СИНТЕЗ И ИЗУЧЕНИЕ ИНТЕРМЕТАЛЛИДОВ АМЕРИЦИЯ С ЗОЛОТОМ

© 2022 г. М. А. Рябинин, Т. А. Чернакова*, С. В. Томилин

Научно-исследовательский институт атомных реакторов, 433510, Димитровград Ульяновской обл., Западное шоссе, д. 9 *e-mail: taticher@mail.ru

Поступила в редакцию 02.09.2021, после доработки 06.12.2021, принята к публикации 13.12.2021

Впервые получены образцы сплавов ²⁴¹Am с золотом. Сплавы получали методом конденсации паров металлического америция на плоскую подложку из золота. Приведены результаты рентгенографического анализа фазового состава полученных сплавов. Обнаружены ранее не известные интерметаллические соединения Am с Au: AmAu₆ (тетрагональная решетка, пространственная группа *P4₂/ncm*), AmAu (орторомбическая решетка, пространственная группа *Pnma*), AmAu (гранецентрированная кубическая решетка). Рассчитаны параметры этих кристаллических решеток. Исследовано влияние α-распада ²⁴¹Am на кристаллические структуры интерметаллидов.

Ключевые слова: америций-241, золото, интерметаллиды, метод конденсации паров, рентгенографический метод, α- распад, кристаллическая решетка.

DOI: 10.31857/S0033831122040049, EDN: FRMEZF

Практическое использование америция, как и других ТПЭ, сдерживается, в частности, малой изученностью его способности к сплавообразованию с другими металлами. Химическая инертность и технологичность, свойственные благородным металлам, позволяют рассматривать их как перспективные материалы, на основе сплавов которых могут быть созданы удобные в эксплуатации источники ионизирующих излучений.

Данная работа является продолжением многолетнего цикла работ по исследованию сплавов и соединений ТПЭ с другими элементами Периодической системы. В ней приведены первые данные по получению образцов сплавов ²⁴¹Am с золотом и результатам их исследования рентгенографическим методом.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Используемый в эксперименте металлический Ат (период полураспада 433.2 года) получали методом лантанотермического восстановления оксида ²⁴¹Ат с одновременной конденсацией паров америция на плоскую подложку из тантала [1, 2]. Образцы сплавов Au с ²⁴¹Ат получали последующей перегонкой металлического америция с конденсацией его паров на подложку из золота.

Процесс проводили в высоком вакууме, условия получения образцов указаны в табл. 1. Аппаратура и способ получения металлического америция, устройство для его испарения и конденсации описаны в работах [3, 4].

Содержание ²⁴¹Am в образцах определяли α - и γ -спектрометрическим методами сравнением с эталоном.

Образцы сплавов исследовали рентгеновским дифрактометрическим методом (дифрактометр ДРОН-3М) при комнатной температуре. Использовали отфильтрованное (Ni-фильтр) немонохроматизированное излучение CuK_α. Рентгенограммы записывали по точкам с шагом

Таблица 1	•	Условия	получени	я о	бразцов 🛽	Am–Au
-----------	---	---------	----------	-----	-----------	-------

Образец	Усл полу	овия чения	Macca Am в образце		
	<i>T</i> , °C	τ , мин ^а	MI		
1	1400	2	0.140		
2	1100	2.5	0.053		
3	1250	3	0.079		

^а т – время выдержки образца при заданной температуре.

Рис. 1. Рентгенограммы образца 1: 1 – исходная золотая фольга, 2 – через 1 сут после напыления Ат, 3 – после 75 сут выдержки. Аи – рефлексы фазы золота, АА – фаза содержащая, Ат–Аи.

0.02°, экспозицией 2 с и записью в цифровой форме (имп/с). Начальную обработку рентгенограмм проводили с использованием специального программного комплекса. Угловое положение рефлексов корректировали по рефлексам кубической решетки алмаза, наносимого тонким слоем на поверхность образца при каждой съемке.

Для расчета параметров кристаллических решеток (ПКР) фаз, идентифицированных на рентгенограммах, использовали аналитический способ экстраполяционного нахождения точных значений ПКР, основанный на методе наименьших квадратов, и математическую модель множественной регрессии.

Для идентификации кристаллических решеток и соответствующих им фаз (соединений) использовали картотеку ASTM [5] и компьютерный банк данных по кристаллическим структурам неорганических материалов.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Расшифровку всех рентгенограмм начинали с выделения рефлексов ГЦК решетки металлического золота. Расчетный параметр решетки данной структуры соответствует в пределах ошибки литературному значению a = 4.079(1) Å [5]. Такой результат свидетельствует о нерастворимости америция в ГЦК решетке золота.

