УДК. 550.35.551.(268.53)

ОСОБЕННОСТИ РАСПРЕДЕЛЕНИЯ ²²⁶Ra, ²³²Th, ²³⁸U В ПОВЕРХНОСТНОМ СЛОЕ ДОННЫХ ОСАДКОВ СЕВЕРНОЙ ЧАСТИ МОРЯ ЛАПТЕВЫХ

© 2022 г. М. М. Доманов*, В. И. Гагарин, М. В. Буханов

Институт океанологии им. П.П. Ширшова РАН, 117997, Москва, Нахимовский пр., д. 36 *e-mail: domanov@ocean.ru

Поступила в редакцию 27.12.2021, после доработки 23.05.2022, принята к публикации 30.05.2022

Рассмотрены особенности распределения концентраций ²²⁶Ra, ²³²Th, ²³⁸U в поверхностном слое донных осадков северной части моря Лаптевых. Получены данные о распределении ²²⁶Ra, ²³²Th, ²³⁸U в донных отложениях шельфовой зоны моря, континентальном склоне и абиссальных глубинах. Содержание ²²⁶Ra и ²³²Th изменялось в интервале 17–36.3 и 28.7–38.1 Бк/кг соответственно, а концентрация ²³⁸U – в пределах 12.5–38.7 Бк/кг. Предполагается, что обогащение осадков ²²⁶Ra и ²³⁸U с глубиной обусловлено восстановлением части карбонатов, содержащих ²²⁶Ra и ²³⁸U, с последующей сорбцией ²²⁶Ra и ²³⁸U в осадке с глубиной на восточном разрезе при снижении концентрации С_{неорг} согласуется с таким предположением. При этом концентрации ²²⁶Ra и ²³⁸U отрицательно коррелируют с содержанием С_{меорг} (R = -0.98 и -0.94 соответственно). Концентрация ²³²Th коррелирует с содержанием С_{орг} (R = 0.85). В области внешнего шельфа и в проливе Вилькицкого концентрации ²²⁶Ra, ²³²Th, ²³⁸U в поверхностном слое осадков зависят от фракционного состава осадка и меняются при изменении соотношения фракций. Концентрации ²³⁸U и ²³²Th коррелируют друг с другом (R = 0.84) и с содержанием неорганического углерода (R = 0.75 и 0.87 соответственно).

Ключевые слова: море Лаптевых, донные осадки, радий, торий, уран

DOI: 10.31857/S0033831122060132, EDN: MGVVEU

ВВЕДЕНИЕ

Море Лаптевых представляет собой наименее изученный водоем северных побережий Азии. Изучение этого региона активизировалось в настоящее время в связи с хозяйственным освоением северного шельфа, а также с целью изучения влияния изменений климата на биоту арктических морей и на процесс размораживания древних донных осадков, сопровождающийся выделением реликтового метана.

В Арктике многолетние морские льды являются важным геологическим фактором, влияющим на формирование осадочного покрова Северного Ледовитого океана. Большой речной сток, низкая температура, метановые сипы и аутигенное образование карбонатов в современных осадках определяют закономерности осадкообразования и распределения естественных радионуклидов в море Лаптевых [1-6].

Исследование геохимического поведения урана и тория в осадках прибрежной, мелководной юго-восточной части моря Лаптевых [7] выявили специфику распределения ²³²Th и ²³⁸U в этом районе. Абсорбция ²³⁸U аутигенными карбонатами отмечена в работе [8] в северо-восточной части моря Лаптевых. Получены данные о распределении ²³²Th и ²³⁸U в донных отложениях шельфовой зоны моря [9], которые сопоставимы с концентрациями ²²⁶Ra, ²³²Th в осадках Восточно-Сибирского моря [10]. Однако эти результаты получены в области малых глубин 45-85м. Необходимы сведения о распределении радионуклидов в осадках глубоководной части Арктики и, в частности, в специфических условиях моря Лаптевых, для которого таких данных нет. Цель настоящей работы – получить данные о

Рис. 1. Схема расположения района работ.

