УДК. 550.35.551.(268.53)

ОСОБЕННОСТИ РАСПРЕДЕЛЕНИЯ ²²⁶Ra, ²³²Th, ²³⁸U В ПОВЕРХНОСТНОМ СЛОЕ ДОННЫХ ОСАДКОВ СЕВЕРНОЙ ЧАСТИ МОРЯ ЛАПТЕВЫХ

© 2022 г. М. М. Доманов*, В. И. Гагарин, М. В. Буханов

Институт океанологии им. П.П. Ширшова РАН, 117997, Москва, Нахимовский пр., д. 36 *e-mail: domanov@ocean.ru

Поступила в редакцию 27.12.2021, после доработки 23.05.2022, принята к публикации 30.05.2022

Рассмотрены особенности распределения концентраций 226 Ra, 232 Th, 238 U в поверхностном слое донных осадков северной части моря Лаптевых. Получены данные о распределении 226 Ra, 232 Th, 238 U в донных отложениях шельфовой зоны моря, континентальном склоне и абиссальных глубинах. Содержание 226 Ra и 232 Th изменялось в интервале 17 —36.3 и 28 7—38.1 Бк/кг соответственно, а концентрация 238 U — в пределах 232 Th изменялось в интервале 236 Ra и 232 Ch в соответственно, а концентрация 238 U — в пределах 236 Ra и 238 U с глубиной обусловлено восстановлением части карбонатов, содержащих 226 Ra и 238 U, с последующей сорбцией 226 Ra из морской воды и осаждением гидролизных форм 238 U на дно. Увеличение концентраций 226 Ra и 238 U в осадке с глубиной на восточном разрезе при снижении концентрации 238 U остласуется с таким предположением. При этом концентрации 226 Ra и 238 U отрицательно коррелируют с содержанием 238 U в боласти внешнего шельфа и в проливе Вилькицкого концентрации 226 Ra, 232 Th, 238 U в поверхностном слое осадков зависят от фракционного состава осадка и меняются при изменении соотношения фракций. Концентрации 238 U и 232 Th коррелируют друг с другом (R=0.84) и с содержанием неорганического углерода (R=0.75 и 232 Th коррелируют друг с другом (R=0.84) и с содержанием неорганического углерода (R=0.75 и 232 Th коррелируют друг с другом (R=0.84) и с содержанием неорганического углерода (R=0.75 и 232 Th коррелируют друг с другом (R=0.84) и с содержанием неорганического углерода (R=0.75 и 232 Th коррелируют друг с другом (R=0.84) и с содержанием неорганического углерода (R=0.75 и R=0.85).

Ключевые слова: море Лаптевых, донные осадки, радий, торий, уран

DOI: 10.31857/S0033831122060132, EDN: MGVVEU

ВВЕДЕНИЕ

Море Лаптевых представляет собой наименее изученный водоем северных побережий Азии. Изучение этого региона активизировалось в настоящее время в связи с хозяйственным освоением северного шельфа, а также с целью изучения влияния изменений климата на биоту арктических морей и на процесс размораживания древних донных осадков, сопровождающийся выделением реликтового метана.

В Арктике многолетние морские льды являются важным геологическим фактором, влияющим на формирование осадочного покрова Северного Ледовитого океана. Большой речной сток, низкая температура, метановые сипы и аутигенное образование карбонатов в современных осадках определяют закономерности осадкообразования и рас-

пределения естественных радионуклидов в море Лаптевых [1–6].

Исследование геохимического поведения урана и тория в осадках прибрежной, мелководной юго-восточной части моря Лаптевых [7] выявили специфику распределения ²³²Th и ²³⁸U в этом районе. Абсорбция ²³⁸U аутигенными карбонатами отмечена в работе [8] в северо-восточной части моря Лаптевых. Получены данные о распределении ²³²Th и ²³⁸U в донных отложениях шельфовой зоны моря [9], которые сопоставимы с концентрациями ²²⁶Ra, ²³²Th в осадках Восточно-Сибирского моря [10]. Однако эти результаты получены в области малых глубин 45-85м. Необходимы сведения о распределении радионуклидов в осадках глубоководной части Арктики и, в частности, в специфических условиях моря Лаптевых, для которого таких данных нет. Цель настоящей работы – получить данные о

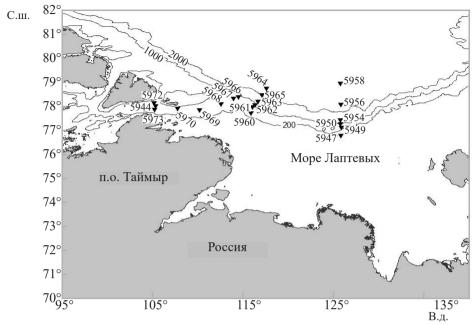


Рис. 1. Схема расположения района работ.

