УДК 539.26:(546.791.6+546.798.21+546.798.22)

КОМПЛЕКСЫ An(VI) С АНИОНАМИ ФУМАРОВОЙ КИСЛОТЫ

© 2023 г. М. С. Григорьев^{*a*}, И. А. Чарушникова^{*a*,*}, А. М. Федосеев^{*a*}

^а Институт физической химии и электрохимии им. А.Н. Фрумкина РАН, 119071, Москва, Ленинский пр., д. 31, корп. 4 *e-mail:charushnikovai@ipc.rssi.ru

Поступила в редакцию 23.05.2022, после доработки 05.07.2022, принята к публикации 12.07.2022

Синтезированы и структурно охарактеризованы фумараты An(VI): дигидраты общего состава $[AnO_2(C_4H_2O_4)(H_2O)_2]$ (An = U, Np, Pu) и моногидрат $[UO_2(C_4H_2O_4)H_2O]$. Дигидраты имеют цепочечное строение, координационный полиэдр (КП) атомов An(VI) –искаженная гексагональная бипирамида. Фумарат-ионы связаны с двумя катионами AnO₂²⁺ с образованием четырехчленных металлоциклов. Структура моногидрата каркасная, КП атома урана(VI) – пентагональная бипирамида. Фумарат-ион является мостиковым лигандом, координированным к четырем катионами UO_2^{2+} монодентатным способом. В дигидратах $[AnO_2(C_4H_2O_4)(H_2O)_2]$ актинидное сжатие проявляется в уменьшении межатомного расстояния в группах AnO_2 и в уменьшении объема полиэдров Вороного–Дирихле по ряду U(VI)–Np(VI)–Pu(VI).

Ключевые слова: уран(VI), нептуний(VI), плутоний(VI), фумараты, синтез, кристаллическая структура. **DOI:** 10.31857/S0033831123010021, **EDN:** OGDZEC

Работы по синтезу и изучению строения и свойств соединений *f*-элементов с анионами карбоновых кислот необходимы для углубления наших знаний химии этих металлов и ДЛЯ разработки возможных технологических процессов. В отличие от монокарбоновых кислот дикарбоновые кислоты существенно реже являются предметом исследований в системах с актинидами. Комплексы на основе предельных и непредельных дикарбоновых кислот в подавляющем большинстве изучены для уранила [1-7]. Определенный интерес вызывает исследование актинидных комплексов с непредельными дикарбоновыми кислотами фумаровой и ее цис-изомером – малеиновой. С малеат-ионами изучены следующие соединения: $K[UO_2(C_4H_2O_4)(C_4H_3O_4)]$ включающий в себя одно- и двухзарядный анионы [8], два комплекса $(NH_4)_2[UO_2(C_4H_2O_4)_2]$ и $Cs_2[(UO_2)_3(C_4H_2O_4)_4] \cdot 2H_2O_4$ [9]. Также исследовано строение двойной соли малеиновой кислоты с Np(V) и $Co(NH_3)_6^{3+}$ состава $Co(NH_3)_6[NpO_2(C_4H_3O_4)_2(H_2O_3)](C_4H_3O_4)_2 \cdot H_2O_3$ [10]. С фумарат-ионом был выделен и структурно охарактеризован дигидрат состава [UO₂(C₄H₂O₄) (H₂O)₂] [11], экспериментальные данные для

которого получены при комнатной температуре. Позже в работе [12] было описано строение комплекса U(IV) с фумарат- и формиат-ионами состава $U_6O_4(OH)_4(fum)_5(form)_2(H_2O)_2 \cdot 3DMF$, где DMF = N,N-диметилформамид. Было исследовано также термическое поведение моногидрата фумарата уранила [UO₂(C₄H₂O₄)H₂O], который был выделен в виде порошка [13], однако структура его не была определена.

