УДК 621.039.7

КРИСТАЛЛОХИМИЯ ТИТАНАТОВ И ЦИРКОНАТОВ РЕДКИХ ЗЕМЕЛЬ – ВОЗМОЖНЫХ МАТРИЦ ДЛЯ ИЗОЛЯЦИИ АКТИНИДОВ

© 2022 г. С. В. Юдинцев^{а, *}, М. С. Никольский^а, О. И. Стефановская⁶, Б. С. Никонов^а

^а Институт геологии рудных месторождений, петрографии, минералогии и геохимии РАН,

119017, Москва, Старомонетный пер., д. 35

⁶ Институт физической химии и электрохимии им. А.Н. Фрумкина РАН,

119071, Москва, Ленинский пр., д. 31, корп. 4

* e-mail: yudintsevsv@gmail.com

Поступила в редакцтю 05.04.2022, после доработки 05.04.2022, принята к публикации 21.04.2022

Титанаты и цирконаты легких редкоземельных элементов (P3Э) – P3Э₂TiO₅, P3Э₂Ti₂O₇, P3Э₄Ti₉O₂₄ и P3Э₂Zr₂O₇ – представляют интерес как матрицы для изоляции P3Э-актинидной фракции высокоактивных отходов от переработки облученного ядерного топлива. Проанализированы данные о вхождении примесей (Zr, U, Ca) в титанаты Nd и La. В них проявлен ограниченный изоморфизм в отношении данных элементов, в том числе по реакции 2P3Э³⁺ \leftrightarrow Ca²⁺ + U⁴⁺, обычной для минералов и их синтетических аналогов. Рассмотрены причины низкой растворимости Zr и U в титанатах Nd и роль кристаллохимического фактора при выборе кристаллических матриц для иммобилизации P3Э-актинидной фракции.

Ключевые слова: ядерный топливный цикл, радиоактивные отходы, РЗЭ-актинидная фракция, изоляция, титанаты и цирконаты неодима, изоморфная емкость, кристаллохимия

DOI: 10.31857/S0033831122060016, EDN: MFCTKQ

ВВЕДЕНИЕ

В России реализуется стратегия двухкомпонентной ядерной энергетики с реакторами на медленных и быстрых нейтронах в режиме замкнутого цикла [1, 2], т.е. с переработкой облученного ядерного топлива (ОЯТ). В результате возникают радиоактивные отходы (РАО), в том числе высокого уровня активности (ВАО). Ключевая задач повышения безопасности ядерной энергетики состоит в поиске путей обращения с самыми опасными радионуклидами ВАО – долгоживущими продуктами деления и трансурановыми актинидами. Последние представлены Ри и малыми актинидами (МА: Np, Am и Cm), количество которых в отработанном топливе, как следует из их названия, существенно уступает содержанию плутония (табл. 1).

Малые актиниды предлагается извлекать из ВАО для трансмутации в реакторах на тепловых или быстрых нейтронах в гомогенном (Pu, Np) или гетерогенном (Am) режимах. Кюрий предлагается хранить от 70 до 100 лет для распада в плутоний и затем использовать при изготовлении ядерного топлива. Подсчитано [1, 2, 4], что в таком случае через 300–500 лет активность оставшихся в отходах радионуклидов сравняется со значением у урановой руды (принцип радиационной эквивалентности); еще быстрее – за 100 лет – наступит радиологическая (онко) эквивалентность, учитывающая их потенциальный вред здоровью населения [5].

Данный подход основан на использовании очень сложных технологий для выделения трансплутониевых элементов (ТПЭ), включая малые актиниды, из жидких ВАО переработки ОЯТ, разделения Ат и Ст и фабрикации топлива. Приемы отделения америция и кюрия от близких к ним по свойствам РЗЭ, разделения Ат и Ст, изготовления топлива с Ат находятся на ранних стадиях разработки [3, 6–8], далеких от реализации. Замыкание топливного цикла с фракционированием МА (Ат, Ст) изготовле-

ЮДИНЦЕВ и др.

Элемент	После 5 лет хранения ОЯТ				После 30 лет хранения ОЯТ			
	45 ГВт·сут/т		60 ГВт сут/т		45 ГВт·сут/т		60 ГВт·сут/т	
	состав,	тепловыделение,	состав,	тепловыделение,	состав,	тепловыделение,	состав,	тепловыделение,
	г/т	Bt/t	г/т	Bt/t	г/т	Bt/t	г/т	Вт/т
Y	640	508	800	621	640	274	800	335
Gd	150	Стаб.	310	Стаб.	180	Стаб.	346	Стаб.
Eu	190	60	260	90	170	7.9	230	11.9
Sm	1060	Стаб.	1370	Стаб.	1120	Стаб.	1430	Стаб.
Pm	63	21	62	21	_	_	_	—
Ce	3210	10	4230	10	3210	Стаб.	4220	Стаб.
Pr	1540	114	2010	113	1540	Стаб.	2010	Стаб.
Nd	5570	Стаб.	7310	Стаб.	5570	Стаб.	7310	Стаб.
La	1670	Стаб.	2190	Стаб.	1670	Стаб.	2190	Стаб.
U	941000	0.06	923000	0.06	941000	0.06	923000	0.06
Pu	11200	164	12600	283	10200	138	11500	236
Np	570	0.01	780	0.02	570	0.01	780	0.02
Am	510	47	740	58	1380	146	1780	178
Cm	33	88	113	292	14	34	50	112

Таблица 1. Состав и тепловыделение ОЯТ легководных реакторов (LWR) в зависимости от глубины выгорания и времени его хранения [3]^a

^а Стаб. – только стабильные изотопы, прочерк – отсутствует.

нием и облучением топлива и его последующей переработкой ожидается к 2050 году [9], что на 30 лет превосходит сделанные ранее оценки.

Сравнение вреда здоровью человека от радиоактивных отходов и урановой руды основано на допущении их растворения в подземной воде. Однако для этого нет оснований, поскольку известны урановорудные объекты с возрастом многие миллионы лет и запасами в сотни тысяч тонн U при концентрации в рудах до 20 мас%. Достоверно установленные запасы урана в месторождениях приближаются к 6 млн т, его предполагаемые ресурсы составляют 7.5 млн т и еще несколько миллионов тонн уже извлечены из недр в интересах ядерной индустрии. Число известных месторождений превышает 1800, наиболее древние из которых имеют возраст более 2 млрд лет [10–12]. Урановое рудообразование происходит и сейчас в связи с концентрированием элемента в ограниченном объеме горных пород. Поэтому, на наш взгляд, сопоставление радиационной и радиологической характеристик ВАО и урановых руд не имеет смысла, так как растворимость тех и других в подземных водах очень мала. Использование этого же приема оценки опасности элементов через объем воды для их растворения до безопасного уровня показало [13, 14], что гораздо большую угрозу здоровью человека представляют Hg, Se, Pb, Cd, As

при содержаниях в рудах от долей до нескольких мас%. Отметим, что опасность данных элементов не снижается со временем в отличие от радионуклидов, содержание которых уменьшается по мере их распада.