связи распределения ²²⁶Ra, ²³²Th, ²³⁸U с характеристиками донных осадков, необходимые для изучения механизма накопления естественных радионуклидов в осадках глубоководной абиссальной части моря Лаптевых и на континентальном склоне с постоянным ледовом покровом

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Материал для исследования был получен в 72-м рейсе научно-исследовательского судна «Академик Мстислав Келдыш» в августе–сентябре 2018 г. в северной части моря Лаптевых в районе перехода от внешнего шельфа к континентальному склону, непосредственно на склоне и в абиссали. Выполнено 2 разреза – восточный и западный с юга на север и разрез в проливе Вилькицкого с прилегающим районом континентального склона. Пробы взяты бокскорером (box corer) 50 × 50 × 60 см из поверхностного слоя 0–5 см донных осадков. Район работ и положение станций показано на рис. 1.

Пробы осадка промывали через сито с размером ячейки 50 мкм. Это стандартный размер сита, используемый для определения наиболее дисперсной фракции осадка (мелкий алеврит + пелит) [11], что позволяет сопоставлять наши данные с известными стандартными данными о фракционном составе осадка. Содержание органического (C_{opr}) и неорганического углерода (C_{heopr}) в осадках определяли на анализаторе общего органического углерода TOC-L с блоком SSM-5000A фирмы Shimadzu.

Химический анализ проб донных осадков выполняли методами атомной эмиссии (Plasmaquant-110, укомплектованный системой ультразвукового распыления пробы U-5000AT и системой генерирования гидридов Hydrid-/Hg-System BSH 960) для Al, Ba, Ca, Co, Cr, Cu, Fe, La, Mg, Mn, Nb, Ni, Sc, Sr, Ті, V, Y, Zn, Zr и масс-спектрометрии с индуктивно-связанной плазмой (Agilent 7500c) для Pb, Rb, As, Nd, Th, U. Точность метода определения 5-10%. Концентрации ²²⁶Ra, ²³²Th и ²³⁸U в осадке определяли в Центральной лаборатории радиационного контроля Национального исследовательского ядерного университета «МИФИ» с помощью γ-спектрометра с детектором из сверхчистого германия GC-3020 с относительной эффективностью по линии ⁶⁰Со (1.332 МэВ), равной 30%, и разрешением по этой линии 1.8 кэВ. Использовали программное обеспечение GENIE-400 PC. После выдерживания пробы для установления радиоактивного равновесия ²²⁶Ra определяли по дочернему продукту ²¹⁴Ві (энергия 609 кэВ). Для измерения использовали сухие растертые пробы массой 26.3-32.4 г. Время экспозиции 11-55 ч. Точность определения ²²⁶Ra 4-7%, ²³²Th 7–12%, ²³⁸U 5–10%.

Станция	Широта, N	Долгота, Е	Глубина, м	²²⁶ Ra	²³² Th	²³⁸ U	²³² Th/ ²³⁸ U
5947	76.77	125.83	72	17.0 ± 0.6	32.5 ± 0.9	12.5 ± 1.2	2.61
5949	77.09	125.89	547	26.4 ± 0.5	31.6 ± 0.9	24.9 ± 1.4	1.27
5950	77.25	125.79	1058	30.2 ± 1.0	29.2 ± 0.9	30.6 ± 2.1	0.96
5954	77.41	125.79	1545	34.3 ± 1.2	36.2 ± 1.1	38.7 ± 1.9	0.94
5956	78.06	125.82	2370	24.2 ± 0.9	36.7 ± 1	24.2 ± 1.9	1.52
5958	78.95	125.78	2996	26.5 ± 1	33.0 ± 0.9	36.3 ± 2.7	0.91
5960	77.70	115.87	357	26.5 ± 0.9	35.4 ± ??	33.6 ± 1.6	1.05
5961	77.96	116.08	765	27.4 ± 0.8	37 ± 1.3	28.9 ± 1.6	1.28
5962	78.04	116.31	1090	28.4 ± 1	31.8 ± 0.9	28.9 ± 1.2	1.1
5963	78.19	116.64	1484	35.5 ± 1	38.1 ± 1.1	36.3 ± 2.5	1.05
5964	78.74	117.58	2446	27.4 ± 0.9	36.4 ± 1.1	24.1 ± 1.9	1.51
5965	78.45	117.08	1994	28 ± 0.9	37.2 ± 1	$27.4 \pm ??$	1.36
5966	78.38	114.49	715	26.4 ± 0.8	35.5 ± 1	30.4 ± 2	1.17
5967	78.32	113.96	426	26.4 ± 0.9	37.5 ± 1.1	33.4 ± 2	1.12
5968	78.08	112.57	350	36.3 ± 1.3	37.2 ± 1.2	29.2 ± 2.2	1.27
5969	77.83	110.22	277	30.4 ± 0.9	33.6 ± 0.9	26.7 ± 2	1.26
5970	77.89	107.79	239	23.5 ± 0.7	33.5 ± 1.1	29.9 ± 2.1	1.12
5972	78.11	105.15	210	30.8 ± 1.05	36.3 ± 2	30.6 ± 2.1	1.19
5973	77.85	105.24	209	20.62 ± 0.72	28.7 ± 0.9	25.6 ± 2.2	1.12
5944	78.00	105.34	217	27.53 ± 0.81	32.6 ± 1	26.4 ± 2	1.23
Среднее				27.7 ± 3.2	34.5 ± 2.4	28.9 ± 2.5	1.25±0.20