В литературе отсутствуют данные о строении фумаратов других трансурановых элементов в степени окисления +6. В настоящей работе синтезированы изоструктурные дигидраты урана, нептуния и плутония $[AnO_2(C_4H_2O_4)(H_2O)_2]$ (I) и моногидрат $[UO_2(C_4H_2O_4)H_2O]$ (II), определена их структура.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Синтез проводили с использованием в качестве исходных материалов UO₃ марки х.ч., NpO₃·2H₂O и PuO₂(OH)₂·xH₂O ($x \approx 2$) [14], приготовленных озонированием водной суспензии гексагидрата

, I I	1 , ,	1 1	1 15 51	L I	
Соединение	Ia [11]	Ia	Ib	Ic	II
Эмпирическая формула	C ₄ H ₆ O ₈ U	C ₄ H ₆ O ₈ U	C ₄ H ₆ NpO ₈	C ₄ H ₆ O ₈ Pu	C ₄ H ₄ O ₇ U
Молекулярная масса	420.12	420.12	419.09	421.14	402.10
Размеры кристалла, мм ³		$0.10 \times 0.08 \times 0.08$	$0.12 \times 0.10 \times 0.03$	$0.10\times0.08\times0.06$	$0.18 \times 0.16 \times 0.06$
Температура, К	Комнатная	100(2)	100(2)	100(2)	100(2)
θ_{max} , град	25	35	35	35	35
Сингония	Моноклинная	Моноклинная	Моноклинная	Моноклинная	Ромбическая
Пространственная	$P2_1/n$	$P2_1/n$	$P2_1/n$	$P2_1/n$	Pbcn
группа					
Параметры ячейки:					
<i>a</i> , Å	5.571(2)	5.5468(3)	5.5104(3)	5.4812(1)	7.8816(6)
<i>b</i> , Å	7.502(2)	7.5048(3)	7.5438(5)	7.5703(2)	9.5899(7)
<i>c</i> , Å	9.952(3)	9.8264(4)	9.9131(6)	9.9833(2)	9.9899(7)
β, град	98.6(3)	98.259(3)	99.235(1)	99.884(2)	90
Объем ячейки, $Å^3$, Z	411.25, 2	404.81(3), 2	406.74(4), 2	408.102(16), 2	755.07(10), 4
$ρ_{\rm выч}$, г/см ³	3.39	3.447	3.422	3.451	3.537
$\mu(MoK_{\alpha}), \mathrm{Mm}^{-1}$	18.88	19.28	8.29	8.57	20.66
Число измеренных/	862	6431/1765	6886/1775	6368/1781	11882/1656
независимых отражений					
Число независимых	$555 [I > 3\sigma(I)]$	1213	1309	1123	1172
отражений с $I > 2\sigma(I)$					
Число уточняемых		68	68	68	60
параметров					
$R(F), wR(F^2)$	0.0235	0.0170, 0.0344	0.0131, 0.0260	0.0239, 0.0551	0.0207, 0.0509
$[I > 2\sigma(I)]$					
$R(F), wR(F^2)$ [BCe		0.0331, 0.0383	0.0223, 0.0289	0.0479, 0.0634	0.0342, 0.571
данные]		1.020	1.007	1.000	1.000
GOOF		1.030	1.036	1.003	1.029
$\Delta \rho_{\text{max}}$ и $\Delta \rho_{\text{min}}$, е А ⁻³		1.390, -1.152	0.668, -0.769	3.013, -2.986	4.154, -2.585

Таблица 1. Кристаллографические данные и характеристики рентгеноструктурных экспериментов

оксалата четырехвалентного нептуния и плутония. Навеску UO₃, NpO₃·2H₂O и PuO₂(OH)₂·xH₂O в 5-10 мг растворяли в насыщенном водном растворе эквивалентного количества фумаровой кислоты марки ч.д.а. при перемешивании магнитной мешалкой при комнатной температуре. Полученные растворы оставляли для медленного испарения в закрытых флаконах при комнатной температуре и в холодильнике при 6–8°С. В случае урана образуются светло-желтые призматические кристаллы: при пониженной температуре $[UO_2(C_4H_2O_4)(H_2O_2)]$ (Ia), при комнатной $[UO_2(C_4H_2O_4)H_2O]$ (II). В случае нептуния и плутония при комнатной температуре происходит восстановление до Np(V) и Pu(IV) соответственно, о чем свидетельствует изменение цвета реакционной смеси и выделение мелкокристаллического продукта в случае плутония. При пониженной температуре

выделяются $[NpO_2(C_4H_2O_4)(H_2O)_2]$ (**Ib**) в виде серо-зеленых и $[PuO_2(C_4H_2O_4)(H_2O)_2]$ (**Ic**) в виде коричневато-зеленоватых призматических кристаллов, устойчивых в сухом виде.

