УДК 548.31

ОСОБЕННОСТИ СТЕРЕОХИМИИ УРАНА В ОКСОФТОРИДАХ УРАНИЛА

© 2022 г. В. Н. Сережкин*, Д. В. Пушкин, Л. Б. Сережкина

Самарский национальный исследовательский университет им. акад. С. П. Королева, 443011, Самара, ул. Акад. Павлова, д. 1 *e-mail: serezhkin@samsu.ru

Поступила в редакцию 26.08.2021, после доработки 12.12.2021, принята к публикации 16.12.2021

Проведен кристаллохимический анализ соединений, в структурах которых ионы UO_2^{2+} координируют атомы фтора и кислорода. Выяснено, что в 193 комплексах, имеющих состав UO_bF_c при $b \ge 2$ и $c \ne 0$, атомы U(VI) проявляют координационные числа 7 и 8. Установлено, что объем полиэдров Вороного– Дирихле атомов U(VI) в комплексах UO_bF_c закономерно уменьшается с ростом параметра $\lambda = c/(b + c)$. Систематизированы данные о важнейших особенностях топологии структурных группировок, возникающих при взаимном связывании комплексов UO_bF_c . Установлено, что 1D (или 3D) структурные группировки, образованные пентагональными бипирамидами UO_2F_5 , которые связаны между собой только общими экваториальными вершинами или ребрами, даже при разном соотношении F : U могут иметь идентичную топологию.

Ключевые слова: уранил, комплексы, фториды, оксофториды, полиэдры Вороного-Дирихле.

DOI: 10.31857/S0033831122040037, EDN: FRLGHP

На примере соединений, содержащих в структурах кристаллов координационные полиэдры (КП) или комплексы UX_n , где X = O[1], S[2], Se[3] или Te [4], а *n* – координационное число (КЧ), было установлено, что объем полиэдров Вороного-Дирихле (ПВД) атомов урана определяется их степенью окисления и природой халькогена Х, но практически не зависит от КЧ и формы КП. В то же время при кристаллохимическом анализе соединений уранила, содержащих гетеролигандные комплексы $U^{VI}O_bN_c$ [5] или $U^{VI}O_bCl_c$ [6], выяснилось, что объем ПВД атомов урана линейно увеличивается с ростом параметра $\lambda = c/(b+c)$, который характеризует относительное содержание атомов N или Cl в координационной сфере иона уранила. Эти факты позволили предположить, что зависимость объема ПВД атомов U(VI) в гетеролигандных комплексах $UO_b Y_c$ (Y = N или Cl) от величины λ обусловлена увеличением длины экваториальных связей U-Y по сравнению со связями U-O, поскольку орбитальные (r_0) и слейтеровские (r_s) радиусы N или Cl больше, чем для атомов О. Так, для О, N и Cl соответственно $r_{\rm o} = 0.450, 0.521$ и 0.725 Å, а $r_{\rm s} = 0.60, 0.65$ и

1.00 Å [7]. Поскольку для атомов F как r_o (0.396 Å), так и r_s (0.50 Å [7]) меньше, чем для атомов O, то с указанной точки зрения следовало ожидать, что в комплексах UO_bF_c с ростом параметра λ будет наблюдаться не увеличение (как в случае UO_bN_c или UO_bCl_c), а уменьшение объема ПВД атомов U(VI). Проверка указанной гипотезы явилась основной целью данной работы, посвященной анализу особенностей стереохимии урана в соединениях уранила, содержащих КП состава UO_bF_c .

Как известно [8, 9], фторсодержащие комплексы уранила давно применяются на некоторых стадиях химической переработки урансодержащих материалов. В кристаллоструктурных базах данных [10, 11] в настоящее время содержатся сведения примерно для 130 соединений, содержащих КП состава UO_bF_c . Отметим, что две трети этих соединений были получены и охарактеризованы за два последних десятилетия, поскольку при гидротермальном синтезе кристаллов соединений U(VI) стали часто применять водные растворы HF [12]. Несмотря на значительный объем накопленной информации, исследование топологии структурных группировок, образованных только атомами U, O и F, до сих пор не проводилось. Поэтому дополнительной целью работы явился анализ влияния отношения F : U на специфику строения соединений, содержащих комплексы UO_bF_c , с позиций развиваемой нами стереоатомной модели строения кристаллов (СМСК [1–6, 13–16]), которая опирается на параметры ПВД атомов.

ЭКСПЕРЕМЕНТАЛЬНАЯ ЧАСТЬ

Объектами исследования явились все соединения U(VI), сведения о которых имеются в базах кристаллоструктурных данных [10, 11] и удовлетворяют следующим требованиям: структура кристалла, содержащего КП UO_bF_c при $b \ge 2$ и c > 0, охарактеризована с фактором расходимости 0 < R < 0.1, при этом отсутствует разупорядоченность в размещении любых атомов. Без учета ряда дублирующих записей, которые встречаются в базах данных [10, 11], указанным требованиям отвечали сведения для 112 соединений. В структурах кристаллов содержалось 193 кристаллографически разных комплекса UO_bF_c, кроме которых имелось 9 атомов U(VI) в составе КП UO₇, а также два атома U(IV), образующих КП UF_9 . Атомы U(IV) с КП UF₉ содержались в структуpe $[N(CH_2CH_2NH_3)_3]^{3+}[UO_2F_3]^{-}[U_2F_{10}]^{2-}$ {FATKOB} [17], в которой они образуют изолированные слои состава [U₂F₁₀]²⁻. Здесь и далее в фигурных скобках указан цифровой или буквенный код соединения в базах данных [10] или [11]. При статистической обработке результатов, а также анализе топологии структурных группировок (СГ), образованных комплексами UO_bF_c, упомянутые выше девять КП $U^{VI}O_7$ и два КП $U^{IV}F_9$ не учитывали.