Таблица 1. Концентрации радионуклидов (Бк/кг) в поверхностном слое осадка (5 см)

Анализ спектров γ -излучения образцов донных отложений проводили в энергетическом диапазоне 50–3000 кэВ. В обработке участвуют все пики, найденные в указанной области спектра. При этом каждый пик рассматривается как композиция, образованная за счет наложения (интерференции) пиков, обусловленных регистраций нескольких линий γ -излучения с близкими энергиями (пиков полного поглощения), пиков истинных и случайных совпадений и пиков утечки (пики одиночного и двойного вылета). В процессе обработки спектр рассматривается как единый объект, состоящий из набора γ -линий конечного числа радионуклидов. Такой подход обеспечивает возможность корректно

РАДИОХИМИЯ том 64 № 6 2022

учитывать указанную выше интерференцию пиков в спектре [12, 13].

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Результаты измерения концентраций радионуклидов представлены в табл. 1. Характеристики придонного слоя воды и донных осадков приведены в табл. 2.

Содержание ²²⁶Ra и ²³²Th изменялось в интервале 17–36.3 и 28.7–38.1 Бк/к соответственно, а концентрация ²³⁸U – в пределах 12.5–38.7 Бк/кг. Концентрации ²²⁶Ra и ²³²Th в области шельфа на станции 5947 (17.0 и 32.5 Бк/кг, соответственно)

	Описание осадка	Обводненный, оливково-коричневый, алеврито-пелитовый	Коричневый плотный пелит	Плотный, коричневый алеврито-пелитовый с песком	Плотный, темно-коричневый пелит	Коричневый алеврито-пелитовый	Коричневый алеврито-пелитовый	Светло-коричневый алеврито-пелитовый	Светлокоричневый алеврито-пелитовый	Коричневый, плотный, алеврито-пелитовый	Плотный, коричневый пелит	Плотный, коричневый пелит	Алеврито-пелитовый, коричневый	Коричневый алеврито-пелитовый	Плотный, светлокоричневый пелит	Плотный, темнокоричневый пелит	Обводненный коричневый пелит	Обводненный темнокоричневый алеврито-	целитовыи Коричневый алеврито-пелитовый	Светлокоричневый алеврито-пелитовый	Оливково-коричневый пелит
	Кислород, _{МЛ} Л	7.33	7.00	6.82	6.75	6.65	6.73	6.94	6.96	6.79	6.76	6.75	6.80	7.14	7.01	7.03	6.98	7.16	7.03	7.03	7.11
	C _{Heopr} , %	0.072	0.056	0.043	0.038	0.055	0.048	0.049	0.065	0.052	0.052	0.080	0.052	0.058	0.058	0.072	0.034	0.044	0.035	0.002	0.013
В	Соленость, %0	34.34	34.80	34.90	34.92	34.94	34.94	34.78	34.87	34.91	34.92	34.94	34.93	34.85	34.82	34.78	34.74	34.67	34.65	34.35	34.63
и донных осадко	Т придонного слоя воды, °С	-1.2	-0.4	-0.1	0	0.4	0	-0.02	0.6	0.6	0.7	0.8	0.4	0.8	0.7	-0.2	0.6	-0.4	-0.74	-0.85	-0.4
тоя воды и	C _{opr} , %	0.81	0.59	0.49	1.04	0.89	0.95	0.77	0.86	0.81	0.98	1.13	1.24	0.71	0.67	0.77	0.79	0.93	0.91	0.85	0.85
стики придонного с.	Фракция <50 мкм, %	LL	96.7	78.3	98.1	99.95	91.82	95	98.1	06	92.5	98.6	9.99	98.4	96.1	96.3	93.5	67.3	98.61	51.2	66
Характери	Станция	5947	5949	5950	5954	5956	5958	5960	5961	5962	5963	5964	5965	5966	5967	5968	5969	5970	5972	5973	5944
Таблица 2.	Глубина, м	72	547	1058	1545	2370	2996	357	765	1090	1484	2446	1994	715	426	350	277	239	210	209	217

594

ДОМАНОВ и др.