Рентгенодифракционные эксперименты проведены на автоматическом четырехкружном лифрактометре двумерным с летектором Bruker Kappa Арех II (излучение MoK_{α}). Параметры элементарных ячеек уточнены по всему массиву данных. В экспериментальные интенсивности введены поправки на поглощение с помощью программы SADABS [15]. Структуры расшифрованы прямым методом (SHELXS97 [16]) и уточнены полноматричным метолом наименыших квадратов (SHELXL-2018 [17]) по F^2 по всем данным в анизотропном приближении для всех неводородных атомов. Атомы Н молекул воды локализованы из разностных Фурье-синтезов, их

Рис. 1. Фрагмент структуры [NpO₂(C₄H₂O₄)(H₂O)₂] (**Ib**). Операции симметрии: a - (1 - x, 1 - y, 1 - z), b - (-x, 2 - y, 1 - z), c - (x + 1, y - 1, z).

позиции уточнены с $U_{\rm H} = 1.5 U_{_{3\rm KB}}({\rm O})$ и ограничением расстояний O–H и углов H–O–H. Атомы H фумаратионов введены на геометрически рассчитанные позиции с $U_{\rm H} = 1.2 U_{_{3\rm KB}}({\rm C})$.

Основные кристаллографические данные и характеристики рентгеноструктурного эксперимента приведены в табл. 1. Длины связей и валентные углы в структурах приведены в табл. 2, 3. Координаты атомов депонированы в Кембриджский центр кристаллографических данных, депозиты ССDС 2171198–2171201.

Таблица 2. Длины связей (Å) и валентные углы (град) в структуре I ^а

Chapt MEON	Ia	Ib $(\Lambda n - Nn)$	Ic			
Связь, угол	(An=U)	ID (AII–NP)	(An=Pu)			
	Длины свя	зей				
An(1)=O(1)	1.764(2)	1.7493(16)	1.736(4)			
An(1)–O(2)	2.424(2)	2.4261(14)	2.431(3)			
An(1)–O(3)	2.568(2)	2.5708(15)	2.565(4)			
An(1)-O(1w)	2.457(2)	2.4546(17)	2.440(4)			
C(1)–O(2)	1.275(4)	1.271(3)	1.267(6)			
C(1)–O(3)	1.259(4)	1.264(3)	1.267(5)			
C(1)–C(2)	1.475(4)	1.476(3)	1.492(7)			
C(2)-C(2b)	1.338(5)	1.331(4)	1.317(9)			
Валентные углы						
O(1)=An(1)=O(1a)	180.0	180.0	180.0			
O(2)–An(1)–O(3)	51.87(7)	51.93(5)	51.90(11)			
O(2)-An(1)- $O(1w)$	64.06(8)	64.21(5)	64.50(12)			
O(3)–An(1)–O(1wa)	64.97(7)	64.80(5)	64.59(12)			
O(2)–C(1)–O(3)	119.3(3)	119.60(18)	119.6(4)			
O(2)–C(1)–C(2)	119.3(3)	119.25(18)	119.4(4)			
O(3)–C(1)–C(2)	121.4(3)	121.15(19)	121.0(4)			
C(1)–C(2)–C(2b)	120.2(4)	120.8(3)	119.4(6)			

^а Операции симметрии: a - (1 - x, 1 - y, 1 - z), b - (-x, 2 - y, 1 - z).

РАДИОХИМИЯ том 65 № 1 2023

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Структура дигидратов $[AnO_2(C_4H_2O_4)(H_2O_2)]$ (I) относится к типу цепочечных. Атомы An(1) = U(1) (Ia), Np(1) (Ib), Pu(1) (Ic) находятся в центрах инверсии (позиция 2а), имеют координационное окружение в виде искаженных гексагональных бипирамид AnO₈ с «ильными» атомами кислорода в апикальных позициях. Экваториальные плоскости бипирамид формируют четыре атома кислорода от двух фумарат-ионов и атомы кислорода двух молекул воды. Окружение центрального атома представлено на примере Np(VI) (рис. 1), длины связей внутри координационного полиздра (КП) атомов An(VI) приведены в табл. 2. Анион $C_4H_2O_4^{2-}$ выступает как мостиковый лиганд, связывая катионы AnO₂²⁺ в бесконечные электронейтральные цепочки, показанные на примере плутонивого В структуре дигидрата (рис. 2). дигидрата цепочки укладываются в слои, параллельные плоскости (001). При этом в одном слое они

Рис. 2. Электронейтральные цепочки в структуре [PuO₂(C₄H₂O₄)(H₂O)₂] (**Iс**). Пунктирными линиями показаны водородные связи.