На основании данных о параметрах элементарных ячеек кристаллов, их симметрии и координатах базисных атомов для всех соединений были рассчитаны характеристики ПВД атомов, а по методу пересекающихся сфер [13] – их КЧ. Все расчеты проводили с помощью комплекса программ TOPOS-InterMol [16]. В общем случае ПВД атома урана имеет состав UX_nZ_m, где X – О или F, а Z – атомы второй координационной сферы, ПВД которых также имеют общую грань с ПВД атома урана, но контакты U/Z не являются химическими связями; n – КЧ атома урана, а сумма n + m равна общему числу граней ПВД. Классифицировать все межатомные контакты любого атома урана на химические связи U–X и невалентные взаимодействия U/Z (слэш указывает наличие общей грани у ПВД атомов U и Z) позволяет метод пересекающихся сфер [13], который учитывает характеристики ПВД всех атомов, присутствующих в структуре кристалла. При отнесении КП UO_bF_c к определенному геометрическому типу, как и ранее [1–4], рассматривали «упрощенные» ПВД, которые не учитывают невалентные взаимодействия U/Z.

Проведенный анализ показал, что катион-катионные взаимодействия между ионами UO₂²⁺ [18] в кристаллах оксофторидов уранила отсутствуют. Поэтому атомы кислорода всех практически линейных ионов уранила по отношению к урану являются монодентатными концевыми лигандами М¹ [19]. Независимо от природы и состава кислородсодержащих молекул (например, H₂O, OS(CH₃)₂, OP(C₆H₅)₃ и др.) или анионов (в частности, OH⁻, SO₄²⁻, CH₃PO₃²⁻, C₂O₄²⁻ и др.), координированных ионами уранила, для упрощения анализа топологии СГ, образованных комплексами UO_bF_c , все экваториальные атомы кислорода в общем случае условно рассматривались как одноатомные анионы О²⁻. В зависимости от числа экваториальных связей О-U (1 или 2), образованных такими атомами кислорода, они считались соответственно лигандами M¹ и М². Фторид-ионы, входящие в состав комплексов UO_bF_c, связаны с 1, 2 или 3 атомами урана и рассматриваются соответственно как концевые (M¹) и мостиковые (М² или М³) лиганды [19].

В качестве количественной характеристики топологии СГ, образованных комплексами UO_bF_c , использовали координационные последовательности $\{C_P^N\}$ [20], которые указывают число (C_P) атомов урана, связанных с базисным всеми мостиковыми лигандами первой (N = 1), второй (N = 2) и последующих координационных сфер. Для описания роли атомов О и F в организации СГ использовали кристаллохимические формулы (КХФ) [21, 22], в которых числитель дробных подстрочных индексов указывает количество атомов О или F, связанных с атомом U, а знаменатель показывает КЧ атомов неметалла по отношению к атомам урана. Для упрощения КХФ любой ион уранила рассматривается как единый координационный центр A = UO_{2/1}.

В частности, в соединениях с КП U(VI) в виде пентагональной бипирамиды при наличии в эквато-

Состав КП «атома» А (А = UO _{2/1})	Число КП	λ	V _{VDP} , Å ³	R _{sd} , Å	<i>d</i> (U=O), Å	<i>d</i> (U–F), Å	<i>d</i> (U–O), Å
AF ₅	63	0.714	8.58(15)	1.270(8)	1.769(28)	2.310(49)	-
AF ₄ O	22	0.571	8.72(10)	1.277(5)	1.767(16)	2.310(42)	2.412(92)
μuc -AF ₃ O ₂	8	0.429	8.79(13)	1.280(6)	1.772(24)	2.313(64)	2.368(69)
$m pahc-AF_3O_2$	3	0.429	8.81(4)	1.281(2)	1.766(10)	2.292(65)	2.426(111)
μuc -AF ₂ O ₃	37	0.286	8.95(9)	1.288(5)	1.776(12)	2.343(42)	2.358(46)
$m pa Hc-AF_2O_3$	25	0.286	8.95(21)	1.288(11)	1.768(35)	2.326(33)	2.376(40)
AFO ₄	32	0.143	9.01(9)	1.291(4)	1.776(13)	2.312(37)	2.372(57)
μuc -AF ₂ O ₄	1	0.25	9.22	1.301	1.778(0)	2.353(0)	2.493(1)
$m pa Hc-AF_2O_4$	2	0.25	9.21(5)	1.300(2)	1.775(9)	2.355(11)	2.498(37)

Таблица 1. Некоторые характеристики КП атомов U(VI) в комплексах UO_bF_c^a

а λ = c/(b + c); V_{VDP} – объем ПВД атома U; R_{sd} – радиус сферы, объем которой равен V_{VDP}. В трех последних столбцах указана средняя длина соответствующих связей.

риальной плоскости только атомов фтора простейший комплекс имеет КХФ $AF_{5/1} = AF_5$ (I). Последовательное превращение экваториальных атомов фтора в мостиковые лиганды M² сопровождается закономерным изменением КХФ и состава возникающих комплексов: соответственно AF_{1/2}F_{4/1} = $A_2F^2F_8 = A_2F_9$ (II), $AF_{2/2}F_{3/1} = AF^2F_3 = AF_4$ (III), $AF_{3/2}F_{2/1} = A_2F_3F_4 = A_2F_7$ (IV), $AF_{4/2}F_{1/1} = AF_2^2F =$ AF₃ (V) и AF_{5/2} = $A_2F_5^2 = A_2F_5$ (VI). Как видно из указанных КХФ, при фиксированном КЧ урана в ряду комплексов **I–VI** отношение F : U закономерно уменьшается и равно соответственно 5, 4.5, 4, 3.5, 3 и 2.5. Существенно, что в том же ряду рост числа мостиковых атомов F² сопровождается закономерным увеличением от 0 до 5 теоретически возможного числа атомов U, которые связаны с центральным U связями U–F–U. Отметим, что реальное значение C_{P}^{-1} , которое является первым членом координационных последовательностей $\{C_{P}^{N}\}$, зависит от способа связывания соседних КП. Например, для комплекса AF_{5/2} реальная величина C_P¹ совпадает с теоретическим значением 5 лишь в том случае, если все соседние комплексы связаны с центральным только общими вершинами. Если же комплексы АF_{5/2} образуют одно или два общих ребра F-F, то реальная величина C_p^{-1} уменьшается соответственно до 4 или 3. Аналогичная ситуация наблюдается и в гетеролигандных комплексах. В частности, для комплексов AF_{4/2}O_{1/1} максимальное значение $C_P^{-1} = 4$, но в зависимости от числа имеющихся общих эквато-