РАДИОХИМИЯ том 64 № 6 2022

Рис. 2. Концентрация ²²⁶Ra (1), ²³²Th (2), ²³⁸U (3) и содержание C_{орг} (4), C_{неорг} (5) на восточном разрезе.

сопоставимы с концентрациями (²²⁶Ra 16.0, ²³²Th 35.0 Бк/кг), измеренными на шельфе моря Лаптевых в работе [9].

Среднее значение концентрации ²³²Th (34.5 ± 2.4 Бк/кг) и ²³⁸U (28.9 ± 2.5 Бк/кг) сопоставимы с кларками среднего содержания ²³²Th и ²³⁸U для верхней части континентальной коры (37.8 Бк/кг и 31.2 Бк/кг соответственно), найденными в работе [14]. Отношение концентраций ²³²Th/²³⁸U для всего массива измерений изменялось в пределах 0.91–2.61. Среднее отношение ²³²Th/²³⁸U 1.25 ± 0.20 близко к величине ²³²Th/²³⁸U 1.23, приведенной в работе [15] для океанических островов, а также к отношению активности кларков ²³²Th и ²³⁸U для верхней части континентальной коры 1.21 [14] и к значению 1.15, определенному в работе [16].

Содержание C_{opr} и C_{heopr} в осадках исследуемого района изменялось в пределах 0.49–1.24 и 0.0019 – 0.079% соответственно. Среднее содержание органического углерода в терригенных осадках прибрежной зоны составляет 1.9% [7]. Средняя величина отношения C_{opr}/C_{heopr} 0.060 ± 0.020 сопоставима с отношением C_{opr}/C_{heopr} , измеренным в поверхностном слое аутигенных осадков в работе [8].

Изменение концентраций ²²⁶Ra, ²³²Th и ²³⁸U с глубиной на восточном разрезе сопоставлено с содержанием в осадке органического и неорганического углерода (рис. 2). С увеличением глубины до 1000 м концентрация ²³²Th снижается, что указывает на уменьшение в осадке терригенного материала

РАДИОХИМИЯ том 64 № 6 2022

на этом интервале глубин. Количество C_{opr} и C_{heopr} в осадке также снижается, а концентрации ²²⁶Ra и ²³⁸U возрастают.

В области континентального склона на глубине 1545 м в осадке резко увеличивается содержание C_{opr} и ²³²Th. Концентрации ²²⁶Ra и ²³⁸U увеличиваются с глубиной до максимальных значений. Максимальные концентрации ²²⁶Ra, ²³²Th и ²³⁸U (34.3, 36.2, 31.2 Бк/кг) найдены на глубине 1545 м в зоне изменения уклона континентального склона при переходе к глубинам абиссальной зоны. Эти максимальные концентрации ²²⁶Ra, ²³²Th и ²³⁸U соответ-

Рис. 3. Зависимость величины концентрации 226 Ra (1) и 238 U (2) в осадке на восточном разрезе от концентрации в осадке С_{неорг}.

ДОМАНОВ и др.

разрезе (при уровн	разрезе (при уровне вероятности <i>P</i> = 0.95 и числе пар 6 достоверная величина коэффициента корреляции равна 0.811)											
Параметр	Глубина, м	С _{орг} , %	²²⁶ Ra	²³² Th	²³⁸ U	С _{неорг} , %	Кислород, мл/л	Соленость, ‰				
Глубина, м	1.00						-0.84					

Таблица 3. Корреляционная матрица связи концент	раций радиону	клидов (Бк/кг) с па	араметрами среды н	а восточном
разрезе (при уровне вероятности Р = 0.95 и числе па	р 6 достоверная	я величина коэффи	щиента корреляции	равна 0.811)

1 луоина, м	1.00						-0.84	
С _{орг} , %		1.00		0.85				
²²⁶ Ra			1.00		0.90	-0.98		
²³² Th				1.00				
²³⁸ U					1.00	-0.94		
С _{неорг} , %						1.00		-0.84
Кислород, мл/л							1.00	-0.96
Соленость, ‰								1.00

ствуют максимальному содержанию в осадке Сорг и минимальной концентрации С_{неорг}.