Главные промышленные минералы U – оксиды (урановая смолка), фосфат (нингиоит), силикат (коффинит) и титанат (браннерит) четырехвалентного урана. Разработка оксидных и фосфатных руд ведется методом подземного выщелачивания с использованием окислителей и агрессивных кислых или щелочных растворов. Еще выше устойчивость таких минералов урана, тория и РЗЭ, как пирохлор, цирконолит, перовскит, монацит, бритолит и др. [15, 16]. Их изотопные системы закрыты сотни млн лет [17], что позволяет использовать минералы для датирования возраста руд и пород. Существование в природе обстановок, в которых отсутствует миграция радионуклидов, лежит в основе альтернативного трансмутации метода обращения с долгоживущими изотопами, включая актиниды. Он состоит в их включении в устойчивые матрицы и размещении на глубинах в несколько сотен метров в специальном хранилище высокоактивных материалов [13, 18-22]. В отчетах Международного агентства по атомной энергии и Ядерного энергетического агентства аргументируется безопасность захоронения ОЯТ и

Фаза и ее обозначение	La ₂ O ₃	TiO ₂	ZrO ₂				
La ₂ Ti ₂ O ₇ , LT ₂	32.3 ± 0.3	66.2 ± 0.2	1.5 ± 0.3				
	31.7 ± 0.9	67.2 ± 1.0	1.1 ± 0.2				
La4Ti9O24, L2Ti9	17.7 ± 1.0	81.1 ± 1.1	2.2 ± 0.3				
	16.7 ± 0.5	78.9 ± 0.6	4.4 ± 0.2				
ZrTiO ₄ , ZT	< п.о. ^а	53.1 ± 0.4	46.9 ± 0.3				
	< п.о.	41.6 ± 0.3	58.4 ± 0.3				
ZrO_2, Z	< п.о.	13.5 ± 0.6	86.5 ± 0.7				
TiO ₂ , T	< п. о.	88.6 ± 0.5	11.4 ± 0.3				

Таблица 2. Составы фаз (мол%), образующихся в системе La₂O₃-TiO₂-ZrO₂ [50]

^а < п.о. – не обнаружен, меньше предела обнаружения методом СЭМ/ЭДС.

отвержденных ВАО [23–25]. Многие страны, в том числе и Россия, уже реализуют программы по выбору мест для сооружения таких хранилищ ОЯТ и ВАО [21–29].

Кристаллические фазы для иммобилизации фракции РЗЭ-актинидов. Известны разные приемы сепарации ВАО на фракции элементов [30-36], в основном для азотнокислых отходов Пурекс-процесса. Тип экстрагента определяется составом извлекаемых элементов. Так, для фракционирования Cs и Sr предлагаются процессы CSEX и DDC; РЗЭ и ТПЭ – TRUEX, UREX, TRPO, TODGA, DIAMEX; извлечения всех актинидов - GANEX; UNEX-процесс предлагается для группы Cs + Sr + P3Э + ТПЭ с последующим ее разделением на фракции Cs-Sr и РЗЭ-ТПЭ. Часть приемов испытана на реальных активных растворах и имеет уровень технологической готовности, достигающий 6 и выше [35]. Наличие устойчивых фаз актинидов и существование в природе сред, в которых их миграция отсутствует [13, 18-20], составляют основу для обращения с РЗЭ-МА фракцией путем их включения в матрицы и захоронения. Локализацию радионуклидов обеспечат инженерные барьеры хранилища и защитные свойства вмещающих пород. Главный инженерный барьер – это матрица, обладающаяся высокой устойчивостью в подземных водах [37]. В составе РЗЭ-МА фракции доминируют крупные лантаниды (La, Ce, Pr, Nd, Sm), на малые актиниды (MA = Am, Cm) приходится до 10 мас% (табл. 1). Для изоляции РЗЭ-МА фракции предложены кристаллические матрицы (керамики) с высокой изоморфной емкостью и устойчивостью в воде [38-41]. При их синтезе и изучении свойств используются

стабильные РЗЭ-имитаторы, чаще всего Nd [41, 42], из-за близких радиусов ионов Nd³⁺, Am³⁺ и Cm³⁺, а также в связи с преобладанием Nd в составе гипотетической РЗЭ-МА фракции.

Соединения РЗЭ (Nd) - потенциальные матрицы для малых актинидов. Перспективные матрицы актинидов – титанаты и цирконаты РЗЭ [38-49]. Среди них много внимания уделялось фазам со структурой пирохлора и флюорита [38, 39, 44]. Данные о титанатах РЗЭ малочисленны и касаются, главным образом, влияния состава (типа РЗЭ) на структуру фаз вида РЗЭ₂ТіО₅ и РЗЭ₂Ті₂О₇ и их поведения при ионном облучении [40, 45-49]. Учитывая, что аналогом Am^{3+} и Cm^{3+} служит Nd^{3+} . то большой интерес при поиске матриц РЗЭ-МА фракции вызывают соединения неодима. Согласно работе [49], в системе NdO_{15} -TiO₂-ZrO₂ имеются: фаза Nd₂(Ti,Zr)₂O₇ со структурой пирохлора (далее кратко NTZ), TiO₂ (T, рутил), ZrTiO₄ (ZT, шриланкит) и тетрагональный ZrO₂ (Z_t). Титанаты Nd представлены (рис. 1) Nd₂TiO₅ (NT), Nd₂Ti₂O₇ (NT_2) , $Nd_2Ti_4O_{11}$ (NT_4) , $Nd_4Ti_9O_{24}$ (N_2T_9) . B структуре NTi₂ и NT₄ есть блоки перовскитового типа, у N₂T₉ природные аналоги отсутствуют. Исследовались и другие титанатные и цирконатные системы c P33: La₂O₃-TiO₂-ZrO₂ [50], Y₂O₃-TiO₂-ZrO₂ [51, 52], Nd₂O₃-TiO₂ [53], La₂O₃-TiO₂ [54], Nd₂O₃-ZrO₂ [55]. При изучении системы Nd₂O₃-TiO₂ [53] доказана аналогичность структур $Nd_2Ti_4O_{11}$ и $Nd_4Ti_9O_{24}$ и выявлена фаза $Nd_2Ti_3O_9$ (NT₃).

Рис. 1. Строение системы NdO_{1.5}–TiO₂–ZrO₂. Р – поле фазы со структурой пирохлора [49].