РАДИОХИМИЯ том 64 № 4 2022

риальных ребер КП (0, 1 или 2) реальная величина C_P^{-1} равна соответственно 4, 3 и 2.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

В рассмотренных оксофторидах присутствует 190 атомов U(VI) с КЧ 7 и три с КЧ 8, образующих КП в виде соответственно пентагональной и гексагональной бипирамиды, в аксиальных позициях которых находятся атомы кислорода иона уранила. Длина связей U=O в ионах уранила в среднем равна 1.771(23) Å и практически не зависит от КЧ U(VI) (табл. 1). В структурах кристаллов атомы урана занимают позиции с точечной симметрией C₁, C_S, C₂, C_{2v} или C_i (соответственно 158, 21, 7, 5 и 2 атома), поэтому все КП и дуальные им ПВД в той или иной степени искажены. Как и следовало ожидать, центросимметричные позиции С_і отвечают двум атомам с КЧ 8 (оба в структуре {TONDAC} [23] с транс-размещением фторид-ионов в экваториальной плоскости комплексов AF₂O₄). В третьем комплексе такого же состава фторид-ионы находятся в цис-положении и атом урана имеет позиционную симметрию C₂ ({UJUBEG} [24]). Так как в базах данных [10, 11] по рефкодам можно легко найти детальные сведения (включая библиографические) о каждом соединении, для сокращения объема статьи химический состав веществ не приводится.

При КЧ 7 встречаются все пять возможных типов КП: AF_5 , AF_4O , AF_3O_2 , AF_2O_3 и AFO_4 , причем два из них – AF_2O_3 и AF_3O_2 – имеют геометриче-

Рис. 1. Зависимость телесных углов (Ω , выражены в % от 4 π ср) 1368 граней ПВД атомов U(VI) в 193 комплексах UO_bF_c от длины расстояний d(U–X). Указанной линии регрессии отвечает уравнение (1). Все точки с $\Omega \approx 0\%$ и $d \approx 2.8$ –3.6 Å отвечают невалентным взаимодействиям U/Z.

ские изомеры, которые различаются способом взаимного положения (*цис*- или *транс*-) двух химически идентичных атомов (соответственно F или O) в экваториальной плоскости пентагональной бипирамиды. Средняя величина вектора D_A , который характеризует смещение 193 атомов урана из центра тяжести их ПВД, составляет 0.019(11) Å и в пределах 2 σ равна 0. Степень сферичности ПВД атомов U в оксофторидах уранила, которую характеризует безразмерный второй момент инерции G₃, в среднем равна 0.0835(3) и согласуется с величиной G₃ (0.084(1) [15]), отвечающей ПВД атомов U(VI) с КЧ 7 или 8, координированных только атомами кислорода.

В обсуждаемой выборке ПВД 193 атомов урана в сумме имеют 1368 граней, 1354 из которых соответствуют связям U=O, U–O или U–F. В роли атомов Z, участвующих в невалентных взаимодействиях U/Z, которым отвечает 14 граней, выступают атомы H, C или O. Химическим связям атомов урана отвечают грани ПВД, которым соответствуют телесные углы Ω в области от ≈24 до 8% от 4 π ср, тогда как для невалентных взаимодействий U/Z значения $\Omega < 1\%$ (рис. 1). Для 1368 граней ПВД зависимость Ω от межатомных расстояний U–X (X – O или F) описывается единым уравнением

$$\Omega(U-X) = 49.3(1) - 16.09(7)d(U-X)$$
(1)

с достоверностью аппроксимации $R^2 = 0.98$.

Независимо от КЧ и состава КП атомов урана средняя длина связей U–F во всех случаях меньше (в среднем на 0.09(5) Å), чем длина экваториальных связей U-O (табл. 1). Наблюдающаяся вариация длины связей U-O и U-F (рис. 1, табл. 1) вызвана разной кристаллохимической ролью атомов неметаллов. Так, все экваториальные атомы кислорода, упрощенно рассматриваемые как ионы O²⁻, реально связаны с атомами H, C, Si, P, As, S, Se, Cr или W, которые входят в состав кислородсодержащих молекул или анионов, координированных ионами уранила, и влияют на длину связей U-O. Анионы F- кроме 1, 2 или 3 связей с атомами U(VI) во всех случаях образуют связи F-R с внешнесферными катионами R и/или водородные связи F…H с водородсодержащими ионами или молекулами, которые присутствуют в структуре большинства (105 из 112) кристаллов оксофторидов уранила. В частности, средняя длина связей U-F для атомов F, выступающих по отношению к ионам уранила в роли лигандов M^1 , M^2 или M^3 , равна соответственно 2.26(5), 2.33(4) и 2.41(4) Å, при этом длина связей U-F в целом лежит в диапазоне 2.16-2.52 Å (среднее -2.32(5) Å). Для сравнения заметим, что длина экваториальных связей U-O в тех же соединениях изменяется от 2.11 до 2.58 Å и в среднем равна 2.38(6) Å.

Как видно из табл. 1, геометрическая изомерия практически не влияет на объем ПВД (V_{VDP}) атомов урана в оксофторидах уранила. Так, для *цис*- и *транс*-AF₂O₃ среднее V_{VDP} совпадает, а для изомеров AF₃O₂ или AF₂O₄ различие не превышает 0.02 Å³. На основании данных для 6 комплексов UO_bF_c с разным $\lambda = c/(b + c)$ (для *цис*- и *транс*-изомеров использована средняя величина V_{VDP}), а также с учетом $V_{VDP} = 9.2$ Å³ для КП U^{VI}O_n при *n* в диапазоне от 6 до 9 [1], было установлено, что зависимость V_{VDP} атомов U(VI) от λ в оксофторидах описывается уравнением

$$V_{\rm VDP} = 9.23 - 0.896 \cdot \lambda$$
 (2)

с достоверностью аппроксимации $R^2 = 0.84$. Как видно из рис. 2, значительное отклонение от линии регрессии отвечает только точке для комплексов AF₂O₄ с KЧ 8, без учета которой величина R² увеличивается до 0.99 (при этом коэффициенты зависимости (2) равны соответственно 9.17 и 0.824). Можно допустить, что повышенное значение $V_{\rm VDP}$ для комплексов AF₂O₄ вызвано стерическими затруднениями, поскольку средняя длина экваториальных связей U–F и U–O для комплексов с KЧ 8

Рис. 2. Зависимость среднего значения объема ПВД (V_{VDP}) атомов U(VI) в комплексах UO_bF_c (I) и UO_bCl_c (II) от λ , где $\lambda = c/(b + c)$. Линии регрессии для UO_bF_c отвечает уравнение (2). Для UO_bCl_c использованы данные работы [6].