Концентрации ²²⁶Ra и ²³⁸U связны с содержанием в осадке С_{неорг} и увеличиваются при снижении его количества (рис. 3).

Отношение Сорг/Снеорг изменяется с глубиной (10.6-27.5) и имеет максимальное значение на континентальном склоне на глубине 1545 м, где концентрации ²²⁶Ra и ²³⁸U также максимальны (рис. 4).

Коэффициенты корреляции, характеризующие связь концентрации радионуклидов в осадках с параметрами среды на восточном разрезе, приведены в табл. 3.

Отрицательная корреляция содержания С_{неорг} в осадке с соленостью указывает на связь этих па-

Рис. 4. Зависимость концентрации ²²⁶Ra (1) и ²³⁸U (2) в осадке на восточном разрезе и отношения Сорг/Снеорг от глубины.

раметров с распресненными водами, выносящими осадки из зоны современного шельфа в район континентального склона. Такой вывод не противоречит выводу о влиянии трансгрессии холодных шельфовых вод на формирование осадков в зоне континентального склона [6, 17].

Концентрация ²³²Th коррелирует с Сорг, что указывает на общий терригенный источник их поступления в осадки. Средние значения концентраций ²³²Th и C_{орг} в терригенных осадках прибрежной зоны моря Лаптевых составляют 45.6 Бк/кг и 1.9% для ²³²Th и Сорг соответственно [7]. Среднее значение ²³²Th для осадков прибрежной зоны моря Лаптевых согласуется с зависимостью 232 Th от C_{орг}, полученной для восточного разреза (рис. 5).

Рис. 5. Зависимость концентрации ²³²Th от концентрации Сорг. Черным треугольником обозначено среднее значение для прибрежной зоны моря Лаптевых [7].

РАДИОХИМИЯ том 64 № 6 2022

Таблица 4. Корреляционная матрица связи концентраций радионуклидов с параметрами среды на разрезе в проливе Вилькицкого (при уровне вероятности *P* = 0.95 и числе пар 8 достоверная величина коэффициента корреляции равна 0.71)

Параметр	Глубина,	Фракция менее	C %	²³² Th,	²³⁸ U,	С _{неорг} ,	T °C	Соленость, %	
	М	50 мкм, %	Copr, 70	Бк/кг	Бк/кг	%	1, 0		
Глубина, м	1		-0.77				0.75		
Фракция менее 50 мкм, %		1		0.80				0.78	
С _{орг} , %			1				-0.85		
²³² Th, Бк/кг				1	0.84	0.87		0.89	
²³⁸ U, Бк/кг					1	0.75		0.77	
С _{неорг} , %						1	0.90	0.88	
<i>T</i> , °C							1	0.82	
Соленость, ‰								1	

Изменение концентраций ²²⁶Ra, ²³²Th, ²³⁸U и содержание в осадке органического углерода с глубиной на западном разрезе представлены на рис. 6.

На западном разрезе, так же как и на восточном, максимальные концентрации ²²⁶Ra, ²³²Th, ²³⁸U найдены на глубине 1484 м в нижней части континентального склона. На этом разрезе концентрация ²³⁸U, так же как и на восточном разрезе, повышается с уменьшением $C_{\text{неорг}}$, однако эта связь менее выражена (рис. 7).

В области континентального склона на глубинах более 1000 м концентрация ²²⁶Ra коррелирует с концентрацией ²³⁸U (R = 0.99).

Распределения ²²⁶Ra, ²³²Th и ²³⁸U на рассмотренных меридиональных разрезах имеют общие особенности. На шельфе моря Лаптевых с увеличением глубин концентрации 226 Ra и 238 U на континентальном склоне растут до максимальных величин в области глубин 1484—1545 м в нижней части континентального склона. При переходе к абиссальным глубинам содержание 226 Ra, 232 Th и 238 U снижается в области нераспространения грубых осадков.

Подобное распределение ²³²Th и ²³⁸U с максимумом в области континентального склона отмечено и в районе Антарктического шельфа [18]. При этом было показано, что в осадках шельфа основная часть урана и тория содержится в обломках континентальных материалов, а в глубоководных морских осадках основная часть урана происходит из урана морской воды [19]. При этом концентрация

Рис. 6. Концентрация 226 Ra (1) , 232 Th (2), 238 U (3) и C_{орг} (4) на западном разрезе.