В системе La₂O₃-TiO₂-ZrO₂ идентифицированы (рис. 2, a): La₂TiO₅ (LT), La₄Ti₃O₁₂ (L₂T₃), La₂Ti₂O₇ (LT₂), La₄Ti₉O₂₄ (L₂T₉), La₂Zr₂O₇ (LZ₂), ZrTiO₄ (ZT), ZrO₂ (Z), TiO₂ (T). Системы с Nd₂O₃ и La₂O₃ близки по набору фаз, однако фазовые ассоциации в них различны, в основном из-за меньшей области пирохлора (LZ₂). Характерная черта титанатов РЗЭ – слабые вариации состава, отношения Ti : Nd (La) в них близки к значениям в формулах, что отражено в узких полях фаз на диаграммах. При 1350°С в LT₂, L_2T_3 и LT входит менее 2 мол% ZrO₂ [50], содержание ZrO₂ в L₂T₉ достигает 4 мол% (табл. 2). В пирохлоре $La_2Zr_2O_7$ (LZ₂) содержится до 35 мол% La_2O_3 и 69 мол% ZrO₂ при значениях в формуле, равных 33 и 67 мол%. Изоморфизм La³⁺ в ZrO₂ и ZrTiO₄ ограничен 1 мол% La₂O₃. Высокие содержания ZrO₂ или TiO₂ (12-14 мол%) наблюдаются в оксидах (Ti,Zr) O_2 и (Zr,Ti) O_2 , соответственно, а значение отношения Zr : Ti в соединении ZrTiO₄ меняется в широких пределах, от 1.4 до 0.9.

Замена крупных катионов La³⁺ и Nd³⁺ на Y³⁺ ведет к заметным переменам в строении диаграммы (рис. 2, б). Структура титаната Y₂Ti₂O₇ становится кубической (пирохлоровой) и появляется большое поле (Zr,Y)O_{2-x} с флюоритовой структурой. Остаются оксиды TiO₂, ZrO₂ и ZrTiO₄ вдоль линии TiO₂-ZrO₂, имеется фаза Y₂TiO₅ с кубической структурой (пространственная группа $Fm\overline{3}m$), тогда как Nd₂TiO₅ и La₂TiO₅ обладают ромбической симметрией (пространственная группа *Pnma*).

Изменение радиуса РЗЭ³⁺ в системах РЗЭ₂О₃-ТіО2 и РЗЭ2О3-ZrO2 сопровождается полиморфизмом – трансформацией структуры фаз. Соединения РЗЭ₂Ti₂O₇ и РЗЭ₂Zr₂O₇ могут иметь структуру типа флюорита, пирохлора и перовскита. Области стабильности пирохлора отвечают значениям отношения r_A/r_B (A = P3Э³⁺, B = Ti⁴⁺ или Zr⁴⁺) от 1.46 до 1.82 [57, 58], r_A, r_B – ионные радиусы [59]. При $r_{\rm A}/r_{\rm B} > 1.82$ образуется первоскитоподобная структура, а при $r_{\rm A}/r_{\rm B} < 1.46$ формируется анионно-дефицитная структура, как у флюорита. Структурой пирохлора обладают титанаты средних и тяжелых РЗЭ ($Ln_2Ti_2O_7$, Ln = Sm - Lu, Y), а также цирконаты средних и легких РЗЭ ($Ln_2Zr_2O_7$, Ln = La-Gd). Фазы $P3\Im_2TiO_5$ (где $P3\Im = La-Sm$) обладают ромбической структурой, от Er до Lu и для Sc – кубической, титанаты элементов от Еи до Но, а также цирконат Ү имеют гексагональную симметрию решетки [46, 56]. Как видно, кристаллохимические особенности матричных фаз оказывают значительное влияние на вхождение в них элементов ВАО.

Кристаллохимические особенности титанатов и цирконатов РЗЭ. Кристаллохимическим аспектам потенциальных матриц радионуклидов, в том числе актинидов, посвящено большое число публикаций и обзоров, например [39–44, 60–65]. В них со структурных позиций рассматриваются особенности изоморфизма радионуклидов и их имитаторов в матрицах, пределы растворимости

Рис. 2. Строение систем La_2O_3 -TiO_2-ZrO₂ (а) и YO_{1.5}-TiO_2-ZrO₂ (б: P – фаза Y₂(Ti,Zr)₂O₇ со структурой пирохлора, F – оксид (Y,Zr,Ti)O_{2-x} со структурой флюорита), по данным работ [50, 51].

Рис. 3. СЭМ-изображения образцов: a – LT2 $(1 - LnT_2, 2 - Ln_2T_9)$; б – 3б $(1 - LnT_2; 2 - UT_2, 6раннерит; 3 - (Ln,U)O_{2-x}; 4 - титаносиликат РЗЭ); в – 4 <math>(1 - Ln_2T_9; 2 - UT_2, 6раннерит; 3 - (Ln,U)O_{2-x}; 4 - титаносиликат РЗЭ); г – МПМ-2 <math>(1 - T, рутил; 2 - Ln_2T_9), д – NTC-2 (1 - пирохлор, 2 - (Ln,U)O_{2-x}); е – NTU-4 <math>(1 - LnT_2, 2 - Ln_2T_9, 3 - (Ln,U)O_{2-x})$. Черное – поры. Метка равна 50 (а, г–е), 20 (б) или 10 мкм (в). Составы фаз приведены в табл. 3–5.

элементов в решетке фаз и возможности их увеличения. Кристаллохимический подход обладает прогнозными свойствами и помогает находить составы фаз конкретного структурного типа для включения в них максимального количества отходов. В частности, показано [62], что наибольшей емкостью в отношении четырехвалентных актинидов среди фаз со структурой граната обладают ферриты кальция, циркония и РЗЭ. Важная характеристика матриц – это сохранение структуры при вариациях состава, т.е. широкие области устойчивости твердого рас-

твора. Если при синтезе целевых фаз образуются соединения с большей растворимостью в воде, это ухудшит изоляционные свойства матрицы. Как отмечалось, главный интерес при изучении титанатов и цирконатов РЗЭ, как потенциальных матриц для РЗЭ-МА фракции, связан с фазами Nd. Изучавшиеся в системе NdO_{1.5}–TiO₂–ZrO₂ составы [49] лежат, в основном, вдоль линии Nd₂Zr₂O₇–Nd₂Ti₂O₇, поэтому поля фаз на рис. 1 показаны с определенной долей условности.

