УДК 621.039.8.002:621.039.554

ИССЛЕДОВАНИЯ В ОБОСНОВАНИЕ МЕТОДА ОЧИСТКИ ПРЕПАРАТА ²⁴⁸Cm

© 2022 г. О. И. Андреев, К. В. Ротманов*, Г. В. Гончарова, Е. В. Черноокая, Р. Г. Абдуллов, П. С. Буткалюк, И. Л. Буткалюк, А. Ю. Енизеркина, В. Г. Аббязова, А. В. Борзова

Научно-исследовательский институт атомных реакторов, 433510, Димитровград Ульяновской обл., Западное шоссе, д. 9 *e-mail: kvrotmanov@niiar.ru

Поступила в редакцию 31.08.2021, после доработки 13.06.2022, принята к публикации 15.06.2022

Приведены результаты экспериментов по очистке Am, Cm от Pu и Fe методом анионообменной хроматографии с использованием сорбента Bio-Rad AG1-X8 (50–100 меш). Приведены результаты экспериментов по разделению Am, Cm и Cf методом ионообменной хроматографии с использованием катионообменной смолы Bio-Rad AG50W-X8 (200–400 меш) в NH₄⁺-форме. Сорбцию проводили из раствора 0.1 моль/л HNO₃ с последующим элюированием раствором аммонийной соли α -гидроксиизомасляной кислоты (далее α -HIBA) с pH 5.0. Концентрацию аммонийной соли α -HIBA варьировали в пределах 0.1–0.2 моль/л. Наилучшие результаты были достигнуты при последовательном элюировании растворами аммонийной соли α -HIBA с концентрациями 0.1 и 0.15 моль/л. Определены характеристики разработанного хроматографического процесса катионообменной очистки Cm с использованием в качестве элюента раствора аммонийной соли α -HIBA: число теоретических тарелок *N*, коэффициент распределения *D*, селективность (фактор разделения) α , разрешение *R*₅.

Ключевые слова: кюрий-248, америций-243, хроматография, ионный обмен, элюирование, аммонийная соль α-HIBA, коэффициент очистки.

DOI: 10.31857/S0033831122050070, EDN: JCJOVO

ВВЕДЕНИЕ

Синтез и изучение свойств сверхтяжелых элементов (СТЭ) являются одним из фундаментальных направлений современной ядерной физики. Исследования в этой области активно проводятся как в России, так и в ядерных центрах других стран (Германия, Япония, США). Благодаря работам, выполненным в Лаборатории ядерных реакций им. Г.Н.Флерова ОИЯИ (Дубна) и НИИАР, были синтезированы и изучены ядерно-физические свойства новых элементов с порядковыми номерами 115, 116 и 118. Данные нуклиды были получены путем облучения мишеней на основе высокообогащенных изотопов ²⁴³Am, ²⁴⁸Cm и ²⁴⁹Cf ионами ⁴⁸Ca.

К мишенным материалам предъявляются высокие требования по чистоте, в том числе по содержанию радиоактивных примесей, в число которых входят изотопы Pu, Am, Cm, Cf и продуктов деления. В НИИАР существует действующее производство препаратов ²⁴³Am и ²⁴⁸Cm [1]. Америций-243 выделяют из облученного Pu экстракционными и осадительными методами [2, 3]. Кюрий-248 выделяют из выдержанного ²⁵²Cf методом экстракционной хроматографии с использованием сорбентов на основе Д2ЭГФК. Как правило, после применения штатных методов очистки в препаратах остаются следовые количества примесей, в том числе изотопов Cf, Pu, продуктов деления и продуктов коррозии конструкционных материалов (нержавеющая сталь).