РАДИОХИМИЯ том 64 № 6 2022

Рис. 7. Изменение концентрации 238 U с уменьшением содержания С_{неоог} на западном разрезе.

Рис. 8. Концентрации ²²⁶Ra (1) , ²³²Th (2), ²³⁸U (3) и содержание фракции < 50 мкм (4) в проливе Вилькицкого.

²²⁶Ra с ростом глубины увеличивается до максимальных значений в нижней части континентального склона, а затем снижается в абиссальной части океана, что обусловлено, как было показано в работе [18], уменьшением сорбционной емкости матрицы осадка.

Исследование механизма удаления радия из морской воды, выполненное И.Е. Стариком, А.П. Лисицыным и Ю.В. Кузнецовым [18], показало, что увеличение концентрации ²²⁶Ra в глубоководных осадках связано с растворением части карбоната кальция, содержащего абсорбированный радий, и обогащением придонных вод радием, который затем сорбируется остаточной частью осадка.

Известно, что мелководные шельфовые моря Арктики особенно агрессивны по отношению к карбонатным осадкам [20]. В анаэробных условиях в осадке идет деструкция органического вещества сульфатредуцирующими бактериями, восстановление сульфатов морских вод до сероводорода, образование СО₂, восстановление железа и марганца, при этом понижается pH и происходит растворение карбонатов [21]. Кроме того, аэробное окисление метана на границе раздела вода–осадок приводит к повышению кислотности, способствуя растворению карбонатов [22].

Механизм такого биогеохимического процесса восстановления карбонатов в арктических морях

рассмотрен в работах [23–25]. Распределение урана, так же как и радия, связано с изменением окислительно-восстановительного потенциала в осадке. В восстановительных условиях на границе придонный слой воды–осадок может происходить разрушение карбонатных комплексов урана с последующим осаждением гидролизных форм на дно. При этом концентрация урана в осадке увеличивается [26–28].

Возможно, в море Лаптевых на разрезах континентальный склон–абиссаль также реализуется такой механизм обогащения осадка радием. Увеличение концентраций 226 Ra и 238 U в осадке с глубиной на восточном разрезе при снижении концентрации $C_{\text{неорг}}$ согласуется с таким предположением.

Данных о содержании ²²⁶Ra и ²³⁸U в приповерхностном слое вод в море Лаптевых нет. Имеются данные о концентрации этих радионуклидов в глубинных водах центральной Арктики. Концентрация ²²⁶Ra в глубинных водах этого района варьирует в пределах 84.8–97.3 распад/(мин·м³) (1.41-1.62 Бк/м³). Максимальная концентрация в глубинных водах (1.62 Бк/м³) получена на глубине 3850 м (станция 176, 88°0' N, 158°51.8' Е) [29]. Концентрация ²³⁸U в глубоководной части Арктического Океана составляет 3.42-3.49 мкг/л (42.7–43.6 Бк/м³). Максимальная концентрация (43.6 Бк/м³) найдена на глубине 3000 м (82°63' N, 158°55' Е) [30]. Донные воды из Центрального Арктического бассейна через желоб Садко поступают в придонный слой вод моря Лаптевых, формируя свойства его глубинных вод.

Распределение радионуклидов в проливе Вилькицкого и прилегающей части континентального шельфа показано на рис. 8.

На разрезе в проливе Вилькицкого концентрации ²²⁶Ra, ²³²Th, ²³⁸U в поверхностном слое осадков зависят от фракционного состава осадка и меняются при изменении соотношения фракций. Осадки представлены терригенным материалом, фракционный состав которого сильно изменяется от станции к станции.

Коэффициенты корреляции, характеризующие связь концентрации радионуклидов в осадках с параметрами среды на разрезе в проливе Вилькицкого, приведены в табл. 4.

Концентрации ²³⁸U и ²³²Th коррелируют друг с другом (R = 0.84) и с содержанием неорганического углерода (R = 0.75 и 0.87 соответственно). В диапазоне глубин 277-209 м (станции 5969-5944) концентрация ²²⁶Ra положительно коррелирует с долей мелкоалевритовой и пелитовой фракции менее 50 мкм (R = 0.93). Для данной реализации (5 пар) предельно достоверная величина коэффициента корреляции *R*= 0.878.