связи распределения ²²⁶Ra, ²³²Th, ²³⁸U с характеристиками донных осадков, необходимые для изучения механизма накопления естественных радионуклидов в осадках глубоководной абиссальной части моря Лаптевых и на континентальном склоне с постоянным ледовом покровом

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Материал для исследования был получен в 72-м рейсе научно-исследовательского судна «Академик Мстислав Келдыш» в августе—сентябре 2018 г. в северной части моря Лаптевых в районе перехода от внешнего шельфа к континентальному склону, непосредственно на склоне и в абиссали. Выполнено 2 разреза — восточный и западный с юга на север и разрез в проливе Вилькицкого с прилегающим районом континентального склона. Пробы взяты бокскорером (box corer) $50 \times 50 \times 60$ см из поверхностного слоя 0—5 см донных осадков. Район работ и положение станций показано на рис. 1.

Пробы осадка промывали через сито с размером ячейки 50 мкм. Это стандартный размер сита, используемый для определения наиболее дисперсной фракции осадка (мелкий алеврит + пелит) [11], что позволяет сопоставлять наши данные с известными стандартными данными о фракционном составе

осадка. Содержание органического ($C_{\rm opr}$) и неорганического углерода ($C_{\rm neopr}$) в осадках определяли на анализаторе общего органического углерода TOC-L с блоком SSM-5000A фирмы Shimadzu.

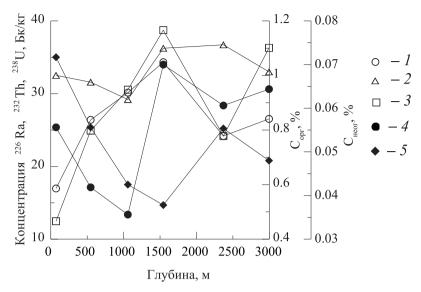
Химический анализ проб донных осадков выполняли методами атомной эмиссии (Plasmaquant-110, укомплектованный системой ультразвукового распыления пробы U-5000AT и системой генерирования гидридов Hydrid-/Hg-System BSH 960) для Al, Ba, Ca, Co, Cr, Cu, Fe, La, Mg, Mn, Nb, Ni, Sc, Sr, Ті, V, Y, Zn, Zr и масс-спектрометрии с индуктивно-связанной плазмой (Agilent 7500c) для Рb, Rb, As, Nd, Th, U. Точность метода определения 5–10%. Концентрации 226 Ra, 232 Th и 238 U в осадке определяли в Центральной лаборатории радиационного контроля Национального исследовательского ядерного университета «МИФИ» с помощью γ-спектрометра с детектором из сверхчистого германия GC-3020 с относительной эффективностью по линии 60Со (1.332 МэВ), равной 30%, и разрешением по этой линии 1.8 кэВ. Использовали программное обеспечение GENIE-400 PC. После выдерживания пробы для установления радиоактивного равновесия ²²⁶Ra определяли по дочернему продукту ²¹⁴Ві (энергия 609 кэВ). Для измерения использовали сухие растертые пробы массой 26.3-32.4 г. Время экспозиции 11-55 ч. Точность определения ²²⁶Ra 4-7%, ²³²Th 7–12%, ²³⁸U 5–10%.

Таблица 1. Концентрации радионуклидов (Бк/кг) в поверхностном слое осадка (5 см)

Станция	Широта, N	Долгота, Е	Глубина, м	²²⁶ Rа	²³² Th	238U	²³² Th/ ²³⁸ U
5947	76.77	125.83	72	17.0 ± 0.6	32.5 ± 0.9	12.5 ± 1.2	2.61
5949	77.09	125.89	547	26.4 ± 0.5	31.6 ± 0.9	24.9 ± 1.4	1.27
5950	77.25	125.79	1058	30.2 ± 1.0	29.2 ± 0.9	30.6 ± 2.1	0.96
5954	77.41	125.79	1545	34.3 ± 1.2	36.2 ± 1.1	38.7 ± 1.9	0.94
5956	78.06	125.82	2370	24.2 ± 0.9	36.7 ± 1	24.2 ± 1.9	1.52
5958	78.95	125.78	2996	26.5 ± 1	33.0 ± 0.9	36.3 ± 2.7	0.91
5960	77.70	115.87	357	26.5 ± 0.9	35.4 ± ??	33.6 ± 1.6	1.05
5961	77.96	116.08	765	27.4 ± 0.8	37 ± 1.3	28.9 ± 1.6	1.28
5962	78.04	116.31	1090	28.4 ± 1	31.8 ± 0.9	28.9 ± 1.2	1.1
5963	78.19	116.64	1484	35.5 ± 1	38.1 ± 1.1	36.3 ± 2.5	1.05
5964	78.74	117.58	2446	27.4 ± 0.9	36.4 ± 1.1	24.1 ± 1.9	1.51
5965	78.45	117.08	1994	28 ± 0.9	37.2 ± 1	27.4 ± ??	1.36
5966	78.38	114.49	715	26.4 ± 0.8	35.5 ± 1	30.4 ± 2	1.17
5967	78.32	113.96	426	26.4 ± 0.9	37.5 ± 1.1	33.4 ± 2	1.12
5968	78.08	112.57	350	36.3 ± 1.3	37.2 ± 1.2	29.2 ± 2.2	1.27
5969	77.83	110.22	277	30.4 ± 0.9	33.6 ± 0.9	26.7 ± 2	1.26
5970	77.89	107.79	239	23.5 ± 0.7	33.5 ± 1.1	29.9 ± 2.1	1.12
5972	78.11	105.15	210	30.8 ± 1.05	36.3 ± 2	30.6 ± 2.1	1.19
5973	77.85	105.24	209	20.62 ± 0.72	28.7 ± 0.9	25.6 ± 2.2	1.12
5944	78.00	105.34	217	27.53 ± 0.81	32.6 ± 1	26.4 ± 2	1.23
Среднее				27.7 ± 3.2	34.5 ± 2.4	28.9 ± 2.5	1.25±0.20