длиннее, чем при КЧ 7 соответственно на ≈ 0.04 и 0.11 Å (табл. 1). Существенно, что в согласии с исходной гипотезой для комплексов UO_bF_c рост параметра λ действительно приводит к уменьшению, а не увеличению V_{VDP} атомов U(VI), как в случае комплексов UO_bCl_c [6], характеристики которых для сравнения указаны на рис. 2.

Сведения о характеристиках 34 обнаруженных типов СГ, содержащих только атомы U, O, F и возникших за счет взаимного связывания комплексов UO_bF_c , систематизированы в табл. 2. В ней не указаны одноядерные комплексы, которые не связаны между собой и встречаются сравнительно редко (всего 10 соединений). Так, охарактеризованы квазиизолированные комплексы AF₅ (структуры {24724}, {63355}, {201233}), AF₄O ({BEZLEX}, {DAPWUM}, μuc -AF₃O₂ {DIKKOX}, μuc -AF₂O₃ ({YAYLIV}, {YAYLER}) μ AFO₄ ({VAKTIL}, {AXAFAG}).

По сравнению с мономерами в кристаллах оксофторидов уранила значительно чаще (более, чем в четыре раза, табл. 2) встречаются димеры, тетрамеры или пентамеры (рис. 3). В олигомерах отношение F : U изменяется от 4 до 0.5 (табл. 2), причем наиболее характерны димеры из бипирамид *цис*-AF₂O₃ с общим ребром F–F (рис. 3, а). Известны единичные случаи, когда такие димеры сосуществуют с мономерами *цис*-AF₂O₃ (структура {YAYLER}) или же имеют общее ребро F–O (СГ № 5 в табл. 2 из бипирамид AFO₄). Отметим, что фторид-ионы, которые координированы по типу M³, присутствуют только в пентамерах, содержащих атомы U с KЧ 8 (рис. 3, ж).

Наиболее часто в оксофторидах уранила встречаются 1D (цепочечные) СГ, которые присутствуют в структурах 45 из 112 соединений. Из восьми обнаруженных типов 1D комплексов (рис. 4), в которых отношение F: U лежит в диапазоне от 3.5 до 0.5, чаще всего реализуются цепи, образованные пентагональными бипирамидами *транс*-АF_{2/2}O_{3/1} (СГ № 23 в табл. 2, рис. 4, з), которые связаны мостиковыми атомами фтора. Отметим, что в структуре {OVUDAL} [31] (СГ № 13, рис. 4, а) бипирамиды связаны в цепи общими ребрами F-O. Уникальной особенностью кристаллов $Na_2(UO_2)_2(SiO_4)$ F₂ {89033} [36] (СГ № 17, рис. 4, в), отличающей их от аналогов СГ № 15 и 16 с таким же строением цепей, является наличие общих ребер О-О, тогда как фторид-ионы в указанном силикате являются концевыми лигандами М¹.

Рис. 3. Строение димеров (а–в), тетрамеров (г–е) и пентамеров (ж) в структурах оксофторидов уранила. Атомы U находятся в центрах указанных пента- (UO₂X₅) или гексагональных (UO₂X₆) бипирамид, экваториальные позиции которых заняты атомами X (F или O, табл. 2).