РАДИОХИМИЯ том 64 № 4 2022

Для образца 1 были записаны рентгенограммы исходной подложки из золота и рентгенограммы образца после напыления Am через 1, 7 и 75 сут (рис. 1). Рентгенограмма подложки содержала обычный набор рефлексов ГЦК решетки золота (a = 4.08 Å), однако интенсивности ряда рефлексов были сильно искажены, по-видимому, вследствие текстурированности образца.

Рентгенограмма свежеприготовленного образца 1 содержала свыше 40 рефлексов различной интенсивности, из которых 9 рефлексов были уверенно отнесены к ГЦК решетке золота. Следует отметить, что после термической обработки в процессе напыления Ат рефлексы металлического Аи приобрели обычную интенсивность, характерную для мелкодисперсного нетекстурированного образца. В дальнейшем наблюдение динамики изменения углового положения и интенсивности остальных рефлексов позволило сделать вывод, что большая их часть (~30 рефлексов) принадлежат фазе, содержащей Au и Am. За 75 дней выдержки при комнатной температуре число рефлексов этой фазы уменьшилось примерно в четыре раза (рис. 1). При этом большинство рефлексов, имевших первоначально высокую интенсивность, стали слабыми, а их угловое положение изменилось в сторону уменьшения углов рассеяния 20. Это свидетельствует о распухании кристаллической решетки фазы и ее постепенной рентгеноаморфизации. Последняя возможна только при наличии в составе фазы источника радиационных повреждений (нуклида ²⁴¹Am).

Высокотемпературный режим получения образцов и высокая скорость охлаждения зачастую приводит к образованию неравновесных фаз. При последующей выдержке и/или отжиге такие фазы переходят в более термодинамически устойчивые соединения. После длительного хранения (~300 сут) образец 1 отожгли в вакууме в течение 30 мин при температуре 800°С. На полученной рентгенограмме (в дальнейшем будем ее называть рентгенограммой образца 1), зафиксировали 37 рефлексов (табл. 2). Наиболее интенсивные рефлексы принадлежали ГЦК решетке Au (a = 4.08(1) Å). Угловое положение остальных рефлексов сильно отличалось от исходной рентгенограммы, замечено появление новых рефлексов. Следовательно, длительная выдержка данного образца при комнатной температуре и его

20	1 8	7 0/			20		
20 _{эксп} , град	<i>d</i> , A	<i>I</i> _{max} ,%	Au	AmAu ₆	AmAu	Am ₂ O ₃	20 _{расч} , град
30.90	2.891	0.05				203	30.81
31.66	2.824	0.19		302		310 н	31.68
32.85	2.724	0.18		312			32.86
33.74	2.654	0.12		213			33.70
34.36	2.608	2.09			211		34.39
36.79	2.441	0.48		411			36.79
37.05	2.424	1.33		004			36.99
38.20	2.354	100	111				38.20
39.28	2.292	1.10		402	301 н		39.28
40.26	2.238	2.32		412			40.26
41.05	2.197	0.21		204			40.99
41.93	2.153	0.21		323		313н	41.92
44.37	2.040	0.81	200				44.40
46.40	1.955	0.09		333	220 н		46.44
47.54	1.911	0.07		432			47.53
59.28	1.557	0.13		622			59.31
61.28	1.511	0.13		613		023 н	61.29
63.41	1.466	0.15		306 н		006	63.41
64.11	1.451	0.15		543	131 н		64.13
64.59	1.442	0.50	220				64.59
66.09	1.413	0.08		721	230 н	620 н	66.09
68.42	1.370	0.10		722	114 н		68.44
68.91	1.361	0.49		416	204 н		68.90
69.58	1.350	0.09				715	69.58
70.25	1.339	0.07		553			70.28
70.90	1.328	0.06		426			70.92
72.47	1.303	0.16			214		72.40
77.58	1.230	5.77	311				77.58
80.10	1.197	0.10		743			80.07
81.75	1.177	8.78	222				81.73
85.09	1.139	0.17		911 н	602 н	330	85.06
87.00	1.119	0.04		636 н	115 н	11.1.2	87.00
110.81	0.936	0.43	331				110.82
115.26	0.912	0.70	420				115.26

Таблица 2. Расшифровка рентгенограммы образца 1^а

^a Здесь и далее: все значения $2\theta_{3\kappa cn}$ приведены в пересчете на излучение Cu $K_{\alpha l}$ ($\lambda = 1.5405$ Å). Все значения $2\theta_{pacq}$ приведены по результатам расчета ПКР на ПЭВМ. I_{max} – интенсивность рефлексов на рентгенограммах. Буквой «н» обозначено наложение рефлекса данной решетки на более интенсивный рефлекс другой решетки. d – межплоскостное расстояние.