Образец	Состав (валовая формула) образца	Условия синтеза	Основные фазы
LT2	$La_{0.5}Nd_{1.4}Sm_{0.1}Ti_2O_7$	ХПС: 1400°С, 4 ч	LnT_2, Ln_2T_9
36	$Ln_{1.8}Ca_{0.1}U_{0.1}Ti_2O_7$	ИПХТ: 1600°С, 1 ч	LnT ₂ , UT ₂ , O, титаносиликат РЗЭ ^б
4	$Ln_{3.6}Ca_{0.2}U_{0.2}Ti_9O_{24}$	То же	Ln ₂ T ₉ , UT ₂ , O, титаносиликат РЗЭ ^б
МПМ-2	$0.5 Ln_4 Zr_{0.5} Ti_{8.5} O_{24} + 0.5 Ti O_2$	То же	Ln_2T_9, T
NTC-1	$0.5 Ca_{0.5} NdU_{0.5} Zr TiO_7 + 0.5 Nd_2 TiO_5$	ЭП:1500°С, 1 ч	LnZT, O
NTC-2	$(Ca_{0.25}Nd_{1.5}U_{0.25})(Zr_{0.5}Ti_{1.5})O_7$	То же	LnZT, O
NTU-4	$0.95 Nd_2 TiO_5 + 0.05 UO_2$	То же	LnT_2 , Ln_2T_9 , O
NTZ-1	$0.4Nd_2TiZrO_7 + 0.4Nd_2TiO_5 + 0.2UO_2$	То же	LnZT, LnT ₂ , O
NTZ-2	$0.4 N d_2 T i Z r O_7 + 0.4 N d_2 T i_2 O_7 + 0.2 U O_2$	То же	LnT ₂ , O
NTZ-3	$0.4Nd_{2}TiZrO_{7} + 0.3Nd_{4}Ti_{9}O_{24} + 0.3UO_{2}$	То же	UT, Ln_2T_9 , T

Таблица 3. Состав, условия получения образцов и слагающие их фазы, по данным РФА^а

^a Ln – смесь La_{0.12} + Ce_{0.25} + Pr_{0.12} + Nd_{0.41} + Sm_{0.07} + Eu_{0.02} + Gd_{0.01}. LnT₂ – Ln₂Ti₂O₇, Ln₂T₉ – Ln₄Ti₉O₂₄, UT₂ – браннерит UTi₂O₆, LnZT – пирохлор (Ln,Ca,U)₂(Zr,Ti)₂O₇, O – оксид (Ln,U)O_{2-x}, T – рутил TiO₂. ⁶ Из-за растворения в расплаве обмазки «холодного» тигля.

РАДИОХИМИЯ том 64 № 6 2022

		Образец Зб		Образец 4			
Оксид, мас%	LnT ₂	UT ₂	$(Ln,U)O_{2-x}$	Ln ₂ T ₉	UT ₂	$(Ln,U)O_{2-x}$	
CaO	1.2	< II.0.	< _{П.0} .	0.7	< _{П.0} .	0.6	
TiO ₂	34.2	45.9	< n.o.	52.8	44.5	0.9	
La ₂ O ₃	8.7	2.4	< n.o.	5.9	2.1	3.1	
Ce ₂ O ₃	18.3	14.3	16.8	12.2	10.9	18.7	
Pr ₂ O ₃	7.2	2.0	3.2	4.8	1.9	2.9	
Nd_2O_3	24.7	8.6	12.6	17.2	8.4	11.4	
Sm_2O_3	4.7	2.1	4.5	3.4	2.1	2.9	
Eu ₂ O ₃	< п.о.	< n.o.	< n.o.	0.8	0.7	1.0	
Gd_2O_3	1.0	< n.o.	1.2	0.9	1.0	1.5	
UO ₂	< п.о.	24.7	61.7	1.3	28.4	57.0	

Габлица 4. Составы	фаз образцов	3б и 4, содержащих	уран и смесь РЗЭ
--------------------	--------------	--------------------	------------------

п.о. – предел обнаружения (0.3–0.5 мас%)

Нами [66–72] получены данные о содержании примесей в титанатах и цирконатах РЗЭ, их поведении при облучении и взаимодействии с растворами. Образцы готовили прессованием оксидной шихты и ее спеканием (ХПС), а также плавлением индукционным нагревом в «холодном» тигле (ИПХТ) или в стеклоуглеродных тиглях в электропечах (ЭП). Условия экспериментов и результаты изучения образцов суммированы в табл. 3–5 и на рис. 3.

Отметим вариации составов фаз в отношении трехвалентных РЗЭ (табл. 4). Это связано с тем, что титанаты лантанидов (La, Ce, Nd) одинаковой стехиометрии (LnT, LnT₂, Ln₂T₉) изоструктурны. Сходного поведения можно ждать от близких к ним по размеру MA³⁺ [59]. В отличие от других соединений РЗЭ (пирохлора, цирконолита, монацита, браннерита и др.) титанаты обладают низкой «растворимостью» в отношении четырех- (U, Zr) и двухвалентных (Ca) элементов. Концентрация ZrO₂ в фазе Ln₂T₉ (образец МПМ-2) составляет 2.0 мас%, в рутиле она возрастает до 8.5 мас%. Содержание урана в Ln₂T₉ определено как 1.3 мас% (табл. 4), а в LnT и LnT₂ оно ниже предела обнаружения, равного 0.3–0.5 мас% (табл. 4, 5). Самые высокие содержания U и Zr (10 мас% и более) наблюдаются в пирохлоре (табл. 5).

Титанаты и цирконаты РЗЭ обладают несколькими типами структур (табл. 6, рис. 4–7). Координационные числа (КЧ) крупных РЗЭ (La–Sm) равны 7 (полиэдр – одношапочная тригональная призма, усеченный куб), 8 (куб, искаженный куб, двухшапочная антипризма), 9 (трехшапочная тригональная призма). С уменьшением радиуса РЗЭ³⁺ возрастает роль КЧ 6 (октаэдр). Атомы Ті и Zr обычно окружены шестью атомами кислорода в форме октаэдра.

Фаза $Nd_2Zr_2O_7$ кубической симметрии (рис. 4, а), пространственная группа $Fd\overline{3}m$. В элементарной ячейке восемь формульных единиц, полиэдр Nd – скаленоэдр (искаженный куб), он образован 8 атомами O – шесть равноудаленных и два на большем расстоянии. Катионы Zr окружают 6 атомов O, находящиеся в вершинах тригональной антипризмы (искаженного октаэдра). Структуру пирохлора можно описать через взаимопроникающие каркасы

Рис. 4. Полиэдрическая структура фаз $Nd_2Zr_2O_7$ (а) и Nd_2TiO_5 (б).