Для получения чистых препаратов трансплутониевых элементов (ТПЭ) в радиохимической практике широко применяется ионный обмен. При ионообменной хроматографии разделение основано на селективности ионита по отношению к противоионам смеси. При разделении ионов с весьма близкими свойствами (например, редкоземельных элементов – РЗЭ) большинство ионитов проявляют почти одинаковое сродство по отношению к близким между собой ионам. Разделение РЗЭ элюированием из колонки с катионитом раствором сильной, не образующей комплексов кислоты практически невозможно, поскольку их коэффициенты распределения мало отличаются друг от друга [4]. Если подобрать комплексообразователь, который с ионами смеси дает комплексные соединения различной прочности, то успешное разделение ионов становится возможным. Чем прочнее комплекс, образуемый в растворе противоионом, тем в меньшей степени этот ион будет поглощаться ионитом. Таким образом может быть повышена полнота разделения компонентов смеси. Комплексообразующий реагент α-гидроксиизомасляная кислота (α-HIBA) и ее соли (в основном аммонийная) применяются в ионообменных процессах внутри- и межгруппового разделения радионуклидов редкоземельных (РЗЭ) и трансплутониевых (ТПЭ) элементов [5–17]. Для разделения радионуклидов РЗЭ и ТПЭ элюированием растворами, содержащими α-НІВА и ее соли, применяют катионообменные способы. В качестве сорбента используют сильнокислые сульфокатиониты стирол-дивинилбензольного типа, такие как Dowex 50W-X8, Bio-Rad AG 50W-X8 и ряд других их аналогов [6, 10, 12–16]. Как правило, в используемой методике [5, 6, 9-12] трехвалентные актиниды сначала сорбируются из разбавленного (<0.5 моль/л) раствора HNO₃ на катионите. Затем сорбент переводят в NH₄⁺-форму и актиниды элюируют комплексообразующим реагентом (α-HIBA). В работах [8, 14] отмечено, что без предварительного переведения катионита в аммонийную форму при элюировании раствором аммонийной соли α-HIBA выделяющиеся ионы H⁺ оказывают сильное «тормозящее» действие на слабо сорбируемые элементы, например, такие как Cf.

В качестве метода очистки Am, Cm от примеси Pu выбрана анионообменная хроматография с использованием сильноосновного анионита Bio-Rad AG 1X8. По литературным данным известно, что сорбция Pu(IV) на сильноосновных анионитах возможна из азотнокислых и солянокислых сред [18–20]. В азотнокислых средах Pu(IV) может сорбироваться, начиная с 1 моль/л HNO₃, при этом

РАДИОХИМИЯ том 64 № 5 2022

максимальная концентрация аниона $Pu(NO_3)_6^{2-}$ достигается при 7.7 моль/л HNO_3 [18]. Сорбция Pu на анионитах также возможна и из растворов HCl высокой концентрации. Коэффициент распределения Pu(IV) монотонно увеличивается с ростом концентрации HCl и, начиная с концентрации 9 моль/л, превышает 1×10^3 [19]. В этих условиях Am(III) и Cm(III) сорбентом не удерживаются.

Целью работы являлась отработка режимов очистки Cm и Am от примесей Fe и Pu, а также отработка режимов разделения Am и Cm и их очистки от Cf и Eu методами ионообменной хроматографии.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Материалы и оборудование. Все используемые реактивы имели квалификацию не ниже ос.ч. Растворы готовили на воде, подготовленной с использованием системы очистки воды Simplicity UV (Merck). Азотную кислоту получали на аппарате изотермической дистилляции для получения сверхчистых кислот Distillacid BSB-939-IR (Berghof). Растворы аммонийной соли α-HIBA готовили из навески α-HIBA (Alfa Aesar) нейтрализацией раствором аммиака до необходимого значения рН. Концентрацию в растворах ионов водорода (pH) определяли с использованием мультиметра Mettler-Toledo SevenExcellence. Температура рабочих растворов при подготовке и при проведении всех экспериментов составляла 22 ± 2°С. Для поддержания требуемой скорости фильтрации растворов через колонку и разделения фильтрата на фракции использовали программируемый перистальтический насос Ismatec Reglo Digital MS-2/8.

В работе использовали растворы нитратов ²⁴⁰Pu(IV), ²⁴¹Am(III), ²⁴⁴Cm(III), ²⁴⁸Cm(III) и ²⁴⁹Cf(III), полученные в штатных технологических процессах производства ТПЭ. Нитрат ⁵⁹Fe(III) выделяли путем растворения фрагмента стальной оболочки облученной мишени и очистки методом анионообменной хроматографии. Нитрат ¹⁵²Eu(III) выделяли из отходов от производства ¹⁵³Gd и очищали методом катионообменной хроматографии.