Таблиц	а 2. Некоторь	ые характеристики структурных гру	шпировок (СГ), состоящих 1	из комплексов UO _b	F _c			
Homep CT	O тношение $F^-: UO_2^{2+}$	$KX\Phi (A = UO_{2/1})^a$	Coctab CT ⁶	Размерность ^б	$\{C_P^5\}^{B}$	Число соединений	Номер рисунка	Рефкод	Ссылка
-	4	$AF_{2/2}F_{3/1}$	$\mathrm{UF}_4\mathrm{O}_2$	02	1, 0, 0, 0, 0	4	3, а	HOYXAU	[21]
2	3.5	${ m AF}_{2/2}{ m F}_{3/1}$ ' ${ m AF}_{2/2}{ m F}_{2/1}{ m O}_{1/1}$	$\mathrm{U}_{2}\mathrm{F}_{7}\mathrm{O}_{5}$	0^2	1, 0, 0, 0, 0	1	3, a	CAWGAJ	[25]
б	2	$AF_{2/2}F_{1/1}O_{2/1}$	$\mathrm{UF}_2\mathrm{O}_4$	0^2	1, 0, 0, 0, 0	5	3, a	14068	[26]
4	1	$AF_{2/2}O_{3/1}$	UFO5	0^{2}	1, 0, 0, 0, 0	16	3, a	426595	[27]
5	0.5	$AF_{1/2}O_{1/2}O_{3/1}$	U_2FO_{11}	0^{2}	1, 0, 0, 0, 0	1	3, a	PODVUB	[28]
9	1	$\mathrm{AF}_{2/2}\mathrm{O}_{4/1}$	UFO_6	0^{2}	1, 0, 0, 0, 0	1	3,6	UJUBEG	[24]
7	0.5	$\mathrm{AF}_{1/2}\mathrm{O}_{4/1}$	U_2FO_{12}	0^2	1, 0, 0, 0, 0	6	3, b	BAZNUN	[29]
8	1	$AF_{2/2}O_{3/1}$	UFO_5	04	2, 1, 0, 0, 0	1	$3, \Gamma$	WAQKAB	[30]
6	0.5	$AF_{1/2}O_{4/1}$ ' $AF_{1/2}O_{2/2}O_{2/1}$	U_2FO_{11}	04	1, 1, 1, 0, 0 2 1 0 0 0	2	З, д	OVUCOY	[31]
10		$AF_{2,0}O_{2,1}$, $AF_{1,0}O_{2,1}$	1 JFO.	0^4	$\frac{2}{1}, \frac{1}{1}, \frac{3}{1}, \frac{3}{0}, \frac{3}{0}$		3 6	POPPAO	[32]
0				>	2, 1, 0, 0, 0	1))		
11	0.8	${ m AF}_{2/3}{ m O}_{4/2}$ ' ${ m 4AF}_{1/3}{ m F}_{1/2}{ m O}_{1/2}{ m O}_{2/1}$	$\mathrm{U}_{5}\mathrm{F}_{4}\mathrm{O}_{22}$	02	4, 0, 0, 0, 0		З, ж	TONDAC	[23]
					2, 2, 0, 0, 0				
12	3.5	$\mathrm{AF}_{3/2}\mathrm{F}_{2/1}$	$\mathrm{U}_{2}\mathrm{F}_{7}\mathrm{O}_{4}$	1D	2, 2, 2, 2, 2	б	4, a	VETYEB	[22]
13	0.5	$AF_{1/2}O_{2/2}O_{2/1}$	$\rm U_2FO_{10}$	1D	2, 2, 2, 2, 2	1	4, a	OVUDAL	[31]
14	3.33	$AF_{4/2}F_{1/1}$ ' $AF_{3/2}F_{2/1}$	$\mathrm{U}_{4}\mathrm{F}_{13}\mathrm{O}_{8}$	ID	3, 3, 2, 3, 3	2	4,6	YEFBIW	[33]
					3, 2, 4, 2, 2				
15	6	$\mathrm{AF}_{4/2}\mathrm{F}_{1/1}$	UF_3O_2	1D	2, 2, 2, 2, 2	6	4, _B	SIRJOU	[34]
16	7	$\operatorname{AF}_{4/2}\operatorname{O}_{1/1}$	$\mathrm{UF}_2\mathrm{O}_3$	1D	2, 2, 2, 2, 2	б	4, B	ASEFUZ	[35]
17	1	$\mathrm{AO}_{4/2}\mathrm{F}_{1/1}$	$\rm UFO_4$	1D	2, 2, 2, 2, 2	1	4, _B	89033	[36]
18	б	$AF_{3/2}F_{2/1}$ ' $AF_{3/2}F_{1/1}O_{1/1}$	$\mathrm{U}_{2}\mathrm{F}_{6}\mathrm{O}_{5}$	1D	2, 2, 2, 2, 2	1	$4, \Gamma$	ZAHSOT	[37]
19	1.5	$AF_{3/2}O_{2/1}$	$\rm U_2F_3O_8$	1D	2, 2, 2, 2, 2	1	$4, \Gamma$	I	[38]
20	2.5	$AF_{2/2}F_{1/1}O_{2/1}$ ' $AF_{4/2}F_{1/1}$ ' $AF_{5/2}$ '	$U_4F_{10}O_{11}$	1D	2, 4, 5, 4, 4	2	4,д	XEVRAS	[39]
		$AF_{3/2}F_{1/1}O_{1/1}$			3, 4, 4, 4, 4				
					3, 4, 4, 4, 4				
					2, 4, 5, 4, 4				
21	1.5	${ m AF}_{4/2}{ m O}_{1/1}$ ' ${ m AF}_{2/2}{ m O}_{3/1}$	$\rm U_2F_3O_8$	1D	2, 4, 5, 4, 4	1	4, e	SIRJIO	[34]
					3, 4, 4, 4, 4				
22	1.33	$2 { m AF}_{3/2} { m O}_{2/1}$ ' ${ m AF}_{2/2} { m O}_{3/1}$	$\mathrm{U}_{3}\mathrm{F}_{4}\mathrm{O}_{13}$	1D	2, 2, 2, 2, 2	1	4, ж	BEKROZ	[40]
23	1	$AF_{2/2}O_{3/1}$	UFO_5	1D	2, 2, 2, 2, 2	20	4, 3	422195	[41]
24	б	${ m AF}_{4/2}{ m F}_{1/1}$	$\mathrm{UF}_3\mathrm{O}_2$	2D	3, 5, 7, 10, 13	1	5, a	QUPOO	[42]
					2, 3, 6, 10, 12				
25	2.67	$2AF_{4/2}F_{1/1}$ ' $AF_{4/2}O_{1/1}$	$\mathrm{U}_3\mathrm{F}_8\mathrm{O}_7$	2D	4, 8, 14, 18, 22	1	5,6	200495	[43]
26	2.5	$\mathrm{AF}_{5/2}$	$U_2F_5O_4$	2D	3, 6, 9, 12, 15	1	5, в	QALPEY	[44]
27	2.5	$\mathrm{AF}_{5/2}$	$\mathrm{U}_{2}\mathrm{F}_{5}\mathrm{O}_{4}$	2D	5, 11, 16, 21, 27	3	$5, \Gamma$	QALPIC	[44]

РАДИОХИМИЯ том 64 № 4 2022

СЕРЕЖКИН и др.

364

Габлиц	а 2. (Продолэ	нсение)							
28	2.5	$AF_{3/2}F_{1/1}O_{1/1}\times AF_{5/2}$	$U_2F_5O_5$	2D	2, 4, 6, 8, 12 3, 4, 6, 10, 11	1	5, д	TEAUF010	[45]
29	2.29	$2AF_{5/2} \times AF_{4/2}O_{1/1} \times 2AF_{5/2} \times$	$U_7 F_{16} O_{17}$	2D	4, 9, 11, 15, 20	1	5, e	XIHSIT	[46]
		$2AF_{4/2}O_{1/1}$			4, 9, 13, 14, 17				
					4, 8, 13, 15, 17				
	_				4, 8, 11, 15, 21				
					3, 7, 12, 16, 20				
					4, 7, 11, 17, 20				
					3, 6, 11, 15, 20				
30	2	$AF_{4/2}O_{1/1}$	$\mathrm{UF}_2\mathrm{O}_3$	2D	3, 6, 10, 14, 19	1	5, ж	ASEGEK	[35]
					4, 6, 10, 16, 16				
31	2	$AF_{3/2}O_{2/1} \times AF_{4/2}O_{1/1} \times AF_{5/2}$	$\mathrm{UF}_2\mathrm{O}_3$	2D	3, 6, 9, 15, 19	1	5,3	SUZROX	[47]
	_				4, 6, 11, 17, 17				
					4, 8, 11, 16, 21				
32	б	$AF_{4/2}F_{1/1}$	$\mathrm{UF}_3\mathrm{O}_2$	3D	3, 6, 12, 24, 38	2	6, a	CAPQEP	[48]
33	2.5	${ m AF}_{5/2}$	$\mathrm{U}_{2}\mathrm{F}_{5}\mathrm{O}_{4}$	3D	3, 6, 12, 24, 38	2	6, 6	XEPXOG	[49]
34	2	$AF_{4/2}O_{1/1}$	$\mathrm{UF}_2\mathrm{O}_3$	3D	3, 7, 16, 31, 53	1	б, в	98751	[50]
			1		4, 10, 20, 40, 64,				
					4, 8, 18, 32, 60				
					4, 10, 24, 36, 68				
а Для уп	рощения КХФ	во всех случаях $A = UO_{2/1}$. Знак умнс	жения указын	зает, что все кр	исталлохимически разн	ые ионы урані	ила и связа	нные с ними атс	мы FиO