Анализ спектров у-излучения образцов донных отложений проводили в энергетическом диапазоне 50–3000 кэВ. В обработке участвуют все пики, найденные в указанной области спектра. При этом каждый пик рассматривается как композиция, образованная за счет наложения (интерференции) пиков, обусловленных регистраций нескольких линий у-излучения с близкими энергиями (пиков полного поглощения), пиков истинных и случайных совпадений и пиков утечки (пики одиночного и двойного вылета). В процессе обработки спектр рассматривается как единый объект, состоящий из набора у-линий конечного числа радионуклидов. Такой подход обеспечивает возможность корректно

учитывать указанную выше интерференцию пиков в спектре [12, 13].


РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Результаты измерения концентраций радионуклидов представлены в табл. 1. Характеристики придонного слоя воды и донных осадков приведены в табл. 2.

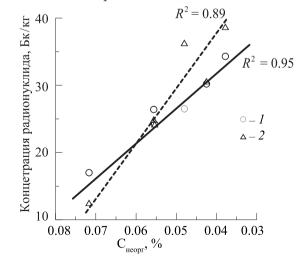
Содержание 226 Rа и 232 Th изменялось в интервале 17–36.3 и 28.7–38.1 Бк/к соответственно, а концентрация 238 U – в пределах 12.5–38.7 Бк/кг. Концентрации 226 Rа и 232 Th в области шельфа на станции 5947 (17.0 и 32.5 Бк/кг, соответственно)

	садков
	HHBI
	воды и д
	ROI
	нного с.
	гридов
	ТИКИ
<u>ا</u>	7. Xap
	лица
١	20

Описание осадка	Обводненный, оливково-коричневый,	Коричневый плотный пелит	Плотный, коричневый алеврито-пелитовый	с песком Плотный, темно-коричневый пелит	Коричневый алеврито-пелитовый	Коричневый алеврито-пелитовый	Светло-коричневый алеврито-пелитовый	Светлокоричневый алеврито-пелитовый	Коричневый, плотный, алеврито-пелитовый	Плотный, коричневый пелит	Плотный, коричневый пелит	Алеврито-пелитовый, коричневый	Коричневый алеврито-пелитовый	Плотный, светлокоричневый пелит	Плотный, темнокоричневый пелит	Обводненный коричневый пелит	Обводненный темнокоричневый алеврито-	пелитовый Коричневый алеврито-пелитовый	Светлокоричневый алеврито-пелитовый	Оливково-коричневый пелит
Кислород, мл/л	7.33	7.00	6.82	6.75	6.65	6.73	6.94	96.9	6.79	92.9	6.75	08.9	7.14	7.01	7.03	86.9	7.16	7.03	7.03	7.11
Снеорг, %	0.072	0.056	0.043	0.038	0.055	0.048	0.049	0.065	0.052	0.052	0.080	0.052	0.058	0.058	0.072	0.034	0.044	0.035	0.002	0.013
Соленость,	34.34	34.80	34.90	34.92	34.94	34.94	34.78	34.87	34.91	34.92	34.94	34.93	34.85	34.82	34.78	34.74	34.67	34.65	34.35	34.63
Т придонного слоя воды, °С	-1.2	4.0-	-0.1	0	0.4	0	-0.02	9.0	9.0	0.7	8.0	0.4	8.0	0.7	-0.2	9.0	-0.4	-0.74	-0.85	-0.4
Copr. %	0.81	0.59	0.49	1.04	0.89	0.95	0.77	98.0	0.81	86.0	1.13	1.24	0.71	29.0	0.77	0.79	0.93	0.91	0.85	0.85
Γ лубина, м Станция фракция <50 мкм, Сорг. % T придонного $\%$ слоя воды, °С	77	2.96	78.3	98.1	56:66	91.82	95	98.1	06	92.5	9.86	6.66	98.4	96.1	96.3	93.5	67.3	98.61	51.2	66
Станция	5947	5949	5950	5954	9565	5958	2960	5961	5965	5963	5964	2965	9969	2965	8969	6969	5970	5972	5973	5944
Глубина, м	72	547	1058	1545	2370	2996	357	765	1090	1484	2446	1994	715	426	350	277	239	210	209	217