В работе использовали сорбенты аналитического класса: Bio-Rad AG 1-X8 (50–100 меш), Bio-Rad AG 50W-X8 (100–200 меш), Bio-Rad AG 50W-X8 (200–400 меш). Методика экспериментов по очистке Am/Cm от Pu и Fe. Исходный раствор представлял собой смесь радионуклидов ⁵⁹Fe(III), ²⁴⁰Pu(IV), ²⁴¹Am(III), ²⁴⁴Cm(III) в 9 моль/л HCl. Для стабилизации плутония в степени окисления +4 в раствор вводили H_2O_2 до концентрации 0.1 моль/л. Исходный раствор (5 колоночных объемов, далее по тексту к.о.) подавали на колонку с сорбентом Bio-Rad AG 1-X8 (50–100 меш) в Cl⁻-форме (колонка объемом 1 см³) со скоростью 1 мл/(см²·мин), затем промывали 9 моль/л HCl в присутствии 0.1 моль/л H₂O₂.

Методика экспериментов по разделению Am и Cm и их очистке от Cf и Eu. Исходный раствор представлял собой смесь радионуклидов ²⁴¹Am(III), ²⁴⁴Cm(III),²⁴⁹Cf(III) и ¹⁵²Eu(III) в 0.1 моль/л HNO₃.

Исходный раствор (1 к.о.) подавали на колонку с сорбентом Bio-Rad AG 50W-X8 (200–400 меш) в NH₄⁺-форме (колонка объемом 10 см³) при скорости 1 мл/(см²·мин), затем промывали 0.1 моль/л HNO₃ и водой. Десорбцию исследуемых радионуклидов проводили растворами аммонийной соли α-HIBA с различной концентрацией (0.1–0.2 моль/л), но с фиксированным значением pH (pH 5.0). Данное значение pH выбрано исходя из результатов, полученных в работах [5, 7].

Методы анализа. Объемную активность γ-излучающих радионуклидов (²⁴¹Am, ⁵⁹Fe, ²⁴⁹Cf, ¹⁵²Eu) определяли с использованием γ-спектрометра SBS-50 с полупроводниковым Ge–Li детектором типа ДГДК 150. Источники для измерения представляли собой растворы объемом 1.00 мл в стеклянных пробирках диаметром 12 мм.

Суммарную активность α -излучающих радионуклидов измеряли с использованием жидкосцинтилляционного счетчика Quantulus 1220. Для измерения вклада отдельных нуклидов в суммарную α -активность использовали α - спектрометр «Аспект» с полупроводниковым детектором на основе ионоимплантированного монокристалла Si, покрытого светонепроницаемым слоем Al. Активность α -излучающего радионуклида ²⁴⁴Cm измеряли с использованием α -спектрометра ESBS-7x. Источники для измерения готовили путем нанесения на металлическую подложку аликвоты измеряемого раствора, высушивания под лампой и прокаливания для удаления солевого слоя.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

В качестве метода очистки Ат и Ст от примеси Ри выбрана анионообменная хроматография с использованием сильноосновного анионита Bio-Rad AG 1-X8 (50-100 меш) [18-20]. В качестве метода разделения Am и Cm, а также их очистки от Cf и Еи выбрана катионообменная хроматография с использованием катионита Bio-Rad AG 50W-X8 (200-400 меш) в NH₄⁺-форме с применением в качестве элюента раствора аммонийной соли α-HIBA [8, 9, 15, 16]. После разделения Ат и Ст целевые фракции необходимо отделить от α-HIBA. Для этого выбрана катионообменная хроматография с использованием катионита Bio-Rad AG 50W-X8 (100-200 меш). В качестве финальной стадии очистки проводили отделение примеси Fe сорбцией из 9 моль/л HCl на анионообменной смоле Bio-Rad AG 1-X8 (50-100 меш).

Очистка Ат/Ст от Ри и Fe.Микроколичества Ри отделяли от Ат и Ст путем сорбции Ри на сильноосновной анионообменной смоле Bio-Rad AG 1-X8 (50–100 меш) из 9 моль/л HCl в присутствии 0.1 моль/л H₂O₂ [20]. Америций и кюрий в этих условиях практически не сорбируются смолой. Проведение очистки в солянокислой среде рекомендуется в случае присутствия солей Fe(III), так как позволяет добиться одновременного отделения Ат и Ст от Ри и Fe. Во фракцию Ат и Ст попадает не более 0.5% Fe и не более 0.1% Pu.