⁶ Для всех СГ указана простейшая валовая формула. Надстрочный индекс в символе 0ⁿ указывает число атомов урана в составе олигомера. Атомы U с KЧ 8 содержатся образуют единую структурную группировку (СГ). В предпоследней колонке дан рефкод одного из соединений, в котором реализуется указанная СГ. только в СГ № 6 и 11.

^в При наличии кристаллографически неэквивалентных атомов U, отличающихся значениями {C_P⁵}, данные для них указаны в отдельных строках.

Рис. 4. Строение 1D структурных группировок в оксофторидах уранила. Атомы U находятся в центрах указанных пентагональных бипирамид UO_2X_5 , экваториальные позиции которых заняты атомами X (F или O, табл. 2). а–з – пояснения см. в тексте.

Одномерные оксофторидные комплексы наглядно демонстрируют возможность топологического сходства СГ разного состава. Так, считая, что на рис. 4, а, в, з цепи образованы только сочлененными комплексами AF₅ соответственно с КХФ AF_{3/2}F_{2/1}, АF_{4/2}F_{1/1} и АF_{2/2}F_{3/1}, получим, что уранилфторидные цепи имеют состав A₂F₇, AF₃ и AF₄. Разный состав цепей является следствием разного способа взаимного сочленения одинаковых комплексов. В цепи на рис. 4, а каждый комплекс АF₅ имеет одно общее ребро (1e) и одну вершину (1v), т.е. связан по варианту [1e + 1v]. Цепям на рис. 4, в, з отвечают соответственно варианты [2e] и [2v]. Существенно, что во всех случаях любой комплекс АF₅ является двухсвязным центром с $C_P^{-1} = 2$, поскольку каждый атом U соединен мостиковыми лигандами с двумя соседними атомами U. Поэтому в указанных цепях, несмотря на различие их состава, для атомов урана реализуется одинаковая координационная последовательность $C_P^5 = 2, 2, 2, 2, 2$ (табл. 2). Такое же значение C_P⁵ имеют и цепи, которые содержат гетеролигандные двухсвязные комплексы АF_cO_{5-c}, даже в том случае, когда в единой СГ сосуществуют комплексы с разным способом сочленения (например, [1e + 1v] и [2v], рис. 4, ж). Усложнение топологии 1D оксофторидов наблюдается в тех случаях, когда в цепях присутствуют трехсвязные комплексы с $C_P^{-1} = 3$. Как видно из табл. 2 и рис. 4, б, д, е, такие комплексы могут сочленяться по типу [3v], [1e + 2v] или [2e + 1v].

В известных 2D (слоистых) СГ отношение F : U находится в области от 3 до 2 (табл. 2). Строение восьми оксофторидных слоев, реализующихся в структурах 10 соединений, показано на рис. 5. В некоторых случаях слои построены из кристаллографически разных (двух или трех), но кристаллохимически эквивалентных комплексов с $C_P^{1} = 4$ или 5, которые сочленены соответственно по типу [4v] или [5v] (рис. 5, б, г). Однако чаще всего в слоях сосуществует несколько типов комплексов с разными C_P^{1} . Например, в слоях структуры {XIHSIT}[46] (рис. 5, е, табл. 2) из семи кристаллографически разных комплексов AF_{5/2} или AF_{4/2}O_{1/1} три относятся к типу [1e + 3v], два к типу [4v] и по одному к типам [2e + 1v] и [1e + 2v].

В соединениях с 3D (каркасными) СГ, которые выявлены в рассмотренной выборке (табл. 2), отно-

Рис. 5. Строение 2D комплексов (варианты а–3) в структурах оксофторидов уранила (во всех случаях показана проекция элементарной ячейки).

Рис. 6. Фрагменты 3D структурных группировок в оксофторидах уранила. а–в – пояснения см. в тексте.

шение F: U изменяется в том же интервале (от 3 до 2), что и в 2D оксофторидах. Фрагменты трех каркасов, имеющихся в их структурах, показаны на рис. 6. Отметим, что в двух оксофторидах: моноклинном (C₄N₂H₁₂)[UO₂F₃]₂ {CAPQEP} [48] (далее MUF-1) и тетрагональном $[N(CH_3)_4][(UO_2)_2F_5]$ {XEPXOG} [49] (MUF-2), которые содержат по одному кристаллографическому сорту ионов уранила, каркасы образованы только комплексами AF₅. В MUF-1 и MUF-2 таким комплексам отвечают соответственно КХФ $AF_{4/2}F_{1/1}$ и $AF_{5/2}$, что обусловливает разный состав уранилфторидных СГ, а именно $[AF_3]$ и $[A_2F_5]$. Все комплексы AF_5 в MUF-1 связаны с соседними по типу [1e + 2v], тогда как в MUF-2 они сочленяются по типу [2e + 1v], поэтому в обеих структурах все комплексы АF₅ являются трехсвязными. Поскольку для атомов урана в этих фторидах реализуются одинаковые координационные последовательности (СГ № 32 и 33, табл. 2), можно утверждать, что уранилфторидные каркасы в MUF-1 (рис. 6, а) и MUF-2 (рис. 6, б), несмотря на разный способ сочленения комплексов АF₅, обусловливающий различие их состава, топологически идентичны. Это заключение подтверждается результатами расчета { C_P^{50} }, в обоих случаях для указанных MUF при N = 50 значение C_P = 4060.