Рис. 2. Концентрация 226 Ra (1), 232 Th (2), 238 U (3) и содержание C_{opr} (4), C_{heopr} (5) на восточном разрезе.

сопоставимы с концентрациями (226 Ra 16.0, 232 Th 35.0 Бк/кг), измеренными на шельфе моря Лаптевых в работе [9].


Среднее значение концентрации 232 Th (34.5 \pm 2.4 Бк/кг) и 238 U (28.9 \pm 2.5 Бк/кг) сопоставимы с кларками среднего содержания 232 Th и 238 U для верхней части континентальной коры (37.8 Бк/кг и 31.2 Бк/кг соответственно), найденными в работе [14]. Отношение концентраций 232 Th/ 238 U для всего массива измерений изменялось в пределах 0.91–2.61. Среднее отношение 232 Th/ 238 U 1.25 \pm 0.20 близко к величине 232 Th/ 238 U 1.23, приведенной в работе [15] для океанических островов, а также к отношению активности кларков 232 Th и 238 U для верхней части континентальной коры 1.21 [14] и к значению 1.15, определенному в работе [16].

Содержание $C_{\rm opr}$ и $C_{\rm Heopr}$ в осадках исследуемого района изменялось в пределах $0.49{-}1.24$ и 0.0019-0.079% соответственно. Среднее содержание органического углерода в терригенных осадках прибрежной зоны составляет 1.9% [7]. Средняя величина отношения $C_{\rm opr}/C_{\rm Heopr}$ 0.060 ± 0.020 сопоставима с отношением $C_{\rm opr}/C_{\rm Heopr}$, измеренным в поверхностном слое аутигенных осадков в работе [8].

Изменение концентраций ²²⁶Ra, ²³²Th и ²³⁸U с глубиной на восточном разрезе сопоставлено с содержанием в осадке органического и неорганического углерода (рис. 2). С увеличением глубины до 1000 м концентрация ²³²Th снижается, что указывает на уменьшение в осадке терригенного материала

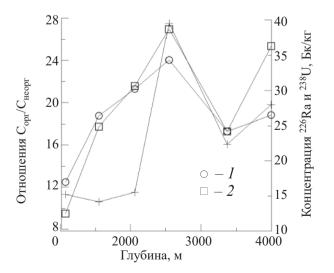
на этом интервале глубин. Количество $C_{\rm opr}$ и $C_{\rm heopr}$ в осадке также снижается, а концентрации $^{226}{\rm Ra}$ и $^{238}{\rm U}$ возрастают.

В области континентального склона на глубине 1545 м в осадке резко увеличивается содержание $C_{\rm opr}$ и $^{232}{\rm Th}$. Концентрации $^{226}{\rm Ra}$ и $^{238}{\rm U}$ увеличиваются с глубиной до максимальных значений. Максимальные концентрации $^{226}{\rm Ra}$, $^{232}{\rm Th}$ и $^{238}{\rm U}$ (34.3, 36.2, 31.2 Бк/кг) найдены на глубине 1545 м в зоне изменения уклона континентального склона при переходе к глубинам абиссальной зоны. Эти максимальные концентрации $^{226}{\rm Ra}$, $^{232}{\rm Th}$ и $^{238}{\rm U}$ соответ-

Рис. 3. Зависимость величины концентрации 226 Ra (I) и 238 U (2) в осадке на восточном разрезе от концентрации в осадке $C_{\text{неопг}}$.

Параметр	Глубина, м	Сорг, %	²²⁶ Ra	²³² Th	²³⁸ U	C _{Heopr} , %	Кислород, мл/л	Соленость, ‰
Глубина, м	1.00						-0.84	
C_{opr} , %		1.00		0.85				
²²⁶ Ra			1.00		0.90	-0.98		
²³² Th				1.00				
^{238}U					1.00	-0.94		
C _{Heopr} , %						1.00		-0.84
Кислород, мл/л							1.00	-0.96
Соленость, ‰								1.00

Таблица 3. Корреляционная матрица связи концентраций радионуклидов (Бк/кг) с параметрами среды на восточном разрезе (при уровне вероятности P = 0.95 и числе пар 6 достоверная величина коэффициента корреляции равна 0.811)


ствуют максимальному содержанию в осадке $C_{\text{орг}}$ и минимальной концентрации $C_{\text{неорг}}$.