Поведение ¹⁵²Eu, ²⁴⁹Cf, ²⁴⁴Cm, ²⁴¹Am в смеси при ступенчатом элюировании а-HIBA. Исходный раствор (0.1 моль/л HNO₃), содержащий ¹⁵²Eu, ²⁴⁴Cm, ²⁴¹Am и ²⁴⁹Cf, пропускали через хроматографическую колонку с катионитом Bio-Rad AG 50W-X8 (200–400 меш) в NH₄⁺-форме объемом 10 см³. После промывки колонки азотной кислотой и водой на первой стадии процесса элюирования подавали 20 к.о. раствора 0.1 моль/л аммонийной соли α-HIBA, на второй – раствор 0.2 моль/л аммонийной соли α-HIBA. Полученные выходные кривые представлены на рис. 1.

Полученные данные свидетельствуют о приемлемой очистке Cm от Eu (во фракцию Cm попадает 0.1% Eu), однако наблюдается недостаточное разделение Am и Cm: во фракцию Am попадает 1.0% Cm. По данной методике повторили эксперимент с заменой на второй стадии процесса элюирования

Puc. 1. Выходные кривые ²⁴⁹Cf, ¹⁵²Eu, ²⁴⁴Cm, ²⁴¹Am при последовательном элюировании растворами 0.1 и 0.2 моль/л аммонийной соли α-HIBA с pH 5.0. Исходная активность, Бк: ²⁴⁹Cf 1.7×10^6 , ¹⁵²Eu 8.46×10^4 , ²⁴⁴Cm 1.23×10^7 , ²⁴¹Am 1.40×10^5 .

раствора 0.2 моль/л аммонийной соли α-HIBA на ее раствор с концентрацией 0.175 (рис. 2) и 0.15 моль/л (рис. 3).

При использовании на второй стадии раствора 0.175 моль/л аммонийной соли α-НІВА во фракцию Am попадает 0.2% Cm, а при использовании раствора 0.15 моль/л аммонийной соли α-НІВА – 0.01%.

Характеристики хроматографического процесса. Определены характеристики разработанного хроматографического процесса катионообменного разделения и очистки Am и Cm с использованием в качестве элюента раствора аммонийной соли α -HIBA: число теоретических тарелок N, коэффициент распределения D, селективность (фактор разделения) α , разрешение $R_{\rm S}$ [21–23].

 $N_{\rm A}$ – число теоретических тарелок – рассчитывали по параметрам удерживания вещества A по формуле (1):

$$N_{\rm A} = 16(V_{\rm A}/W_{\rm A})^2,\tag{1}$$

где V_A – объем удерживания вещества A, к.о. (объем подвижной фазы, затрачиваемой на элюирование пробы вещества; определяют между точкой ввода пробы и точкой, при которой регистрируется максимум хроматографического пика); W_A – ширина пика вещества A у основания, к.о. (отрезок основания пика, отсекаемый двумя касательными, проведенными в точках перегибов восходящей и нисходящей ветвей хроматографического пика). Эксперимен-

РАДИОХИМИЯ том 64 № 5 2022

тально определенные значения ширины хроматографического пика у основания и числа теоретических тарелок для Cf, Cm, Am, Eu при различных концентрациях элюента приведены соответственно в табл. 1 и 2.

D_A – динамический (объемный) коэффициент распределения вещества А – рассчитывали по формуле (2):

$$D_{\rm A} = V'_{\rm A}/V = (V_{\rm A} - V_{\rm M})/V,$$
 (2)

где V – объем слоя сорбента (1 к.о.); $V'_{\rm A}$ – приведенный объем удерживания вещества A, к.о.; $V_{\rm M}$ – мертвый объем, к.о.

Таблица 1. Ширина хроматографического пика у основания при различных концентрациях элюента

Элемент А	Ширина пика у основания W_A , к.о.				
0.1 моль/л α-HIBA					
²⁴⁹ Cf	2.62				
0.15 моль/л а-HIBA					
¹⁵² Eu	1.5				
²⁴⁴ Cm	3.1				
²⁴¹ Am	4.2				
0.175 моль/л α-HIBA					
¹⁵² Eu	1.1				
²⁴⁴ Cm	1.85				
²⁴¹ Am	2.25				
0.2 моль/л α-HIBA					
¹⁵² Eu	1.0				
²⁴⁴ Cm	1.56				
²⁴¹ Am	1.73				

Puc. 2. Выходные кривые ²⁴⁹Cf, ¹⁵²Eu, ²⁴⁴Cm, ²⁴¹Am при последовательном элюировании растворами 0.1 моль/л и 0.175 моль/л аммонийной соли α-HIBA с pH 5.0. Исходная активность, Бк: ²⁴⁹Cf 1.7×10^6 , ¹⁵²Eu 8.86×10^4 , ²⁴⁴Cm 5.80×10^6 , ²⁴¹Am 1.25×10^5 .