Образац Фаза		Doutorito	t arm		Параметры решетки					
Ооразец	Фаза	Решетка	<i>l</i> , Cy1	n	<i>a</i> , Å	в, Å	<i>c</i> , Å	β, град	<i>V</i> , Å ³	Г
1	Au	ГЦК	1	7	4.0786(7)	_	_	_	—	1.5
	AmAu ₆	Teтр (<i>P</i> 4 ₂ / <i>ncm</i>)	1	24	10.3894(7)	—	9.7036(7)	—	1047.4(2)	0.2
	AmAu	Ортр (<i>Pnma</i>)	1	10	7.402(2)	4.564(1)	5.826(1)	_	196.8(1)	0.5
	Am ₂ O ₃	Мнкл (<i>C2/m</i>)	1	9	14.378(4)	3.521(1)	8.927(1)	100.19(1)	444.8(3)	0.4
2	Au	ГЦК	1	8	4.0778(5)	_	_	_	_	0.9
	AmAu	ГЦК	1	5	4.784(2)	_	_	_	_	7.2
	Am ₂ O ₃	Мнкл (<i>C2/m</i>)	1	5	14.54(7)	3.562(6)	9.01(2)	100.24(7)	459.2(4.1)	3.2
3	Au	ГЦК	1	6	4.079(1)	—	_	_	_	7.5
			197	6	4.078(2)	-	_	_	_	5.7
	Am	ДГПУ	1	15	3.465(1)	-	11.253(2)	_	117.0(1)	2.2
			197	12	3.474(1)	_	11.258(2)	_	117.7(1)	3.0
	Am ₂ O ₃	Мнкл	1	18	14.42(1)	3.510(2)	8.900(3)	100.37(4)	443.1(7)	7.3
		(C2/m)	197	13	14.431(6)	3.506(2)	8.908(2)	100.37(3)	443.3(6)	1.6
	AmAu	ГЦК	1	5	4.786(3)	_	_	_	—	5.4
			197	3	_	—	_	_	_	_

Таблица 3. Расчетные параметры кристаллических решеток, обнаруженных на рентгенограммах полученных образцов системы Am–Au^a

^а В столбце «Решетка» в скобках указана пространственная группа. Сокращения: ГЦК – гранецентрированная кубическая, Тетр – тетрагональная, Ортр – орторомбическая, Мнкл – моноклинная, ДГПУ – двойная гексагональная плотноупакованная. т – время выдержки образца при комнатной температуре. *n* – число рефлексов в расчетном наборе. *V* – объем элементарной ячейки кристаллической решетки. *F* – обобщенный критерий, показывающий степень соответствия экспериментальных данных расчетной модели: чем меньше *F*, тем выше степень соответствия.

последующий отжиг привели к перекристаллизации образца.

Идентификацию предполагаемых интерметаллидов Ат-Аи проводили методом, ставшим традиционным при идентификации новых соединений ТПЭ с другими элементами Периодической системы, а именно, сравнением наборов межплоскостных расстояний и интенсивностей рефлексов известных соединений лантанидов и актинидов с данными, полученными на рентгенограмме исследуемого образца, при этом учитывая разницу металлических радиусов лантанидов и америция. В системе лантаниды-Аи известно 27 структурных типов интерметаллидов, в основном это сложные, низкой симметрии (некубические) структуры [5]. В результате такого анализа образца 1 удалось выявить тетрагональную структуру пространственной группы P4₂/ncm, интерпретированную как AmAu₆

РАДИОХИМИЯ том 64 № 4 2022

по аналогии с известными интерметаллическими соединениями РЗЭ (рис. 2), и орторомбическую структуру пространственной группы *Рпта*, интерпретированную как AmAu по аналогии с известными интерметаллическими соединениями РЗЭ (рис. 3). Параметры кристаллических решеток фаз, обнаруженных в образце 1, представлены в табл. 3.

Помимо выше указанных решеток, на рентгенограмме присутствуют рефлексы моноклинной решетки В-формы Am_2O_3 , объем которой соответствуют литературному значению ($V = 444.1(2) \text{ Å}^3$ [3]) (табл. 3).