Образец	Фаза	CaO	TiO ₂	ZrO ₂	Nd ₂ O ₃	UO ₂
NTC-1	Пирохлор 2.5		28.4	11.0	50.0	8.1
	$(Nd,Zr,U)O_{2-x}$	< n.o.	< п.о.	4.1	26.5	69.4
NTC-2	Пирохлор	2.1	25.6	11.7	49.3	11.3
	$(Nd,Zr,U)O_{2-x}$	< II.0.	< II.0.	4.6	18.8	76.6
NTU-4	Nd ₂ TiO ₅	< II.0.	19.3	< II.0.	80.7	< n.o.
	Nd ₂ Ti ₂ O ₇	< п.о.	32.1	< п.о.	67.9	< п.о.
	(Nd,U)O _{2-x}	< п.о.	1.3	61.6	< п.о.	37.1
NTZ-1	Пирохлор	Нет	12.5	21.8	54.9	9.7
	Nd ₂ Ti ₂ O ₇	Нет	32.1	< II.0.	65.5	1.2
	$(Nd,Zr,U)O_{2-x}$	Нет	< n.o.	6.5	38.9	54.6
	Nd ₂ Ti ₂ O ₇	Нет	32.3	0.7	66.3	0.7
	$(Nd,Zr,U)O_{2-x}$	Нет	1.2	9.5	21.8	67.5
NTZ-2	(U,Nd)TiO ₆	Нет	41.9	3.4	18.9	35.8
	(Ti,Zr)O ₂	Нет	94.7	5.3	< n.o.	< п.о.
NTZ-3	Nd ₄ Ti ₉ O ₂₄	Нет	49.5	1.9	46.4	2.2

Таблица 5. Составы (мас%) фаз в образцах с ураном, сумма приведена к 100 мас%

п.о. – предел обнаружения (0.3–0.5 мас%). Нет – не вводился.

из октаэдров BO₆ и A₂X. Эта структура производна от решетки оксидов флюоритового типа AO₂ (пространственная группа *Fm3m*). Структура Nd₂TiO₅ (рис. 4, б) состоит из трехмерной сетки семивершинников NdO₇, соединенных ребрами, и цепочек квадратных пирамид TiO₅, соединенных вершинами в направлении [010]. Структура Nd₂Ti₂O₇ производна от структуры перовскита (рис. 5): TiO₆ октаэдры соединяются вершинами и формируют в направлениях *a* и *b* блоки толщиной 4 октаэдра (около 12 Å), между ними расположены одношапочные тригональные призмы NdO₇. Трехшапочные тригональные призмы NdO₉ занимают полости октаэдрических блоков. Двухшапочные призмы NdO₈ присутствуют внутри и между октаэдрическими блоками из TiO_6 . Структура $Nd_4Ti_9O_{24}$ наиболее сложная среди титанатов РЗЭ (рис. 6). В полостях Ti-O каркаса расположены полиэдры Nd трех типов: полиэдр Nd(1) – искаженная квадратная антипризма, Nd(2) – октаэдр, Nd(3) – искаженная квадратная призма. Полиэдры $Nd(1)O_8$, соединяясь ребрами и вершинами, формируют слои параллельно (110). Полиэдры Nd(3) связаны ребрами со слоями Nd(1), они образуют слои, в которых находятся октаэдры Nd(2). Структура $Nd_2Ti_3O_9$ (рис. 7) производна от структуры перовскита и содержит перовскитовые слои толщиной в три октаэдра, связанные по вершинам. В кубооктаэдрических пустотах располо-

Рис. 5. Структура Nd₂Ti₂O₇: а – перовскитовые блоки из октаэдров TiO₆. б – распределение Nd в перовскитовых блоках, желтые шары центрируют кислородный девятивершинник, синие – семивершинники, лиловые находятся в центре кислородных восьмивершинников.

РАДИОХИМИЯ том 64 № 6 2022

ЮДИНЦЕВ и др.

Формула	Простран- ственная группа	Структурный тип	Координационное число Nd ³⁺ и форма полиэдра РЗЭ (Nd)–О	Ссылка
Nd ₂ Zr ₂ O ₇	$Fd\overline{3}m$	Ca ₂ Nb ₂ O ₇	8: искаженный куб (рис. 4, а)	[73]
Nd ₂ TiO ₅	Pnma	La ₂ TiO ₅	7: одношапочная тригональная призма (рис. 4, б)	[74]
Nd ₂ Ti ₂ O ₇	<i>P</i> 12 ₁ 1	La ₂ Ti ₂ O ₇	7–8–9: искаженная одно–двух–трехшапочная призма (рис. 5)	[73]
Nd ₄ Ti ₉ O ₂₄	Fddd	Nd ₄ Ti ₉ O ₂₄	8–8–6: искаженная двухшапочная антипризма–куб–октаэдр (рис. 6)	[75]
Nd ₂ Ti ₃ O ₉	I4/mcm	Nd ₂ Ti ₃ O ₉	12: кубооктаэдр (рис. 7)	[76]

Таблица 6. Кристаллографические характеристики фаз РЗЭ для системы Nd₂O₃-TiO₂-ZrO₂.

жены атомы Nd1, а атомы Nd2 и O4 статистически распределены в межслоевых промежутках кристаллической решетки.

У всех изученных нами фаз полиэдры катионов Zr^{4+} и Ti⁴⁺ представлены октаэдрами (КЧ 6), кроме Nd_2TiO_5 , в которой КЧ Ti⁴⁺ равно 5 и полиэдр имеет форму квадратной пирамиды. Ионы Nd^{3+} в них, как правило, характеризуются нечетными значениями КЧ (7, 9). Это, по-видимому, объясняет низкие содержания в них элементов-примесей (Са, Zr, U) и слабые вариации состава, близкие к идеальным формулам. Максимальное их содержание и широкое композиционное поле твердого раствора характерны для соединений со структурой пирохлора.

Того же можно ожидать от фазы $Nd_2Ti_3O_9$ со структурой перовскита, в которой KЧ Nd^{3+} равно 12, как это свойственно и другим соединениям аналогичного строения [39, 41, 60, 61, 64], включая титанаты, но данное предположение требует дополнительной экспериментальной проверки.

Узкие поля устойчивости титанатов La и Nd (рис. 1; 2, а) контрастируют с большими вариациями состава пирохлора, цирконолита и браннерита, также рассматриваемых в качестве матриц РЗЭ-актинидной фракции. Для цирконатного и титан-цирконатного пирохлора характерна большая емкость структуры в отношении актинидов в степенях окисления от 3+ до 6+ [40, 44, 77, 78]. В позиции Zr⁴⁺

Рис. 6. Структура Nd₄Ti₉O₂₄: а – в направлении [011], б – трехмерный каркас из октаэдров TiO₆, в – слои из полиэдров Nd(1) (коричневые) и Nd(3) (лиловые).

Рис. 7. Структура Nd₂Ti₃O₉: зеленое – октаздры TiO₆, красное – атомы O, белое – атомы Nd.

Рис. 8. Структуры цирконолита Ca $ZrTi_2O_7$ (а: серые – слои октаэдров Ti, синие и зеленые – атомы Ca и Zr) и браннерита UTi₂O₆ (б: желтые октаэдры U и серые октаэдры Ti), по данным работы [43].