Уникальный 3D каркас реализуется в кристаллах $[UO_2F_2(H_2O)] \cdot 0.57H_2O \{98751\} [50]$. В этой структуре (рис. 6, в) содержится четыре кристаллографически разных атома урана, которые образуют одинаковые комплексы с КХФ $AF_{4/2}O_{1/1}$. Один из этих

комплексов связан с соседними по типу [1e + 2v], для которого $C_P^{1} = 3$, а три остальных сочленяются по типу [4v] и поэтому для них $C_P^{1} = 4$. В то же время каждому из четырех сортов атомов U(VI) отвечают разные значения C_P^{5} , которые отражают специфику образовавшегося каркаса (СГ № 34 в табл. 2).

В заключение заметим, что данные для 56 топологически разных атомов урана, которые учтены в табл. 2, показывают, что усредненные (с точностью до целого) координационные последовательности C_P^5 для атомов U(VI) в олигомерах имеют вид {2, 1, 0, 0, 0}, в 1D комплексах – {2, 3, 3, 3, 3}, в 2D случаях – {3, 7, 10, 14, 18}, а в 3D каркасах – {4, 8, 17, 31, 54}. Как и следовало ожидать, при фиксированном значении N коэффициенты C_P^N в целом достаточно закономерно увеличиваются с ростом размерности СГ, реализующихся в оксофторидах уранила.

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют об отсутствии конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- Serezhkin V.N., Savchenkov A.V., Pushkin D.V., Serezhkina L.B. // Appl. Solid State Chem. 2018. Vol. 2(3). P. 2. https://doi.org/10.18572/2619-0141-2018-2-3-2-16
- Serezhkin V.N., Albakajaji M., Serezhkina L.B. // Radiochemistry. 2020. Vol. 62, N 6. P. 689. https://doi.org/10.1134/S1066362220060016
- Serezhkin V.N., Albakajaji M., Pushkin D.V., Serezhkina L.B. // Radiochemistry. 2020. Vol. 62, N 4. P. 454. https://doi.org/10.1134/S1066362220040025
- Serezhkin V.N., Albakajaji M., Serezhkina L.B. // Russ. J. Phys. Chem. A. 2021. Vol. 95, N 10. P. 2098. https://doi.org/10.1134/S0036024421090235
- Serezhkin V.N., Karasev M.O., Serezhkina L.B. // Radiochemistry. 2013. Vol. 55, N 2. P. 137. https://doi.org/10.1134/S106636221302001X
- Serezhkina L.B., Grigoriev M.S., Rogaleva E.F., Serezhkin V.N. // Radiochemistry. 2021. Vol. 63, N 4. P. 418. https://doi.org/10.1134/S1066362221040044

 Вайнштейн Б.К., Фридкин В.М., Инденбом В.Л. Современная кристаллография (в 4-х т.). Т. 2: Структура кристаллов. М.: Наука, 1979. С. 14.

 The Chemistry of the Actinide and Transactinide Elements / Eds L.R. Morss, N.M. Edelstein, J. Fuger, J.J. Katz. Springer, 2006.

https://doi.org/https://doi.org/10.1007/1-4020-3598-5

- Комплексные соединения урана / Под ред. И.И. Черняева. М.: Наука, 1964. 502 с.
- 10. Inorganic Crystal Structure Database. Gmelin-Institut für Anorganische Chemie & FIC Karlsruhe, 2020.
- Groom C.R., Bruno I.J., Lightfoot M.P., Ward S.C. // Acta Crystallogr., Sect. B. 2016. Vol. 72. P. 171. https://doi.org10.1107/S2052520616003954 (ver. 5.42, updates May 2021).
- 12. *Rao V.K., Bharathi K., Prabhu R., Chandra M., Natarajan S.* // Inorg. Chem. 2010. Vol. 49. № 6. P. 2931. https://doi.org/10.1021/ic902472h
- Serezhkin V.N., Mikhailov Yu.N., Buslaev Yu.A. // Russ. J. Inorg. Chem. 1997. Vol. 42, N 12. P. 1871.
- Serezhkin V.N., Shevchenko A.P., Serezhkina L.B., Pushkin D.V. // Russ. J. Phys. Chem. 2005. Vol. 79, N 6. P. 918.
- Serezhkin V.N. Structural Chemistry of Inorganic Actinide Compounds / Eds. S.V. Krivovichev, P.C. Burns, I.G. Tananaev. Amsterdam: Elsevier, 2007. P. 31.
- Serezhkin V.N., Serezhkina L.B., Vologzhanina A.V. // Acta Crystallogr., Sect. B. 2012. Vol. 68. P. 305. https://doi.org/10.1107/S0108768112014711
- Wang Chih-Min, Liao Chia-Hsien, Lin Hsiu-Mei, Li Kwang-Hwa // Inorg. Chem. 2004. Vol. 43, N 26. P. 8239. https://doi.org/10.1021/ic0488280
- Serezhkin V.N., Sidorenko G.V., Pushkin D.V., Serezhkina L.B. // Radiochemistry. 2014. Vol. 56. N 2. P. 115. https://doi.org/10.1134/S1066362214020015
- Serezhkin V.N., Vologzhanina A.V., Serezhkina L.B., Smirnova E.S., Grachova E.V., Ostrova P.V., Antipin M Yu. // Acta Crystallogr., Sect. B. 2009. Vol. 65, N 1. P. 45. https://doi.org/10.1107/S0108768108038846
- 20. *O'Keffe M.* // Z. Kristallogr. 1995. Vol. 210, N 12. P. 905. https://doi.org/10.1524/zkri.1995.210.12.905
- Walker S.M., Halasyamani P.S., Allen S., O'Hare D.J. // J. Am. Chem. Soc. 1999. Vol. 121, N 45. P. 10513. https://doi.org/10.1021/ja992145f
- Felder J.B., Smith M., Loye H.-C. // Cryst. Growth Des. 2018. Vol. 18, N 2. P. 1236. https://doi.org/10.1021/acs.cgd.7b01780
- Deifel N.P., Holman K.T., Cahill C.L. // Chem. Commun. 2008. N 45. P. 6037. https://doi.org/10.1039/B813819B

