увеличении концентрации HNO₃ в водном растворе все большую роль начинает играть сольватный ме-

РАДИОХИМИЯ том 64 № 3 2022

АМБУЛ и др.

,	1 1 21		1	1 '	1 1	1	
	Параметр		P.	Cyanex-272			
Уравнение реакции		изопар-М		Ф3		изопар-М	
		Yb	Lu	Yb	Lu	Yb	Lu
(2)	$\lg K^0$	1.95	2.13	1.27	1.43	-1.22	-0.87
	а	-1.16	-1.14	-0.85	-0.88	1.26	1.23
(5)	$\lg K^0$	-1.93	-2.01	-1.93	-2.01	-3.3	-3.3
	а	0.630	0.627	0.630	0.627	_	_
(8)	$\lg K^0$					-1.82	-1.75
	а					-0.89	-0.90
(9)	$\lg K^0$					-1.8	-1.8
	а					—	_

Таблица 2. Значения параметров уравнения (7) для Yb и Lu при их экстракции растворами P507 в изопар-М или ФЗ

ханизм экстракции РЗЭ, приводящий к снижению коэффициентов разделения.

Известно, что использование бис-(2,4,4-триметлпентил)фосфиновой кислоты (Суапех-272) в качестве экстрагента вместо Р507 приводит к снижению коэффициентов распределения РЗЭ примерно на 2 порядка при сохранении высоких значений коэффициентов разделения [20, 21], поэтому представляло интерес изучение закономерностей экстракции Yb и Lu растворами Суапех-272 в изопаре-М.

В отличие от системы с Р507, зависимости логарифмов коэффициентов распределения Yb и Lu от логарифма концентрации HNO₃ при концентрации менее 1 моль/л в данной системе имеют тангенс угла наклона около –2.5 (рис. 6), что приводит к не-

Рис. 5. Зависимость логарифмов констант экстракции Yb и Lu по уравнениям (2) и (5) от логарифма концентрации P507 в различных разбавителях.

обходимости использования для описания экстракции РЗЭ в этой области не только уравнения (2), но и уравнения (8), которое получается из уравнения (1) при m = 2 и n = 1:

$$Ln^{3+}_{(B)} + NO_{3(B)}^{-} + 2(HA)_{2(0)} =$$

= H₂[Ln(NO₃)A₄]₍₀₎ + 2H⁺_(B); m = 2, n = 1. (8)

С повышением концентрации кислоты в водной фазе выше 3 моль/л при экстракции РЗЭ наблюдается возрастание коэффициентов распределения, которое может быть связано с постепенным переходом к сольватному механизму экстракции. При этом с повышением концентрации Суапех-272 угол наклона на восходящей части зависимости коэффициента распределения от концентрации HNO₃ снижается (рис. 6), что может быть описано с использованием уравнения (5) и уравнения (9), которое получается из уравнения (1) при m = 1 и n = 2:

$$Ln^{3+}{}_{(B)} + 2 NO^{-}_{3(B)} + (HA)_{2(o)} = H[Ln(NO_3)_2A_2]_{(o)} + H^{+}{}_{(B)};$$

$$m = 1, n = 2.$$
(9)

Тангенс угла наклона зависимостей коэффициента распределения РЗЭ от концентрации Суапех-272 в изопаре-М при концентрации 1 и 3 моль/л HNO₃ (рис. 7) близок к 1.6, что соответствует протеканию совокупности реакций (2), (5), (8) и (9).

Значения угловых коэффициентов a и значений параметров $\lg K^0$ уравнения (7) представлены в табл. 1. Из них следует, что значения параметров aуравнения (7) практически не отличаются для Yb и Lu, что показывает независимость коэффициентов разделения этих элементов от концентрации экстрагента. Значения констант равновесий (5) и (9) для Yb и Lu совпадают и практически не зависят от концентрации экстрагента, что подтверждает снижение коэффициентов разделения этих элементов при

РАДИОХИМИЯ том 64 № 3 2022

Рис. 6. Влияние концентрации HNO₃ на коэффициенты распределения Yb (а) и Lu (б) при экстракции растворами Cyanex-272 в изопаре-М (исходная концентрация РЗЭ 0.2–0.4 г/л. Точки – эксперимент, линии – расчет).

Рис. 7. Влияние концентрации Суапех-272 в изопаре-М на коэффициенты распределения Yb (а) и Lu (б) при их экстракции из растворов HNO₃ различной концентрации (исходная концентрация РЗЭ 0.2–0.4 г/л).

концентрации выше 2 моль/л HNO₃. При более низкой концентрации коэффициенты разделения пары Yb/Lu возрастают и достигают значений 1.4–1.6, что позволяет рассматривать данный экстрагент в качестве альтернативы P507. Вместе с тем, низкое насыщение Cyanex-272 (рис. 2) обусловливает необходимость использования Cyanex-272 лишь в смеси с другими экстрагентами.