пирохлора $Nd_2Zr_2O_7$ может входить до 20 ат% U, в позиции Nd³⁺ входит от 10 до 20 ат% U и Th. Широкие области составов цирконолита и браннерита обусловлены особенностями их кристаллической структуры [40, 43, 79]. Цирконолит CaZrTi₂O₇ обладает моноклинной симметрией (С2/*m*), координационные числа Са и Zr равны 8 и 7 (рис. 8, а). Катионы разной валентности и размера могут замещать Ca, Zr и Ti. Для РЗЭ и актинидов известны три основных механизма замещений. Первый из них гетеровалентный: $Ca^{2+} + Zr^{4+} \rightarrow 2M_1^{3+}$ (где M_1 – лантаниды и актиниды). При высоких концентрациях М₁ структура цирконолита трансформируется в пирохлор состава (M₁)₂Ti₂O₇. Второй тип гетеровалентного изоморфизма: $Ca^{2+} + Ti^{4+} \rightarrow M_1^{3+} + M_2^{3+}$ (M₁ = Ln, An = Pu, Am, Cm; M_2 = Al, Fe). Возможно также изовалентное замещение Zr^{4+} на катионы M_3^{4+} ($M_3 =$ Ce, An). В цирконолите актиниды (U, Np, Pu) входят в позиции Ca и Zr в количестве до ~0.3 атома в формуле, а при полной замене Zr⁴⁺ на актиниды образуется пирохлор CaAn⁴⁺Ti₂O₇. Браннерит (ATi₂O₆) обладает моноклинной симметрией (пространственная группа C2/m). Слои TiO₆ октаэдров связаны вершинами и ребрами, они параллельны плоскости (001) и скреплены колоннами октаэров UO₆, вытянутыми вдоль оси b (рис. 8, б). Позиции А занимают четырехзарядные катионы (Ce, Th, U, Np, Pu), в них могут также размещаться катионы более высокого заряда (Np⁵⁺, U^{5+}) при одновременном вхождении

РАДИОХИМИЯ том 64 № 6 2022

для сохранения электронейтральности решетки двух- и трехвалентных катионов, например Ca^{2+} и $P3\Im^{3+}$ по реакции изоморфного замещения: $P3\Im^{3+} + U^{5+} \rightarrow 2U^{4+}$ [43].

ЗАКЛЮЧЕНИЕ

На примере Nd, как аналога РЗЭ-актинидной фракции, рассмотрены вариации состава и кристаллохимия фаз системы Nd₂O₃-TiO₂-ZrO₂. В ней имеются фазы Nd₂(Zr,Ti)₂O₇, Nd₄Ti₉O₂₄, Nd₂Ti₃O₉, Nd₂Ti₂O₇, Nd₂TiO₅, ZrTiO₄, (Zr,Ti)O₂, (Ti,Zr)O₂. Матрицами для фракции РЗЭ-МА могут служить $Nd_2(Zr,Ti)_2O_{7-x}$ (структура пирохлора), $Nd_2Ti_3O_9$ и Nd₂Ti₂O₇ (перовскит), Nd₄Ti₉O₂₄ и Nd₂TiO₅. Наибольшие содержания Ca, Zr, U характерны для пирохлора Nd₂(Ti,Zr)₂O₇ (10 мас% и более) и Nd₄Ti₉O₂₄ (2-3 мас%) с четными координационными числами Nd в структурных полиэдрах. Емкость Nd_2TiO_5 и $Nd_2Ti_2O_7$ в отношении примесей ниже предела обнаружения в сканирующем электронном микроскопе (0.3-0.5 мас%), что связано с особенностями их структуры. В таких матрицах при высоких содержаниях U и Zr будут возникать браннерит и цирконолит. Эти фазы устойчивы в растворах, их появление не приведет к снижению изоляционных свойств матрицы.

Изменение размера РЗЭ³⁺ в системах РЗЭ₂О₂-TiO₂ и P3Э₂O₃-ZrO₂ сопровождается полиморфизмом [80, 81]. При снижении радиуса $P33^{3+}$ (от La^{3+} к Yb³⁺) структура РЗЭ₂Ті₂О₇ меняется с моноклинной перовскитоподобной на кубическую пирохлоровую: граница проходит между Nd и Sm. Фазы РЗЭ₂Zr₂O₇ кристаллизуются в двух типах родственных структур – пирохлора и флюорита. Первая образуется при существенном различии радиусов РЗЭ³⁺ и Zr⁴⁺ (r_{P32} : $r_{Zr} > 1.46$). По мере уменьшения разницы в размерах катионов структура пирохлора трансформируется в дефицитную по анионам структуру флюорита (РЗЭ,Zr)₄O₇, граница между ними проходит по Gd³⁺. Цирконаты легких и крупных РЗЭ группы Се кристаллизуются в пирохлоровой структуре, а фазы меньших по размеру катионов группы Ү имеют структуру флюорита. Для соединений РЗЭ₂ТіО₅ ситуация сложнее: фазы РЗЭ от La до Sm обладают структурой ромбической сингонии, от Er до Lu и титанат Sc – кубической, а фазы РЗЭ от Еи до Но и Ү имеют гексагональную симметрию решетки [46, 48, 56]. С увеличением температуры границы между этими фазами смещаются с расширением полей кубической и гексагональной фаз.

Знание кристаллохимических особенностей фаз (пределов растворимости элементов) позволяет управлять фазовым составом матриц. Примеси (Zr, остаточные количества Pu, U, Np) могут изначально находиться в составе РЗЭ-МА фракции [30, 36, 82, 83] или вводиться в шихту в виде неактивных добавок (CaO, Fe₂O₃, Al₂O₃) при синтезе матрицы. Так, добавки Ca с Al или Fe способствует появлению фазы со структурой цирконолита [66]. Межособенностями кристаллохимии соединений ДV и возможностью их использования для изоляции радиоактивных отходов имеется связь. Поэтому при поиске оптимальных материалов для изоляции долгоживущих радионуклидов наряду с условиями коррозионной и радиационной стойкости необходимо учитывать структурные особенности фаз, как это показано в работах [61-64 и другие].

ФОНДОВАЯ ПОДДЕРЖКА

Работа выполнена в рамках темы НИР государственного задания для Института геологии рудных месторождений, петрографии, минералогии и геохимии Российской академии наук.