Рефлексы, зафиксированные на исходной рентгенограмме образца 2, имели очень слабые интенсивности. Удалось зафиксировать 25 рефлексов, принадлежащих: ГЦК решетке Au, ГЦК решетке с параметром ~4.874(2) Å и моноклинной ре-

Рис. 2. К идентификации интерметаллида AmAu6 по данным для Sm, Gd, Tb, Ho.

шетке пространственной группы C2/m Am₂O₃. Объем элементарной ячейки моноклинной решетки полуторного оксида америция В-формы Am₂O₃ (табл. 3) несколько превышает справочное значение 444.1(2) Å³ [5]. Это можно объяснить малым количеством рефлексов, недостаточным для расчета параметров моноклинной решетки. На повторной

Рис. 3. К идентификации интерметаллида AmAu по данным для La, Ce, Pr, Nd, Sm, Eu, Yb.

рентгенограмме через ~255 сут никаких рефлексов, кроме рефлексов ГЦК решетки Au и отдельных рефлексов полуторного оксида америция, не обнаружено. Расшифровка исходной рентгенограммы образца 2 представлена в табл. 4.

На основании полученных результатов сделано предположение, что ГЦК фаза с параметром a =

20	1 8	T 0/		20		
20 _{эксп} , град	<i>d</i> , A	<i>I</i> _{max} ,%	Au	AmAu	Am ₂ O ₃	20 _{расч} , град
31.56	2.832	1.09			310	31.59
32.42	2.759	0.18		111	112н	32.40
36.72	2.445	0.40				
37.54	2.394	6.44		200		37.58
37.96	2.368	4.09			600	37.95
38.12	2.359	9.15	111			38.14
39.83	2.261	2.46				
43.09	2.097	0.36				
44.34	2.041	100	200			44.34
51.51	1.773	0.11			020	51.51
52.47	1.742	0.40			404	52.47
53.63	1.707	0.36		220 н	$40\overline{5}$	53.63
57.63	1.598	0.22				
62.01	1.495	0.76				
64.55	1.442	11.65	220	311 н		64.54
68.84	1.363	0.18				
77.56	1.230	11.25	311			77.56
78.73	1.214	0.18				
80.21	1.196	0.33		400		80.19
81.68	1.178	1.77	222			81.68
86.07	1.129	0.29				
98.11	1.020	9.95	400			98.11
110.82	0.936	10.78	331			110.82
113.55	0.921	0.22		511		113.55
115.25	0.912	1.70	420			115.25

Таблица 4. Расшифровка исходной рентгенограммы образца 2

РАДИОХИМИЯ том 64 № 4 2022

2θ _{эксп} ,	1	I _{max}			hkl				
град	d, HM	имп/с	%	Au	Am	Am ₂ O ₃	AmAu	20 _{расч} , град	
22.34	3.976	46	0.12			202 н		22.46	
26.38	3.376	127	0.33					26.13	
28.62	3.116	973	2.55			111		28.65	
28.87	3.090	582	1.52			401		28.95	
29.88	2.987	591	1.55		100 н	40 <u>2</u> н		30.08	
30.84	2.897	77	0.20		101	003 н		30.81	
31.78	2.813	38192	100		004	310 н		31.78	
32.37	2.764	241	0.63				111	32.45	
33.83	2.648	248	0.65		102			33.83	
34.45	2.601	29	0.08						
36.45	2.463	22	0.06						
37.68	2.385	3259	8.53				200 н	37.72	
38.28	2.349	815	2.13	111	103 н	600 н		38.22	
39.51	2.279	11	0.03						
39.90	2.258	50	0.13						
40.20	2.241	74	0.19					40.16	
41.78	2.160	8	0.02					41.83	
44.09	2.052	178	0.47		104			44.09	
44.38	2.039	673	1.76	200				44.41	
45.59	1.988	172	0.45					45.77	
50.67	1.800	14	0.04		105	801 н		50.66	
52.82	1.732	19	0.05		110			52.79	
53.75	1.704	29	0.08					53.78	
54.22	1.690	10	0.03			603 н	220 н	54.19	
55.61	1.651	155	0.41			513		55.72	
59.32	1.557	157	0.41					59.21	
59.81	1.545	94	0.25			712		59.84	
62.18	1.492	225	0.59					62.13	
64.17	1.450	10	0.03		202			64.19	
64.59	1.442	145	0.38	220			311 н	64.60	
66.14	1.412	114	0.30					65.95	
66.43	1.406	7031	18.41		008	620 н		66.40	
69.68	1.348	260	0.68			715		69.77	
71.11	1.325	15	0.04		204 н			71.10	
77.57	1.230	97	0.25	311		424 н		77.57	
82.00	1.174	29	0.08					81.94	
89.14	1.098	13	0.03		207 н		331 н	89.08	
90.46	1.085	12	0.03		213	226 н		90.46	
93.77	1.055	25	0.07					93.82	
95.86	1.038	20	0.05					95.89	
97.26	1.026	15	0.04		208	1401н		97.28	
98.13	1.020	45	0.12	400				98.12	
101.38	0.996	11	0.03			408 н		101.39	
107.77	0.953	1347	3.53					107.64	