Концентрации 226 Rа и 238 U связны с содержанием в осадке $C_{\text{неорг}}$ и увеличиваются при снижении его количества (рис. 3).

Отношение C_{opr}/C_{heopr} изменяется с глубиной (10.6–27.5) и имеет максимальное значение на континентальном склоне на глубине 1545 м, где концентрации 226 Ra и 238 U также максимальны (рис. 4).

Коэффициенты корреляции, характеризующие связь концентрации радионуклидов в осадках с параметрами среды на восточном разрезе, приведены в табл. 3.

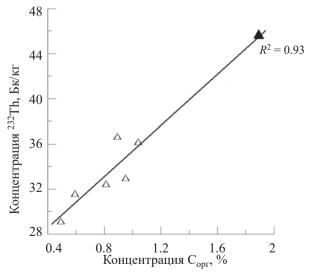

Отрицательная корреляция содержания $C_{\text{неорг}}$ в осадке с соленостью указывает на связь этих па-

Рис. 4. Зависимость концентрации 226 Ra (*1*) и 238 U (*2*) в осадке на восточном разрезе и отношения $\rm C_{opr}/\rm C_{heopr}$ от глубины.

раметров с распресненными водами, выносящими осадки из зоны современного шельфа в район континентального склона. Такой вывод не противоречит выводу о влиянии трансгрессии холодных шельфовых вод на формирование осадков в зоне континентального склона [6, 17].

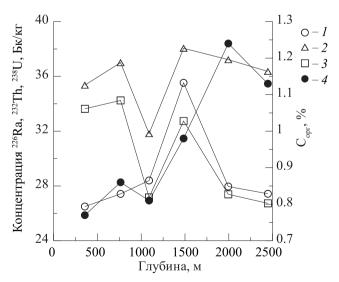
Концентрация 232 Th коррелирует с $C_{\rm opr}$, что указывает на общий терригенный источник их поступления в осадки. Средние значения концентраций 232 Th и $C_{\rm opr}$ в терригенных осадках прибрежной зоны моря Лаптевых составляют 45.6 Бк/кг и 1.9% для 232 Th и $C_{\rm opr}$ соответственно [7]. Среднее значение 232 Th для осадков прибрежной зоны моря Лаптевых согласуется с зависимостью 232 Th от $C_{\rm opr}$, полученной для восточного разреза (рис. 5).

Рис. 5. Зависимость концентрации 232 Th от концентрации $^{C}_{opr}$. Черным треугольником обозначено среднее значение для прибрежной зоны моря Лаптевых [7].

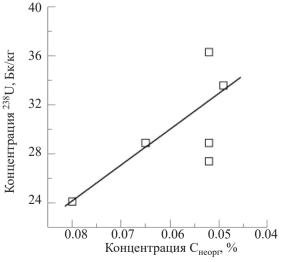
Таблица 4. Корреляционная матрица связи концентраций радионуклидов с параметрами среды на разрезе в проливе									
Вилькицкого (при уровне вероятности $P = 0.95$ и числе пар 8 достоверная величина коэффициента корреляции									
равна 0.71)									

Параметр	Глубина, м	Фракция менее 50 мкм, %	Сорг, %	²³² Th, Бк/кг	²³⁸ U, Бк/кг	С _{неорг} ,	T, °C	Соленость, %
Глубина, м	1	30 MKM, 70	-0.77	DK/ KI	DK/KI	70	0.75	
Фракция менее 50 мкм, %		1		0.80				0.78
C _{opr} , %			1				-0.85	
²³² Th, Бк/кг				1	0.84	0.87		0.89
²³⁸ U, Бк/кг					1	0.75		0.77
C _{heopr} , %						1	0.90	0.88
T, °C							1	0.82
Соленость, ‰								1

Изменение концентраций 226 Ra, 232 Th, 238 U и содержание в осадке органического углерода с глубиной на западном разрезе представлены на рис. 6.


На западном разрезе, так же как и на восточном, максимальные концентрации 226 Ra, 232 Th, 238 U найдены на глубине 1484 м в нижней части континентального склона. На этом разрезе концентрация 238 U, так же как и на восточном разрезе, повышается с уменьшением $C_{\text{неорг}}$, однако эта связь менее выражена (рис. 7).

В области континентального склона на глубинах более 1000 м концентрация 226 Ra коррелирует с концентрацией 238 U (R=0.99).


Распределения ²²⁶Ra, ²³²Th и ²³⁸U на рассмотренных меридиональных разрезах имеют общие осо-

бенности. На шельфе моря Лаптевых с увеличением глубин концентрации ²²⁶Ra и ²³⁸U на континентальном склоне растут до максимальных величин в области глубин 1484—1545 м в нижней части континентального склона. При переходе к абиссальным глубинам содержание ²²⁶Ra, ²³²Th и ²³⁸U снижается в области нераспространения грубых осадков.