Необходимый для расчета объемного коэффициента распределения мертвый объем $V_{\rm M}$ включает в себя свободный объем колонки и объем коммуникаций между точкой ввода элюента и колонкой. Свободный объем колонки берется равным 0.38 к.о., исходя из данных монографии [24] для катионита Dowex 50-X8 (200–400 меш). Объем коммуникаций между точкой ввода элюента и колонкой определен экспериментально и равен 0.05 к.о. Таким образом, мертвый объем $V_{\rm M}$ составляет 0.43 к.о. Значения динамических (объемных) коэффициентов распределения приведены в табл. 3.

α – селективность (фактор разделения) хроматографической системы. Количественно селективность выражается как безразмерная величина, характеризующая разделительную способность колонки по отношению к разделяемым веществам А и Б и численно равная отношению приведенных объемов удерживания. Ее рассчитывали по формуле (3):

$$\alpha = V'_{\rm A}/V'_{\rm B}.\tag{3}$$

 $R_{\rm S}$ – разрешение пиков – рассчитывали по формуле (4):

$$R_{\rm S} = 2(V_{\rm A} - V_{\rm B})/(W_{\rm A} + W_{\rm B}), \qquad (4)$$

где V_A , V_B – объемы удерживания веществ A и Б, к.о.; W_A (W_B) – ширина пика у основания веществ A и Б, к.о.

Значения динамических характеристик разделения Cf, Eu, Am, Cm приведены в табл. 4.

Результаты, представленные в табл. 1–4, показывают, что с увеличением концентрации α-HIBA

Таблица 2. Число теоретических тарелок

Элемент А	Объем удерживания V _A , к.о.	Число теоретических тарелок N _A			
0.1 моль/л α-HIBA-0.15 моль/л α-HIBA					
Cf	15	524			
Cm 34		1924			
Am 41		1524			
Eu	23	3762			
0.1 моль/л а-HIBA-0.175 моль/л а-HIBA					
Cf	15	524			
Cm	26.5	3283			
Am	30	2844			
Eu	22	6400			
0.1 моль/л α-HIBA–0.2 моль/л α-HIBA					
Cf	15	524			
Cm	24.5	3946			
Am	26.5	3754			
Eu	22	7744			

РАДИОХИМИЯ том 64 № 5 2022

Puc. 3. Выходные кривые ²⁴⁹Cf, ¹⁵²Eu, ²⁴⁴Cm, ²⁴¹Am при последовательном элюировании растворами 0.1 моль/л и 0.15 моль/л аммонийной соли α-HIBA с pH 5.0. Исходная активность, Бк: ²⁴⁹Cf 1.7×10^6 , ¹⁵²Eu 8.19×10^4 , ²⁴⁴Cm 3.22×10^7 , ²⁴¹Am 1.32×10^5 .

на второй стадии процесса ступенчатого элюирования уменьшается ширина хроматографического пика у основания и возрастает число теоретических тарелок, т.е. уменьшается размывание пиков. Одновременно при этом уменьшаются селективность α и разрешение $R_{\rm S}$, т.е. возрастает степень перекрывания хроматографических пиков. В работе [25] отмечено, что два вещества будут разделяться, если селективность $\alpha > 1$; для удовлетворительного разделения R_S должно быть равно 1. Разделение считается полным, если R_s равно или больше 1.5. Поэтому разделение Cm и Am, а также их очистку от Eu и Cf рекомендовано проводить ступенчатым элюированием растворами аммонийной соли α-HIBA 0.1 (рН 5.0) (первая стадия) и 0.15 моль/л (рН 5.0) (вторая стадия).