Таблица 5. Расшифровка исходной рентгенограммы образца 3

РАДИОХИМИЯ том 64 № 4 2022

2θ _{эксп} , <i>d</i> , μγ		I _{max}			20 500.0			
град	и, нм	имп/с	%	Au	Am	Am ₂ O ₃	AmAu	20 _{расч} , град
110.47	0.938	1300	3.40		0 0 12			110.44
114.14	0.918	14	0.04					114.18
115.24	0.912	32	0.08	420				115.24

Таблица 5. (Продолжение)

4.874(2) Å в результате α-распада ²⁴¹Am рентгеноаморфизуется. Поиск структурного аналога по известным базам данных для ГЦК-фазы с близким по значению параметром среди лантанидов и актинидов с золотом не принес положительного результата. Расширив область поиска структурного аналога, обнаружили аналогичную ГЦК решетку ThAg [5] с параметром a = 4.80 Å в системе лантаниды, актиниды–Ag, которую и выбрали в качестве аналога для идентификации интерметаллида AmAu. Золото, серебро, медь являются элементами первой группы Периодической системы. При анализе известных соединений лантанидов и актинидов с этими элементами замечено сходство в структурных типах, атомном соотношении и параметрах кристаллической решетки, из этого сделано предположение о возможности существования интерметаллида стехиометрического состава АтАи, имеющего ГЦК решетку.

Расчетные параметры кристаллических решеток, обнаруженных на исходной рентгенограмме образца 2, представлены в табл. 3.

Рентгенограммы образца 3 записывали через 1 и 197 сут после его получения. На исходной рентгенограмме зафиксировано 48 рефлексов (табл. 5), из них в полном объеме представлена ГЦК решетка Аи, наиболее интенсивные рефлексы принадлежат ДГПУ решетке металлического Am, многочисленные рефлексы соответствуют моноклинной решетке В-формы Am₂O₃ Расчетные параметры обнаруженных кристаллических решеток соответствуют в пределах ошибки литературным значениям [5]. Кроме того, удалось зафиксировать рефлексы ГЦК решетки, интерпретированной как AmAu. На повторной рентгенографической съемке зафиксировано 37 рефлексов, замечено уменьшение интенсивности отдельных рефлексов, а также смещение значений 20 в сторону меньших углов.

Выявленная структура металлического Am (ДГПУ решетка) имеет ярко выраженную текстуру, связанную с усилением рефлексов типа 00*l*, а именно 004, 008, 0.0.12. В интервале 1–197 сут ситуация не изменилась, текстура ДГПУ решетки по оси (00*l*) сохранилась. Расчетные параметры ДГПУ решетки металлического Am в пределах расчетной ошибки соответствуют теоретическому значению и за ~197 сут существенно не изменились.

В дальнейшем наблюдение динамики изменения углового положения и интенсивности остальных рефлексов позволило сделать вывод, что они относятся к фазе, содержащей Au и Am. В результате анализа известных соединений лантанидов и первых актинидов с золотом удалось выявить ГЦК решетку, интерпретированную как AmAu (аналог ГЦК решетки ThAg [5]).

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют об отсутствии конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- Johnson K.W.R., Leary J.A. Preparation of Americium Metal. Los Alamos Scientific Laboratory of the University of California, 1964. Vol. 2992.
- Wade W.Z., Wolf T. J. Inorg. Nucl. Chem. 1967. Vol. 29, N 10. P. 2577–2587.
- 3. *Радченко В. М.* и др. указать всех // Радиохимия. 2006. Т. 48, №. 4. С. 294–296.
- 4. *Радченко В.М., Рябинин М.А., Топоров Ю.Г.* Металловедение трансплутониевых металлов. Димитровград: НИИАР, 2009. 200 с.
- X-Ray Diffraction Data Cards. Philadelphia: Joint Committee on Powder Diffraction Standards, Am. Soc. for Testing Materials (ASTM), 1999 and other years.