Подобное распределение ²³²Th и ²³⁸U с максимумом в области континентального склона отмечено и в районе Антарктического шельфа [18]. При этом было показано, что в осадках шельфа основная часть урана и тория содержится в обломках континентальных материалов, а в глубоководных морских осадках основная часть урана происходит из урана морской воды [19]. При этом концентрация

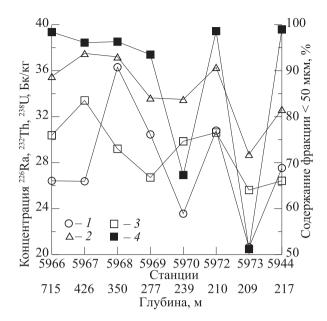


Рис. 6. Концентрация $^{226}{\rm Ra}$ (*1*) , $^{232}{\rm Th}$ (*2*), $^{238}{\rm U}$ (*3*) и С $_{\rm opr}$ (*4*) на западном разрезе.

Рис. 7. Изменение концентрации 238 U с уменьшением содержания $C_{\text{неорг}}$ на западном разрезе.

РАДИОХИМИЯ том 64 № 6 2022

Рис. 8. Концентрации 226 Ra (*I*) , 232 Th (*2*), 238 U (*3*) и содержание фракции < 50 мкм (*4*) в проливе Вилькицкого.

²²⁶Ra с ростом глубины увеличивается до максимальных значений в нижней части континентального склона, а затем снижается в абиссальной части океана, что обусловлено, как было показано в работе [18], уменьшением сорбционной емкости матрицы осадка.

Исследование механизма удаления радия из морской воды, выполненное И.Е. Стариком, А.П. Лисицыным и Ю.В. Кузнецовым [18], показало, что увеличение концентрации ²²⁶Ra в глубоководных осадках связано с растворением части карбоната кальция, содержащего абсорбированный радий, и обогащением придонных вод радием, который затем сорбируется остаточной частью осадка.

Известно, что мелководные шельфовые моря Арктики особенно агрессивны по отношению к карбонатным осадкам [20]. В анаэробных условиях в осадке идет деструкция органического вещества сульфатредуцирующими бактериями, восстановление сульфатов морских вод до сероводорода, образование СО₂, восстановление железа и марганца, при этом понижается рН и происходит растворение карбонатов [21]. Кроме того, аэробное окисление метана на границе раздела вода—осадок приводит к повышению кислотности, способствуя растворению карбонатов [22].

Механизм такого биогеохимического процесса восстановления карбонатов в арктических морях

рассмотрен в работах [23–25]. Распределение урана, так же как и радия, связано с изменением окислительно-восстановительного потенциала в осадке. В восстановительных условиях на границе придонный слой воды—осадок может происходить разрушение карбонатных комплексов урана с последующим осаждением гидролизных форм на дно. При этом концентрация урана в осадке увеличивается [26–28].

Возможно, в море Лаптевых на разрезах континентальный склон—абиссаль также реализуется такой механизм обогащения осадка радием. Увеличение концентраций 226 Ra и 238 U в осадке с глубиной на восточном разрезе при снижении концентрации $C_{\text{неорг}}$ согласуется с таким предположением.

Данных о содержании ²²⁶Ra и ²³⁸U в приповерхностном слое вод в море Лаптевых нет. Имеются данные о концентрации этих радионуклидов в глубинных водах центральной Арктики. Концентрация ²²⁶Ra в глубинных водах этого района варьирует в пределах 84.8-97.3 распад/(мин·м³) $(1.41-1.62 \, \text{Бк/м}^3)$. Максимальная концентрация в глубинных водах (1.62 Бк/м³) получена на глубине 3850 м (станция 176, 88°0′ N, 158°51.8′ E) [29]. Концентрация ²³⁸U в глубоководной части Арктического Океана составляет 3.42-3.49 мкг/л (42.7–43.6 Бк/м³). Максимальная концентрация (43.6 Бк/м^3) найдена на глубине 3000 м $(82^\circ 63' \text{ N},$ 158°55′ E) [30]. Донные воды из Центрального Арктического бассейна через желоб Садко поступают в придонный слой вод моря Лаптевых, формируя свойства его глубинных вод.

Распределение радионуклидов в проливе Вилькицкого и прилегающей части континентального шельфа показано на рис. 8.

На разрезе в проливе Вилькицкого концентрации ²²⁶Ra, ²³²Th, ²³⁸U в поверхностном слое осадков зависят от фракционного состава осадка и меняются при изменении соотношения фракций. Осадки представлены терригенным материалом, фракционный состав которого сильно изменяется от станции к станции.

Коэффициенты корреляции, характеризующие связь концентрации радионуклидов в осадках с параметрами среды на разрезе в проливе Вилькицкого, приведены в табл. 4.