Очистка весовых количеств ²⁴⁸**Ст.** В исходном растворе содержалось 26.6 мг (4.08×10^6 Бк) ²⁴⁸Ст,

Таблица 3. Динамические (объемные) коэффициенты распределения

D THOOLE	Коэффициент распределения, $D_{\rm A}$			
Элюент	Cf Am		Cm	Eu
0.1 моль/л α-HIBA	14.57	-	_	_
0.15 моль/л α-HIBA	_	40.57	33.57	22.57
0.175 моль/л α-HIBA	_	29.57	26.07	21.57
0.2 моль/л α-HIBA	_	26.07	24.07	21.57

РАДИОХИМИЯ том 64 № 5 2022

 2.60×10^{-2} мг (3.3×10^{6} Бк) ²⁴¹Am, 2.38×10^{-3} мг (3.6×10^{5} Бк) ²⁴⁹Cf. Используемые в данной работе радиометрические методики не показывают присутствие изотопов Ри в исходном растворе (содержание Ри ниже пределов обнаружения), поэтому предварительное отделение Ри на анионообменной смоле не проводили.

Смесь радионуклидов ²⁴⁸Cm, ²⁴¹Am, ²⁴⁹Cf разделяли на колонке, содержащей 10 см³ сильнокислого катионита Bio-Rad AG 50W-X8 (200–400 меш) в NH₄⁺-форме. Геометрические параметры колонки аналогичны параметрам колонок, использовавшихся при работе с индикаторными количествами ²⁴⁹Cf, ¹⁵²Eu, ²⁴⁴Cm, ²⁴¹Am. Порядок элюирования и концентрации растворов аммонийной соли α-HIBA аналогичны использовавшимся в экспериментах с индикаторными количествами ²⁴⁹Cf, ¹⁵²Eu, ²⁴⁴Cm, ²⁴¹Am (рис. 3). Содержание ²⁴⁸Cm и ²⁴¹Am и распределение их по фракциям представлены на выходных кривых элюирования (рис. 4).

На выходной кривой элюирования ²⁴⁸Cm (рис.4) передний фронт более размыт, чем в экспериментах с индикаторными количествами данного элемента (рис. 3). Исходя из литературных данных [10], это явление можно объяснить тем фактом, что коэффициент распределения Cm, вероятно, возрастает при увеличении его концентрации. Зависимость между

Puc. 4. Выходные кривые элюирования весовых количеств ²⁴⁸Cm (²⁴⁸Cm 26.6 мг, ²⁴¹Am 3.3×10^6 Бк, ²⁴⁹Cf 3.6×10^5 Бк) раствором аммонийной соли α-HIBA, pH 5.0.

количеством вещества, сорбированного из жидкой фазы, и его концентрацией в этой фазе при постоянной температуре выражают изотермой сорбции. При малых концентрациях количество сорбированного вещества пропорционально его концентрации в жидкой фазе и наблюдается линейная изотерма сорбции (коэффициент распределения не зависит от концентрации вещества в жидкой фазе). Каждый компонент зоны перемещается с постоянной скоростью, поскольку линейная скорость его мигра-

Элемент А	Элемент Б	Селективность (фактор разделения) а	Разрешение <i>R</i> _S			
0.1 моль/л α-HIBA-0.15 моль/л α-HIBA						
Cm	Cf	2.30	6.64			
Am	Cf	2.78	7.62			
Eu	Cf	1.55	3.89			
Am	Cm	1.21	1.92			
Am	Eu	1.80	6.32			
Cm	Eu	1.49	4.35			
0.1 моль/л α-HIBA-0.175 моль/л α-HIBA						
Cm	Cf	1.79	5.15			
Am	Cf	2.03	6.16			
Eu	Cf	1.48	3.76			
Am	Cm	1.13	1.71			
Am	Eu	1.37	4.78			
Cm	Eu	1.21	3.05			
0.1 моль/л α-HIBA-0.2 моль/л α-HIBA						
Cm	Cf	1.65	4.55			
Am	Cf	1.79	5.29			
Eu	Cf	1.48	3.87			
Am	Cm	1.08	1.22			
Am	Eu	1.21	3.30			
Cm	Eu	1.12	1.95			

Таблица 4. Динамические характеристики разделения Cf, Eu, Am, Cm

РАДИОХИМИЯ том 64 № 5 2022

ции зависит от скорости потока подвижной фазы, которую устанавливают постоянной. С такой же скоростью перемещается вся зона, оставаясь симметричной: концентрация компонента максимальна в центре зоны и симметрично убывает к краям. Следовательно, симметричен и пик на хроматограмме (рис. 1-3). Если для больших концентраций вещества значение коэффициента распределения больше, чем для малых, то центр зоны с большей концентрацией перемещается медленнее, чем края зоны с малой концентрацией (вогнутая изотерма сорбции). В результате передний фронт хроматографического пика размывается и пик получается несимметричным. Поскольку при очистке от Am и Cf весовых количеств Ст передний фронт хроматографического пика размывается (рис. 4), можно предположить, что изотерма сорбции Ст имеет вогнутый характер. Для вогнутой изотермы хроматографический пик имеет асимметричную форму с размытым передним фронтом, удерживаемый объем увеличивается с увеличением концентрации иона.