Средняя погрешность расчета коэффициентов распределения по модели не превышает 7–8 отн%.

ЗАКЛЮЧЕНИЕ

Исследованы экстракционные системы для разделения лютеция и иттербия на основе кислых фосфорорганических экстрагентов P507 и Cyanex-272 из азотнокислых растворов. В ходе экспериментов получены результаты как с использованием легкого разбавителя (изопар-М), так и тяжелого разбавителя ФЗ. Коэффициенты разделения лютеция и иттербия в исследованных экстракционных системах составляют 1.4–1.6. Полученные экспериментальные

РАДИОХИМИЯ том 64 № 3 2022

данные по экстракеции лютеция и иттербия с P507 использованы для построения математической модели, позволяющей предсказать поведение Yb и Lu в экстракционном каскаде. Испытаниям технологических режимов разделения лютеция и иттербия будет посвящена отдельная публикация.

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют об отсутствии конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- Болдырев П.П., Загрядский В.А., Ерак Д.Ю., Курочкин А.В., Марковский Д.В., Михин О.В., Проиин М.А., Семенов А.Н., Хмызов Н.В., Чувилин Д.Ю., Яшин Ю.А. // Мед. физика. 2016. № 3. С. 54–59.
- Pillai A.M., Knapp F.F., Jr. // Curr. Radiopharm. 2015. Vol. 8, N 2. P. 78–85.
- Strosberg J., El-Haddad G., Wolin E. et al. // New England J. Med. 2017. Vol. 376, N 2. P. 125–135. https://doi.org/1056/NEJMoa1607427
- 4. *Нуртдинов Р.Ф., Прошин М.А., Чувилин Д.Ю.* // Радиохимия. 2016. Т. 58, № 2. С. 150–154.
- Тарасов В.А., Романов Е.Г., Кузнецов Р.А. // Изв. Самарск. науч. центра РАН. 2013. №4(5). С. 1084– 1090.
- Monroy-Guzman F., Jaime Salinas E. // Soc. Quím. México. 2015. Vol. 59, N 2. P. 143–150.
- 7. *Косынкин В.Д., Молчанова Т.В., Жарова Е.В.* // Атом. энергия. 2016. Т. 121, № 6. С. 346–350.
- Jing Y., Chen J., Chen L., Su W. Liu Y., Li D. Extraction Behaviors of Heavy Rare Earths with Organophosphoric Extractants: The Contribution of Extractant Dimer Dissociation, Acid Ionization and Complexation. A

Quantum Chemistry Study // The Journal of Physical Chemistry A. 2017. Vol. 121 (12). P. 2531–2543.

- Quinn J.E., Soldenhoff K.H., Stevens G.W., Lengkeek N.A. // Hydrometallurgy. 2015. Vol. 157. P. 298– 305.
- Li K., Freiser H. // Solvent Extr. Ion Exch. 1986. Vol. 4, N 4. P. 739–755. https://doi.org/10.1080/07366298608917890
- 11. Wang J., Xie M., Wang H., Xu Sh. // Hydrometallurgy. 2016. Vol. 167. P. 39–47.
- 12. Khaironie M.T., Masturah M., Meor Y.M.S. // J. Kejuruteraan. 2015. Vol. 27. P. 57–62.
- 13. Xie F., Zhang T.A., Dreisinger D., Doyle F. // Miner. Eng. 2014. Vol.56. P. 10–28.
- 14. *Wang J., Chen G., Xu Sh., Yin Zh., Zhang Q. //* J. Rare Earths. 2016. Vol. 37. P. 724–730.
- Афонин М.А., Нечаев А.В., Сибилев А.С., Смирнов А.В. // Тр. Кольск. науч. центра РАН. Хим. науки. 2018. С. 215–219. https://doi.org/10.25702/KSC.2307-5252.2018.9.1.215-219
- Fu X., Hu Zh., Liu Y., Golding J.A. // Solvent Extr. Ion Exch. 1990. Vol. 8. P. 573–595.
- 17. *Михайличенко А.И., Михлин, Е.Б., Патрикеев Ю.Б.* Редкоземельные металлы. М.: Металлургия, 1987. 232 с.
- 18. Яцимирский К.Б., Костромина Н.А., Шека З.А. и Яцимирский К.Б., Костромина Н.А., Шека З.А., Давиденко Н. К., Крисс Е.Е., Ермоленко В.И. Химия комплексных соединений редкоземельных элементов. Киев: Наук. думка, 1966. 494 с.
- 19. *Черемисина О.В.* // Зап. Горного ин-та. 2015. Т. 214. С. 40–50.
- Saleh M.I., Bari Md.F., Saad B. // Hydrometallurgy. 2002. Vol. 63. P. 75–84.
- Swain B., Out E.O. // Sep. Purif. Technol. 2011. Vol. 83. P. 82–90.