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют об отсутствии конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- 1. Адамов Е.О., Лопаткин А.В., Муравьев Е.В., Рачков В.И., Хомяков Ю.С. // Изв. РАН. Энергетика 2019. № 1. С. 3.
- Adamov E.O., Mochalov Yu.S., Rachkov V.I., Khomyakov Yu.S., Shadrin A.Yu., Kascheev V.A., Khaperskaya A.V. // At. Energy. 2021. Vol. 130, N 1. P. 29.
- 3. Spent Nuclear Fuel Reprocessing Flowsheet. Paris: OECD NEA, 2012. 120 p.
- Implications of Partitioning and Transmutation in Radioactive Waste Management. Vienna: IAEA, 2004. 127 p.
- Иванов В.К., Чекин С.Ю., Меняйло А.Н., Максютов М.А., Туманов К.А., Кащеева П.В., Ловачёв С.С., Спирин Е.В., Соломатин В.М. // Радиация и риск. 2019. Т. 28, № 2. С. 8.
- 6. State-of-the-Art Report on Innovative Fuels for Advanced Nuclear Systems. Paris: NEA, 2014. 195 p.
- Skupov M.V., Glushenkov A.E., Tarasov B.A., Abramov S.V., Kuzin M.A., Nikitin O.N., Zabudko L.M., Grachev A.F., Zherebtsov A.A., Mochalov Yu.S. // Nucl. Eng. Des. 2021. Vol. 382. 111379.
- Кузин М.А., Абрамов С.В., Грачев А.Ф., Жеребцов А.А., Забудько Л.М., Никитин О.Н., Кузьмин С.В. // Хим. технология. 2021. Т. 22, № 1. С. 36.
- 9. 2020 NEA Annual Report. Paris: NEA, 2021. 91 p.
- Uranium 2016: Resources, Production and Demand. Paris: NEA, 2016. 546 p.
- Geological Classification of Uranium Deposits and Description of Selected Examples. Vienna: IAEA, 2018. 417 p.
- 12. World Uranium Geology, Exploration, Resources and Production. Vienna: IAEA, 2020. 972 p.
- 13. *Brookins D.G.* Geochemical Aspects of Radioactive Waste Disposal. New York: Springer, 1984. 347 p.
- Plutonium Separation in Nuclear Power Programs. Status, Problems, and Prospects of Civilian Reprocessing Around the World. Princeton, USA: Princeton Univ., 2015. 182 p.
- Омельяненко Б.И., Лившиц Т.С., Юдинцев С.В., Никонов Б.С. // Геология руд. месторождений. 2007. Т. 49, № 3. С. 173.
- Lumpkin G.R., Geisler-Wierwille T. // Comprehensive Nuclear Materials /Ed. R.J.M. Konings. Amsterdam: Elsevier, 2012. Vol. 5. P. 563.

- 17. Wu F.-Y., Yang Yu., Mitchell R.H. // Chem. Geol. 2010. Vol. 277. P. 178.
- Лаверов Н.П., Величкин В.И., Омельяненко Б.И., Юдинцев С.В. // Геология руд. месторождений. 2003. Т. 45, № 1. С. 3.
- Лаверов Н.П., Величкин В.И., Омельяненко Б.И., Юдинцев С.В., Петров В.А., Бычков А.В. Изоляция отработавших ядерных материалов: геолого-геохимические основы. М: ИФЗ РАН, 2008. 280 с.
- Laverov N.P., Omel'yanenko B.I., Yudintsev S.V. // Russ. J. Gen. Chem. 2011. Vol. 8, N 9. P. 1980.
- Geological Repository Systems for Safe Disposal of Spent Nuclear Fuels and Radioactive Waste / Eds M.J. Apted, J. Ahn. Woodhead Publishing Ser. in Energy. Elsevier, 2017. 778 p.
- Amiard J.-C. Management of Radioactive Waste. Wiley, 2021. Vol. 5. 252 p.
- 23. Scientific and Technical Basis for Geological Disposal of Radioactive Wastes. Vienna: IAEA, 2003. 80 p.
- 24. Захоронение радиоактивных отходов. Конкретные требования безопасности № SSR-5. Вена: МАГАТЭ, 2011. 76 с.
- 25. Management and Disposal of High-Level Radioactive Waste: Global Progress and Solutions. Paris: NEA, 2020. 45 p.
- Цебаковская Н.С., Уткин С.С., Капырин И.В., Медянцев Н.В., Шамина А.В. Обзор зарубежных практик захоронения ОЯТ и РАО. М.: Комтехпринт, 2015. 208 с.
- 27. Laverov N.P., Yudintsev S.V., Kochkin B.T., Malkovsky V.I. // Elements. 2016. Vol. 12, N 4. P. 253.
- Сорокин В.Т., Павлов Д.И. // Радиоактивные отходы. 2018. № 4 (5). С. 24.
- 29. Strategies and Considerations for the Back End of the Fuel Cycle. Paris: NEA, 2021. 67 p.
- Копырин А.А., Карелин А.И., Карелин В.А. Технология производства и радиохимической переработки ядерного топлива. М.: Атомэнергоиздат, 2006. 576 с.
- Zilberman B.Ya., Puzikov E.A., Ryabkov D.V., Makarychev-Mikhailov M.N., Shadrin A.Yu., Fedorov Yu.S., Simonenko V.A. // At. Energy. 2009. Vol. 107, N 5. P. 333.
- Modolo G., Geist A., Miguirditchian M. // Reprocessing and Recycling of Spent Nuclear Fuel. Elsevier, 2015. Ch. 10. P. 245.
- Veliscek-Carolan J. // J. Hazard. Mater. 2016. Vol. 318. P. 266.
- State-of-the-Art Report on the Progress of Nuclear Fuel Cycle Chemistry. Paris: NEA, 2018. 299 p.
- Baron P., Cornet S.M., Collins E.D., DeAngelis G., Del Cul G., Fedorov Yu., Glatz J.P., Ignatiev V., Inoue T., Khaperskaya A., Kim I.T., Kormilitsyn M., Koyama T., Law J.D., Lee H.S., Minato K., Morita Y., Uhlíř J., Warin D., Taylor R.J. A // Prog. Nucl. Energy. 2019. Vol. 117. 103091.