Для указанной массы Cm экспериментально определены: объем удерживания V = 35.4 к.о., ширина хроматографического пика у основания W = 6.1 к.о., динамический (объемный) коэффициент распределения D = 35, число теоретических тарелок N = 539. Сравнение с результатами экспериментов с индикаторными количествами ²⁴⁴Ст (табл. 2) показывает, что при очистке весовых количеств Ст число теоретических тарелок N уменьшилось. Полученный результат согласуется с данными работы [9], в которой изучалось элюативное разделение Ат и Ст на сульфокатионите с помощью α-HIBA. В работе [9] показано, что при увеличении величины первоначальной загрузки колонки разделяемой смесью эффективность хроматографического разделения Ат и Ст уменьшается (уменьшается число теоретических тарелок N).

С использованием разработанной технологии в НИИАР впервые получен препарат ²⁴⁸Cm с радионуклидной и химической чистотой, существенно превышающей показатели препаратов, получаемых по штатной технологии [1–3]. Характеристики препарата ²⁴⁸Cm следующие: содержание продуктов деления (доля от активности целевого радионуклида) ≤2.1%, массовая доля нерадиоактивных примесей ≤1.0%, массовая доля ²⁴⁸Cm в смеси изотопов кюрия 94.99%.

ЗАКЛЮЧЕНИЕ

Определены режимы очистки Cm и Am от примесей Fe и Pu, а также режимы разделения Am и Cm и их очистки от Cf и Eu методами ионообменной хроматографии. Установлено, что отделение микроколичеств Pu от Am и Cm можно проводить путем его сорбции на сильноосновной анионообменной смоле Bio-Rad AG 1-X8 (50–100 меш) из 9 моль/л HCl в присутствии 0.1 моль/л H₂O₂.

Проведена отработка режимов разделения Am и Cm и их очистки от Cf и Eu методами катионообменной хроматографии с использованием в качестве элюента раствора аммонийной соли α-HIBA. Разделение РЗЭ и TПЭ проводят в режиме ступенчатого элюирования растворами аммонийной соли α-HIBA с концентрацией 0.1 (pH 5.0) (первая стадия) и 0.15 моль/л (pH 5.0) (вторая стадия). На первой стадии процесса происходит выделение Cf, на второй – разделение Eu, Cm и Am.

При экспериментах с индикаторными количествами ²⁴⁹Cf, ¹⁵²Eu, ²⁴⁴Cm, ²⁴¹Am определены характеристики хроматографического процесса катионообменной очистки: число теоретических тарелок N, коэффициент распределения D, селективность (фактор разделения) α , разрешение $R_{\rm S}$. Отмечено, что при очистке весовых количеств Cm хроматографический пик имеет асимметричную форму с размытым передним фронтом, т.е. концентрация Ст соответствует нелинейному участку изотермы сорбции. При нелинейной изотерме сорбции увеличивается размывание хроматографических зон и уменьшается эффективность хроматографической колонки (снижается число теоретических тарелок N и уменьшается разрешение пиков Am и Cm), следствием чего является снижение полноты разделения данных элементов

Проведена очистка весовых количеств ²⁴⁸Cm, получен препарат ²⁴⁸Cm со следующими характеристиками: содержание продуктов деления (доля от активности целевого радионуклида) $\leq 2.1\%$, массовая доля нерадиоактивных примесей $\leq 1.0\%$, массовая доля ²⁴⁸Cm-248 в смеси изотопов кюрия 94.99%.

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют об отсутствии конфликта интересов.