С увеличением глубины характер связи концентраций 226 Ra, 232 Th, 238 U с содержанием в осадке этой фракции меняется. Концентрации ²²⁶Ra, ²³²Th, ²³⁸U снижаются с увеличением доли фракции. Станции 5966 и 5967 расположены на континентальном склоне при выходе в глубокую Арктику (глубины здесь достигают 700 м). В этом районе меняются условия седиментации и гидрологическая обстановка, что обусловлено взаимодействием шельфовых вод моря Лаптевых, вод Карского моря и вдоль-склонового течения, несущего модифицированные атлантические воды в юго-восточном направлении [31].

ЗАКЛЮЧЕНИЕ

Особенность распределения ²²⁶Ra и ²³⁸U на меридианных разрезах в поверхностном слое осадков северной части моря Лаптевых определяется восстановительными условиями в зоне контакта осадок-придонная вода, где при повышении кислотности происходит растворение части карбонатов. содержащих ²²⁶Ra и ²³⁸U, с последующей сорбцией ²²⁶Ra из морской воды и осаждением гидролизных форм ²³⁸U на дно. Возможно, в море Лаптевых на разрезах континентальный склон-абиссаль реализуется именно такой механизм обогащения осадка радием. Увеличение концентраций ²²⁶Ra и ²³⁸U в осадке с глубиной на восточном разрезе при снижении концентрации С_{неорг} согласуется с таким предположением. При этом концентрации ²²⁶Ra и ²³⁸U отрицательно коррелируют с содержанием С_{неорг} (R = -0.98 и -0.94 соответственно). Концентрация ²³²Th коррелирует с содержанием C_{opr} (*R* = 0.85). Полученные данные подтверждают концепцию об определяющем вкладе сорбционного извлечения ²²⁶Ra из морской воды в накопление ²²⁶Ra в поверхностном слое морских осадков. Среднее значение концентрации ²³²Th 34.5 \pm 2.4 Бк/кг и ²³⁸U 28.9 \pm

4.

5. 6.

2.5 Бк/кг в поверхностном слое осадков северной части моря Лаптевых сопоставимы с кларками среднего содержания ²³²Th и ²³⁸U для верхней части континентальной коры. В области внешнего шельфа и в проливе Вилькицкого концентрации ²²⁶Ra, ²³²Th, ²³⁸U в поверхностном слое осадков зависят от фракционного состава осадка и меняются при изменении соотношения фракций. Концентрации ²³⁸U и ²³²Th коррелируют друг с другом (R = 0.84) и с содержанием неорганического углерода (R = 0.75 и 0.87 соответственно).

БЛАГОДАРНОСТИ

Авторы благодарят А.А. Полухина за предоставленные данные по биогидрохимии моря Лаптевых, А.В. Дубинина за полезные советы при подготовке статьи и Д.Ф. Будко за помощь в определении редкоземельных элементов.

ФОНДОВАЯ ПОДДЕРЖКА

Работа выполнена в рамках Государственного задания Министерства науки и высшего образования Российской федерации № 0128-2021-0007.

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют об отсутствии конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- Лисицын А.П. // Геология и геофизика. 2010. Т. 51, № 1. C. 18–60.
- 2. Система моря Лаптевых и прилегающих морей Арктики: современное состояние и история развития // Отв. ред.: Х. Кассенс, А.П. Лисицын, Й. Тиде [и др.]. М.: Изд-во Моск. ун-та, 2009. 608 с.
- 3. Kuptsov V.M., Lisitzin A.P. // Marine Chem. 1996. Vol. 53. P. 301–311.
- Nurnberg D., Futterer D.K., Niessen F., Norgaard-Pedersen N., Schubert C.J., Spielhagen R.F. et al. // Polar Res. 1995. Vol. 14. P. 43–54.
- Яшин Д.С. // ВНИИОкеангеология. 2000. Вып. 3. C. 57-67.
- Купцов В.М., Лисицын А.П., Шевченко В.П., Буренков В.И. // Геология морей и океанов: XIII Междунар. школа морской геологии. М., 1999. Т. I. С. 135.

- Рубан А. С. Геохимические особенности современных донных осадков восточной части моря Лаптевых: на примере губы Буор-Хая: Дис. ... к.г-м.н. Томск. Нац. исслед. Томский политехн. ун-т, 2017. 166 с.
- Kravchishina M.D., Lein A.Yu, Flint M.V., Baranov B.V., Miroshnikov A.Yu, Dubinina E.O., Dara O.M., Boev A.G., Savvichev A.S. // Front. Mar. Sci. 2021. Vol. 8. 690304.

https://doi.org/10.3389/fmars.2021. 690304.