Концентрации 238 U и 232 Th коррелируют друг с другом (R=0.84) и с содержанием неорганического углерода (R=0.75 и 0.87 соответственно). В диапазоне глубин 277 – 209 м (станции 5969 – 5944) концентрация 226 Ra положительно коррелирует с долей мелкоалевритовой и пелитовой фракции менее 50 мкм (R=0.93). Для данной реализации (5 пар) предельно достоверная величина коэффициента корреляции 28 0.878.

С увеличением глубины характер связи концентраций ²²⁶Ra, ²³²Th, ²³⁸U с содержанием в осадке этой фракции меняется. Концентрации ²²⁶Ra, ²³²Th, ²³⁸U снижаются с увеличением доли фракции. Станции 5966 и 5967 расположены на континентальном склоне при выходе в глубокую Арктику (глубины здесь достигают 700 м). В этом районе меняются условия седиментации и гидрологическая обстановка, что обусловлено взаимодействием шельфовых вод моря Лаптевых, вод Карского моря и вдоль-склонового течения, несущего модифицированные атлантические воды в юго-восточном направлении [31].

ЗАКЛЮЧЕНИЕ

Особенность распределения ²²⁶Ra и ²³⁸U на меридианных разрезах в поверхностном слое осадков северной части моря Лаптевых определяется восстановительными условиями в зоне контакта осадок-придонная вода, где при повышении кислотности происходит растворение части карбонатов. содержащих ²²⁶Ra и ²³⁸U, с последующей сорбцией ²²⁶Ra из морской воды и осаждением гидролизных форм ²³⁸U на дно. Возможно, в море Лаптевых на разрезах континентальный склон-абиссаль реализуется именно такой механизм обогащения осадка радием. Увеличение концентраций ²²⁶Ra и ²³⁸U в осадке с глубиной на восточном разрезе при снижении концентрации С_{неорг} согласуется с таким предположением. При этом концентрации ²²⁶Ra и ²³⁸U отрицательно коррелируют с содержанием С_{неорг} (R = -0.98 и -0.94 соответственно). Концентрация ²³²Th коррелирует с содержанием C_{opr} (R = 0.85). Полученные данные подтверждают концепцию об определяющем вкладе сорбционного извлечения ²²⁶Ra из морской воды в накопление ²²⁶Ra в поверхностном слое морских осадков. Среднее значение концентрации 232 Th 34.5 ± 2.4 Бк/кг и 238 U $28.9 \pm$ 2.5 Бк/кг в поверхностном слое осадков северной части моря Лаптевых сопоставимы с кларками среднего содержания 232 Th и 238 U для верхней части континентальной коры. В области внешнего шельфа и в проливе Вилькицкого концентрации 226 Ra, 232 Th, 238 U в поверхностном слое осадков зависят от фракционного состава осадка и меняются при изменении соотношения фракций. Концентрации 238 U и 232 Th коррелируют друг с другом (R=0.84) и с содержанием неорганического углерода (R=0.75 и 0.87 соответственно).

БЛАГОДАРНОСТИ

Авторы благодарят А.А. Полухина за предоставленные данные по биогидрохимии моря Лаптевых, А.В. Дубинина за полезные советы при подготовке статьи и Д.Ф. Будко за помощь в определении редкоземельных элементов.

ФОНДОВАЯ ПОДДЕРЖКА

Работа выполнена в рамках Государственного задания Министерства науки и высшего образования Российской федерации № 0128-2021-0007.

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют об отсутствии конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Лисицын А.П.* // Геология и геофизика. 2010. Т. 51, № 1. С. 18–60.
- 2. Система моря Лаптевых и прилегающих морей Арктики: современное состояние и история развития // Отв. ред.: Х. Кассенс, А.П. Лисицын, Й. Тиде [и др.]. М.: Изд-во Моск. ун-та, 2009. 608 с.
- 3. *Kuptsov V.M.*, *Lisitzin A.P.* // Marine Chem. 1996. Vol. 53. P. 301–311.
- 4. Nurnberg D., Futterer D.K., Niessen F., Norgaard-Pedersen N., Schubert C.J., Spielhagen R.F. et al. // Polar Res. 1995. Vol. 14. P. 43–54.
- 5. *Яшин Д.С.* // ВНИИОкеангеология. 2000. Вып. 3. С. 57–67.
- 6. *Купцов В.М., Лисицын А.П., Шевченко В.П., Буренков В.И.* // Геология морей и океанов: XIII Междунар. школа морской геологии. М., 1999. Т. І. С. 135.