- 24. Kim J.-Y, Norquist A.J., O'Hare D. // Dalton Trans. 2003. P. 2813. https://doi.org/10.1039/B306733P
- Wang C.-M., Liao C.-H., Kao H.-M., Lii K.-H. // Inorg. Chem. 2005. Vol. 44, N 18. P. 6294. https://doi.org/10.1021/ic0507060
- 26. Alcock N.W., Roberts M.M., Chakravorti M.C. // Acta Crystallogr., Sect. B. 1980. Vol. 36, N 3. P. 687. https://doi.org/10.1107/S0567740880004141
- Serezhkin V.N., Peresypkina E.V., Novikov S.A., Virovets A.V., Serezhkina L.B. // Russ. J. Inorg. Chem. 2014. Vol. 59, N 8. P. 788. https://doi.org/10.1134/S003602361408018X
- 28. Adelani P.O., Cook N.D., Babo J.-M., Burns P.C. // Inorg. Chem. 2014. Vol. 53, N 8. P. 4169. https://doi.org/dx.doi.org/10.1021/ic500220d
- 29. Adelani P.O., Albrecht-Schmitt T.E. // Inorg. Chem. 2011. Vol. 50. № 23. P. 12184. https://doi.org/dx.doi.org/10.1021/ic201945p
- Doran M.B., Cockbain B.E., O'Hare D. // Dalton Trans. 2005. N 10. P. 1774. https://doi.org/10.1039/B504457J
- Adelani P.O., Oliver A.G., Albrecht-Schmitt T.E. // Cryst. Growth Des. 2011. Vol. 11, N 5. P. 1966. https://dx.doi.org/10.1021/cg200129g
- Yi Wang, Xiangxiang Wang, Yan Huang, Fan Zhou, Chao Qi, Tao Zheng, Jiansheng Li, Zhifang Chai, Shuao Wang // Chem. Eur. J. 2019. Vol. 25, N 54. P. 12567. https://doi.org/10.1002/chem.201902310
- Wu H.-Y., Yang X.-Y., Li Y.-H., Yang W. // Inorg. Chem. Commun. 2012. Vol. 23. P. 46. https://doi.org/10.1016/j.inoche.2012.06.002
- 34. Kerr A.T., Kumalah S.A., Holman K.T., Butcher R.J., Cahill C.L. // J. Inorg. Organomet. Polym. 2014. Vol. 24, N 1. P. 128. https://doi.org/10.1007/s10904-013-9980-0
- *Kim J.-Y., Norquist A.J., O'Hare D. //* Chem. Mater. 2003. Vol. 15, N 10. P. 1970. https://doi.org/10.1021/cm021722n
- Blaton N., Vochten R., Peters O.M., Van Springel K. // Neues Jahrb. Mineral., Monatsh. 1999. Vol. 1999, N 6. P. 253.

https://doi.org/10.17188/1271590

 Liu Xiao-Xiao, Wang Yuan, Tian Wan-Guo, Yang Weiting, Sun Zhong-Ming // Chin. Chem. Lett. 2015. Vol. 26. N 6, P. 641.

https://doi.org/10.1016/j.cclet.2015.03.024

РАДИОХИМИЯ том 64 № 4 2022

ОСОБЕННОСТИ СТЕРЕОХИМИИ УРАНА В ОКСОФТОРИДАХ УРАНИЛА

- 38. Fei Chen, Congzhi Wang, Weiqun Shi, Miao Zhang, Caiming Liu, Yuliang Zhao, Zhifang Chai // CrystEngComm. 2013. Vol. 15. P. 8041. https://doi.org/10.1039/c3ce41261j
- Ok Kang Min, O'Hare D. // J. Solid State Chem. 2007. Vol. 180, N 2. P. 446. https://doi.org/10.1016/j.jssc.2006.11.004
- Doran M.B., Norquist A.J., O'Hare D. // Chem. Mater. 2003. Vol. 15, N 7. P. 1449. https://doi.org/10.1021/cm021711u
- 41. Serezhkina L.B., Vologzhanina A.V., Verevkin A.G., Serezhkin V.N. // Radiochemistry. 2011. Vol. 53, N 4. P. 3547. https://doi.org/10.1134/S1066362211040023
- Cahill C.L., Burns P.C. // Inorg. Chem. 2001. Vol. 40, N 6. P. 1347. https://doi.org/10.1021/ic000998z
- Dao N.Q., Chourou S., Rodier N., Bastein P. // C. R. Hebdom. Seances Acad. Sci., Ser. C, Sci. Chim. 1979. Vol. 289. P. 405.

- Talley C.E., Bean A.C., Albrecht-Schmitt T.E. // Inorg. Chem. 2000. Vol. 39, N 23. P. 5174. https://doi.org/10.1021/ic000668e
- 45. Михайлов Ю.Н., Иванов С.Б., Кузнецов В.Г., Давидович Р.Л. // Координац. химия. 1979. Т. 5, № 11. С. 1545.
- 46. Zenghui Yue, Jian Lin, Silver M.A., Ling Han, Xiaoyun Li, Jing Zhou, Xiaojing Guo, Hongliang Bao, Yu-Ying Huang, Jian-Qiang Wang // Dalton Trans. 2018. Vol. 47. P. 14908. https://doi.org/10.1039/C8DT02309C
- Andreev G., Budantseva N., Fedoseev A. // Inorg. Chem. 2020. Vol. 59, N 21. P. 15583. https://doi.org/10.1021/acs.inorgchem.0c02718
- 48. Halasyamani P.S., Walker S.M., O'Hare D. // J. Am. Chem. Soc. 1999. Vol. 121, N 32. P. 7415. https://doi.org/10.1021/ja9912271
- Ok K.M., Doran M.B., O'Hare D. // J. Mater. Chem. 2006. Vol. 16. № 33. P. 3366. https://doi.org/10.1039/b609525a
- 50. Михайлов Ю.Н., Горбунова Ю.Е., Столяров И.П., Моисеев И.И. // ЖНХ. 2002. Т. 47, № 11. С. 1980.