РАДИОХИМИЯ том 64 № 5 2022

СПИСОК ЛИТЕРАТУРЫ

- 1. Топоров Ю.Г., Шимбарев Е.В., Тарасов В.А., Романов Е.Г., Куприянов А.В. // Изв. Самарского науч. центра РАН. 2014. Т. 16, № 6–1. С. 142.
- Лебедев В.М., Корнилов А.С. Некоторые особенности разделения весового количества америция и кюрия. Димитровград: НИИАР, 2019. 100 с.
- Топоров Ю.Г., Тарасов В.А., Романов Е.Г., Куприянов А.В., Андреев О.И., Шимбарев Е.В., Гордеев Я.Н., Петелин А.Л., Сазонтов С.А., Узиков В.А. // Сб. тр. АО «ГНЦ НИИАР». Димитровград: НИИАР, 2018. № 1. С. 34.
- *Тремийон Б.* Разделение на ионообменных смолах. М.: Мир, 1967. 431 с.
- Perdue H.D., Conover A., Sawley N, Anderson R. // Anal. Chem. 1968. Vol. 40, N 12. P. 1773.
- Campbell D.O. Sep. Purif. Meth. 1976. Vol. 5, N 1. P. 97.
- Chen X., Goff G.S., Ewing W.C., Scott B.L., Runde W. // Inorg. Chem. 2012. Vol. 51, N 24. P. 13254–13263.
- Елесин А.А., Карасева В.А. // Радиохимия. 1977. Т. 19, № 5. С. 678.
- Елесин А.А., Карасева В.А, Фролов В.И.// Радиохимия. 1979. Т. 21, № 4. С. 511.
- Benker D.E., Chattin F.R., Collins E.D., Knauer J.B., Orr P.B., Goss R.B., Wiggins J.T. // Transplutonium Elements—Production and Recovery / Ed. J.D. Navratil. Washington DC: ACS, 1981. P. 161.
- Елесин А.А., Николаев В.М., Шалимов В.В., Попов Ю.С., Кованцев В.Н., Целищев И.В., Филимонов В.Т., Мишенев В.Б., Ядовин А.А., Голосовский Л.С., Четвериков А.П., Ефремов Ю.В. // Радиохимия. 1986. Т. 28, № 6. С. 786.
- Михеев Н.Б., Каменская А.Н., Ауэрман Л.Н., Кулюхин С.А., Румер И.А., Новиченко В.Л. // Радиохимия. 1987. Т. 29, № 2. С. 194.

- Vobecký M. // J. Radioanal. Nucl. Chem. 1989. Vol. 135, N 3. P. 165.
- Malmbeck R., Apostolidis C., Carlos R., Glatz J.-P., Molinet R., Morgenstern A., Nicholl A., Pagliosa G., Römer K., Schädel M., Sätmark B., Trautmann N. // Radiochim. Acta. 2001. Vol. 89, N 9. P. 543.
- Boll R.A., Van Cleve S.M., Sims N.J., Felker L.K., Burns J.D., Owen G.D., Smith E.H., White C.S., Ezold J.G. // J. Radioanal. Nucl. Chem. 2015. Vol. 305, N 3. P. 921.
- Burns J.D., Van Cleve S.M., Smith E.H., Boll R.A. // J. Radioanal. Nucl. Chem. 2015. Vol. 305, N 1. P. 109.
- Robinson S.M., Benker D.E., Collins E.D., Ezold J.G., Garrison J.R., Hogle S.L. // Radiochim. Acta. 2020. Vol. 108, N 9. P. 737.
- 18. Ryan J.L. // J. Phys. Chem. 1960. Vol. 64, N 10. P. 1375.
- Chilton J.M., Fardy J.J. // J. Inorg. Nucl. Chem. 1969. Vol. 31, N 4. P. 1171.
- Larsen R.P., Oldham R.D. // Talanta. 1975. Vol. 22, N 7. P. 577.
- Шпигун О.А., Золотов Ю.А. Ионная хроматография и ее применение в анализе вод. М.: Изд-во МГУ, 1990. 199 с.
- Долгоносов А.М., Рудаков А.Б., Прудковский А.Г. Колоночная аналитическая хроматография: практика, теория, моделирование. СПб.: Лань, 2015. 2-е изд. 468 с.
- Айвазов Б.В. Введение в хроматографию. М.: Высш. шк., 1983. 240 с.
- Мархол М. Ионообменники в аналитической химии. М.: Мир, 1985. Ч. 1. 261 с.
- Большова Т.А., Брыкина Г.Д., Гармаш А.В., Долманова И.Ф., Дорохова Е.Н., Золотов Ю.А., Иванов В.М., Фадеева В.И., Шпигун О.А. Основы аналитической химии. Кн. 1: Общие вопросы. Методы разделения. М.: Высш. шк., 2000. 351 с.