РАДИОХИМИЯ том 64 № 6 2022

- Mamchich M.V., Goletsky N.D., Tkachenko L.I., Viznyi A.N., Naumov A.A., Belova E.V., Puzikov E.A., Zil'berman B.Ya. // Radiochemistry. 2021. Vol. 63, N 4. P. 462.
- 37. Frankel G.S., Vienna J.D., Lian J., Guo X., Gin S., Kim S.H., Du J., Ryan J.V., Wang J., Windl W., Taylor C.D., Scully J.R. // Chem. Rev. 2021. Vol. 121, N 20. P. 12327.
- Ewing R.C. // Earth Planet. Sci. Lett. 2005. Vol. 229. P. 165.
- 39. *Stefanovsky S.V., Yudintsev S.V. //* Russ. Chem. Rev. 2016. Vol. 85. P. 962.
- Lumpkin G.R. // Experimental and Theoretical Approaches to Actinide Chemistry / Eds J.K. Gibson, W.A. de Jong. Wiley, 2018. P. 333.
- 41. *Yudintsev S.V.* // Radiochemistry. 2021. Vol. 63, N 5. P. 527.
- Yudintsev S.V. // Dokl. Earth Sci. 2015. Vol. 460, Pt. 2. P. 130.
- 43. Zhang Y., Kong L., Ionescu M., Gregg D.J. // J. Eur. Ceram. Soc. 2022. Vol. 42. P. 1852.
- 44. *Ewing R.C., Weber W.J., Lian J.* // J. Appl. Phys. 2004. Vol. 95, N 11. P. 5949.
- Smith K.L., Blackford M.G., Lumpkin G.R., Zaluzec, N.J. // Microsc. Microanal. 2006. Vol. 12, S. 2. P. 1094.
- Aughterson R.D., Lumpkin G.R., Ionescu M., de los Reyes M., Gault B., Whittle K.R., Smith K.L., Cairney J.M. // J. Nucl. Mater. 2015. Vol. 467. P. 683.
- Aughterson R.D. A Thesis Submitted in Fulfilment of the Requirements for the Degree of Doctor of Philosophy. Sydney: Univ. of Sydney, 2018. 168 p.
- Aughterson R.D., Lumpkin G.R., Smith K.L., Cairney J.M. // J. Am. Ceram. Soc. 2020. Vol. 103. P. 5536.
- 49. Shoup S.S., Bamberger C.E., Tyree J.L., Anovitz L. // J. Solid State Chem. 1996. Vol. 127. P. 231.
- 50. *Skapin S.D., Kolar D., Suvorov D. //* Solid State Sci. 1999. Vol. 1. P. 245.
- 51. Schaedler T.A., Fabrichnaya O., Levi C.G. // J. Eur. Ceram. Soc. 2008. Vol. 28. P. 2509.
- He S., Liu X., Feng Q., Chen G., Zou X., Wu Z., Li C., Lu X. // Ceram. Int. 2021. Vol. 47. P. 23991.
- Gong W., Zhang R. // J. Alloys Compd. 2013. Vol. 548. P. 216.
- Gong W., Zhang R. // Thermochim. Acta. 2012. Vol. 534. P. 28.
- Fabrichnaya O., Savinykh G., Schreiber G., Seifert H.J. // J. Phase Equil. Diffus. 2011. Vol. 32, N 4. P. 284.
- 56. Petrova M.A., Novikova A.S., Grebenshchikov R.G. // Inorg. Mater. 1982. Vol. 18, N 2. P. 287.

- 57. Subramanian M.A., Aravamudan G., Rao G.S. // Prog. Solid State Chem. 1983. Vol. 15. P. 55.
- Nickolsky M.S. // Acta Crystallogr., Sect. B. 2015. Vol. 71, N 2. P. 235.
- Shannon R.D. // Acta Crystallogr., Sect. A. 1976. Vol. 32, N 5. P. 751.
- 60. Ringwood A. E., Kesson S.E., Ware N.G., Hibberson W.O., Major A. // Geochem. J. 1979. Vol. 13. P. 141.
- 61. *Fielding P.E., White T.J.* // J. Mater. Res. 1987. Vol. 2. P. 387.
- Yudintsev S.V. // Geol. Ore Depos. 2003. Vol. 45, N 2. P. 151.
- 63. *Орлова А.И.* // Вопр. радиац. безопасности. 2015. № 3. С. 67.
- 64. Orlova A.I., Ojovan M.I. // Materials. 2019. Vol. 12. ID 2638.
- Blackburn L.R., Bailey D.J., Sun S.-K., Gardner L.J., Stennett M.C., Corkhill C.L. // Adv. Appl. Ceram. 2021. Vol. 120, N 2. P. 69.
- Yudintsev S.V., Stefanovsky S.V., Kalenova M.Yu., Nikonov B.S., Nikol'skii M.S., Koshcheev A.M., Shchepin A.S. // Radiochemistry. 2015. Vol. 57, N 3. P. 321.
- Yudintsev S.V., Stefanovsky S.V., Nikonov B.S., Nikol'skii M.S., Livshits T.S. // Radiochemistry. 2015. Vol. 57, N 2. P. 187.
- 68. Yudintsev S.V., Livshits T.S., Zhang J., Ewing R.C. // Dokl. Earth Sci. 2015. Vol. 461, Pt. 1. P. 247.
- Yudintsev S.V., Lizin A.A., Livshits T.S., Stefanovsky S.V., Tomilin S.V., Ewing R.C. // J. Mater. Res. 2015. Vol. 30, N 9. P. 1516.
- 70. *Yudintsev S.V.* // Radiochemistry. 2018. Vol. 60, N 3. P. 315.
- Yudintsev S.V., Nikolskii M.S., Nikonov B.S., Malkovskii V.I. // Dokl. Earth Sci. 2018. Vol. 480, Pt. 1. P. 631.

- Yudintsev S.V., Malkovsky V.I., Nikolsky M.S., Nikonov B.S. // Dokl. Earth Sci. 2019. Vol. 485, Pt. 1. P. 303.
- Harvey E.J., Whittle K.R., Lumpkin G.R., Smith R.I., Redfern S.A.T. // J. Solid State Chem. 2005. Vol. 178, N 3. P. 800.
- 74. Mueller-Buschbaum H., Scheunemann K. // J. Inorg. Nucl. Chem. 1973. Vol. 35. P. 1091.
- Hübner N., Gruehn R. // Z. Anorg. Allg. Chem. 1992. Vol. 616, N 10. P. 86.
- Richard M., Brohan L., Tournoux M.J. // Solid State Chem. 1994. Vol. 112. P. 345.
- 77. Wang L., Li J., Xie H., Chen Q., Xie Y. // Prog. Nucl. Energy. 2021. Vol. 137. 103774.
- Sun J., Zhou J., Hu Z., Chan T.-S., Liu R., Yu H., Zhang L., Wang J.-Q. // J. Synchr. Radiat. 2022. Vol. 29. P. 37.
- Blackburn L.R., Bailey D.J., Sun S.-K., Gardner L.J., Stennett M.C., Corkhill C.L. // Adv. Appl. Ceram. 2021. Vol. 120, N 2. P. 69.
- Yang K., Lei P., Yao T., Gong B., Wang Y., Li M., Wang J., Lian J. // Corros. Sci. 2021. Vol. 185. 109394.
- Yang K., Wang Y., Lei P., Yao T., Zhao D., Lian J. // J. Eur. Ceram. Soc. 2021. Vol. 41. P. 6018.
- Demine A.V., Krylova N.V., Polyektov P.P., Shestoperov I.N., Smelova T.V., Gorn V.F., Medvedev G.M. // Mat. Res. Soc. Symp. Proc. 2001. Vol. 663. P. 27.
- Vandegrift G.F., Regalbuto M.C., Aase S.B., Arafat H.A., Bakel A.J., Bowers D.L., Byrnes J.P., Clark M.A., Emery J.W., Falkenberg J.R., Lohman A.V.G., Hafenrichter D., Leonard R.A., Pereira C., Quigley K.J., Tsai Y., Vander Pol M.H., Laidler J.J. // Proc. WM'04 Conf. Tucson, AZ, Feb. 29–March 4, 2004. Paper WM-4323.