- 7. Рубан А. С. Геохимические особенности современных донных осадков восточной части моря Лаптевых: на примере губы Буор-Хая: Дис. ... к.г-м.н. Томск. Нац. исслед. Томский политехн. ун-т, 2017. 166 с.
- 8. Kravchishina M.D., Lein A.Yu, Flint M.V., Baranov B.V., Miroshnikov A.Yu, Dubinina E.O., Dara O.M., Boev A.G., Savvichev A.S. // Front. Mar. Sci. 2021. Vol. 8. 690304.
 - https://doi.org/10.3389/fmars.2021.690304.
- Борисенко Г.С., Надточий В.А. // Сб. тр. Междунар. конф. «Радиоактивность и радиоактивные элементы в среде обитания человека». Томск, 13–16 сентября 2016 г. Томск: <u>СТТ</u>, 2016. С. 135–137.
- Мирошников А.Ю., Флинт М.В., Асадулин Эн Э., Кравчишина М.Д., Лукша В.Л., Усачева А.А., Рябчук Д.В., Комаров Вл.Б. // Океанология. 2020. Т. 60, № 4. С. 595–610.
- 11. *Лисицын А.П.* Осадкообразование в океанах. М.: Наvka. 1974. 438 с.
- Исследование технических путей создания низкофонового гамма-спектрометрического комплекса для анализа проб в Центральной лаборатории радиационного контроля (шифр «Спектр»): Итоговый научно-технический отчет по НИР. М.: МИФИ, 2005.
- Внедрение расчетно-методического комплекса радионуклидного анализа «Ge Spectra Analysis System» на низкофоновый НРGе спектрометр ЛВРК НВ АЭС: Аннотационный отчет по НИР. М.: МИФИ, 2009.
- 14. *Григорьев Н.А.* Распределение химических элементов в верхней части континентальной коры. Екатеринбург: УрО РАН, 2009. 382 с.
- 15. *Титаева Н.А.* Ядерная геохимия. М.: Изд-во МГУ, 2000. 336 с.
- Taylor S.R. and McLennan S.M. The Continental Crust: Its Composition and Evolution. Oxford: Blackwell, 1985. 312 p.
- 17. Bauch H.A., Mueller-Lupp T., Taldenkova E., Spielhagen R.F., Kassens H., Grootes P.M., Thiede J., Heinemeier J., Petryashov V.V. // Global Planet. Change. 2001. Vol. 31. P. 125–139.

- 18. Старик И.Е., Лисицын А.П., Кузнецов Ю.В. Антарктика // Доклады Межведомственной комиссии по изучению Антарктики 1961 г. М.: Изд-во АН СССР, 1962. С. 70–133.
- 19. *Старик И.Е., Кузнецов Ю.В., Легин В.К.* // Радиохимия. 1959. Т. 1, № 3. С. 321–324.
- 20. Semiletov I., Pipko I., Gustafsson Ö. et al. // Nature Geosci. 2016. Vol. 9. P. 361–365.
- 21. *Логвиненко Н.В., Орлова Л.В.* // Образование и изменение осадочных пород на континенте и в океане. Л.: Недра, 1987. 237 с.
- 22. Reeburgh W. S. // Chem. Rev. 2007. Vol. 107. P. 486–513.
- 23. Леин А.Ю., Миллер Ю.М., Намсараев Б.Б., Павлова Г.А., Пименов Н.В., Русанов И.И., Саввичев А.С., Иванов М.В. // Океанология. 1994. Т. 34. № 5. С. 681—692.
- 24. Savvichev A.S., Sigalevich P.A., Pimenov N.V., Kravchishina M.D., Galkin S.V., Novigatskii A.N., Flint M.V., Kadnikov V.V., Merkel A.Y., Ravin N.V. // Geomicrobiol. J. 2018. Vol. 35, N 5. P. 411–423.
- 25. Леин А.Ю., Маккавеев П.Н., Саввичев А.С., Кравчишина М.Д., Беляев Н.А., Дара О.М., Поняев М.С., Захарова Е.Е., Розанов А.Г., Иванов М.В., Флинт М.В. // Океанология. 2013. V. 53, № 5. С. 643–679.
- Anderson R.F. // Geochim. Cosmochim. Acta. 1982.
 Vol. 46. P. 1293–1299.
- 27. *Титаева Н.А.* Геохимия природных радиоактивных рядов распада. М.: Геос, 2005. 226 с.
- Wignall P.B., Myers K.J. // Geology. 1988. Vol. 16, N 5. P. 452–455.
- Van der Loeff M.M.R., Key R.M., Scholten J., Bauch D., Michel A. // Deep-Sea Res. II. 1995. Vol. 42, N 6. P. 1533–1553.
- 30. *Ku T.-L.*, *Knauss K.G.*, *Mathieu G.G.* // Deep-Sea Res. II. 1977. Vol. 24, N. 6. P. 1005–1017
- 31. *Маккавеев П.Н., Полухин А.А., Щука С.А., Степанова С. В.* // Океанология. 2020. Т. 60, № 3. С. 355–363.