- Борисенко Г.С., Надточий В.А. // Сб. тр. Междунар. конф. «Радиоактивность и радиоактивные элементы в среде обитания человека». Томск, 13–16 сентября 2016 г. Томск: <u>СТТ</u>, 2016. С. 135–137.
- Мирошников А.Ю., Флинт М.В., Асадулин Эн Э., Кравчишина М.Д., Лукша В.Л., Усачева А.А., Рябчук Д.В., Комаров Вл.Б. // Океанология. 2020. Т. 60, № 4. С. 595–610.
- 11. *Лисицын А.П.* Осадкообразование в океанах. М.: Наука, 1974. 438 с.
- Исследование технических путей создания низкофонового гамма-спектрометрического комплекса для анализа проб в Центральной лаборатории радиационного контроля (шифр «Спектр»): Итоговый научно-технический отчет по НИР. М.: МИФИ, 2005.
- Внедрение расчетно-методического комплекса радионуклидного анализа «Ge Spectra Analysis System» на низкофоновый НРGе спектрометр ЛВРК НВ АЭС: Аннотационный отчет по НИР. М.: МИФИ, 2009.
- Григорьев Н.А. Распределение химических элементов в верхней части континентальной коры. Екатеринбург: УрО РАН, 2009. 382 с.
- 15. *Титаева Н.А.* Ядерная геохимия. М.: Изд-во МГУ, 2000. 336 с.
- Taylor S.R. and McLennan S.M. The Continental Crust: Its Composition and Evolution. Oxford: Blackwell, 1985. 312 p.
- Bauch H.A., Mueller-Lupp T., Taldenkova E., Spielhagen R.F., Kassens H., Grootes P.M., Thiede J., Heinemeier J., Petryashov V.V. // Global Planet. Change. 2001. Vol. 31. P. 125–139.

- Старик И.Е., Лисицын А.П., Кузнецов Ю.В. Антарктика // Доклады Межведомственной комиссии по изучению Антарктики 1961 г. М.: Изд-во АН СССР, 1962. С. 70–133.
- 19. *Старик И.Е., Кузнецов Ю.В., Легин В.К.* // Радиохимия. 1959. Т. 1, № 3. С. 321–324.
- 20. Semiletov I., Pipko I., Gustafsson Ö. et al. // Nature Geosci. 2016. Vol. 9. P. 361–365.
- Логвиненко Н.В., Орлова Л.В. // Образование и изменение осадочных пород на континенте и в океане. Л.: Недра, 1987. 237 с.
- Reeburgh W. S. // Chem. Rev. 2007. Vol. 107. P. 486– 513.
- Леин А.Ю., Миллер Ю.М., Намсараев Б.Б., Павлова Г.А., Пименов Н.В., Русанов И.И., Саввичев А.С., Иванов М.В. // Океанология. 1994. Т. 34. № 5. С. 681–692.
- 24. Savvichev A.S., Sigalevich P.A., Pimenov N.V., Kravchishina M.D., Galkin S.V., Novigatskii A.N., Flint M.V., Kadnikov V.V., Merkel A.Y., Ravin N.V. // Geomicrobiol. J. 2018. Vol. 35, N 5. P. 411–423.
- Леин А.Ю., Маккавеев П.Н., Саввичев А.С., Кравчишина М.Д., Беляев Н.А., Дара О.М., Поняев М.С., Захарова Е.Е., Розанов А.Г., Иванов М.В., Флинт М.В. // Океанология. 2013. V. 53, № 5. С. 643–679.
- Anderson R.F. // Geochim. Cosmochim. Acta. 1982. Vol. 46. P. 1293–1299.
- 27. *Титаева Н.А.* Геохимия природных радиоактивных рядов распада. М.: Геос, 2005. 226 с.
- Wignall P.B., Myers K.J. // Geology. 1988. Vol. 16, N 5. P. 452–455.
- Van der Loeff M.M.R., Key R.M., Scholten J., Bauch D., Michel A. // Deep-Sea Res. II. 1995. Vol. 42, N 6. P. 1533–1553.
- Ku T.-L., Knauss K.G., Mathieu G.G. // Deep-Sea Res. II. 1977. Vol. 24, N. 6. P. 1005–1017
- 31. Маккавеев П.Н., Полухин А.А., Щука С.А., Степанова С. В. // Океанология. 2020. Т. 60, № 3. С. 355–363.

600