Рис. 3. Фрагмент структуры $[UO_2(C_4H_2O_4)H_2O]$ (**II**). Пунктирными линиями показаны водородные связи. Операции симметрии: a - (1 - x, y, 1/2 - z), b - (1/2 - x, y + 1/2, z), c - (x + 1/2, y + 1/2, 1/2 - z).

вытянуты вдоль направления [110], в соседнем через половину трансляции c слое они вытянуты вдоль направления [1 $\overline{1}$ 0]. Водородные связи, образованные молекулами координационно связанной воды, объединяют цепочки из соседних слоев (табл. 3). Акцепторами протонов выступают атомы карбоксилатных групп анионов.

Структура моногидрата $[UO_2(C_4H_2O_4)(H_2O)]$ (II) относится к типу каркасных. Атом U(1) находится в частной позиции 4*c* на оси 2, имеет кислородное окружение в виде искаженной пентагональной бипирамиды UO₇. Экваториальную плоскость бипирамиды формируют атомы кислорода четырех фумарат-ионов и молекулы воды (рис. 3). Длины связей внутри КП приведены в табл. 4. Фумарат-ион является мостиковым лигандом, связывая четыре катиона UO₂²⁺ в каркас (рис. 4). Водородные связи с участием молекулы координационно связанной воды дополнительно объединяют фрагменты структуры вдоль направления [100].

В соединениях со структурой I по ряду U(VI)-Np(VI)-Pu(VI)актинидное сжатие в экваториальных плоскостях гексагональных бипирамид не проявляется. Однако налицо тенденция к уменьшению межатомного расстояния в группах AnO₂ (табл. 2). Это хорошо согласуется с данными работы [18], в которой рассмотрено актинидное сжатие в кислородосодержащих соединениях An(VI). В соединениях с КП AnO₈ в ряду U-Np-Pu происходит уменьшение (примерно на 0.01 Å на каждом шаге) длины связей Ап=О в диоксокатионах AnO₂²⁺. Уменьшение длины связей An=О в диоксокатионах должно сопровождаться закономерным уменьшением объема полиздров Вороного-Дирихле. Объем полиэдров Вороного-Дирихле для атомов An(VI) равен: 9.45 Å³ (для Ia), 9.38 Å³ (для Ib) и 9.26 Å³ (для Ic) [19]. Для атома урана в соединении **II** объем полиздра Вороного-Дирихле равен 9.17 Å³. Это полностью согласуется с величинами 9.4(2) для КП UO₈ и 9.2(1) для КП UO₇, приведенными в работе [20], где рассмотрены особенности стереохимии U(VI) в структурах кристаллов.

Как отмечалось выше, экспериментальные данные для дигидрата **Ia** впервые были получены при комнатной температуре [11], в табл. 1 приведены параметры ячейки для этого соединения. Сравнение параметров ячейки для уранильного дигидрата, полученных при комнатной температуре и 100 К, показало, что параметр b не меняется. Наблюдается незначительное уменьшение параметра a (~0.02 Å)

Таблица 3. Водородные связи в структурах

D−H…A	D–H, Å	H…A, Å	D…A, Å	D–Н…А, град	Операция симметрии для А
$[UO_2(C_4H_2O_4)(H_2O_2)]$ (Ia)					
O(1w)-H(1)···O(3)	0.829(18)	2.20(3)	2.969(3)	154(4)	x - 1/2, -y + 3/2, z - 1/2
O(1w)-H(2)····O(2)	0.816(18)	1.98(2)	2.778(3)	167(4)	-x + 1/2, y - 1/2, -z + 1/2
$[NpO_2(C_4H_2O_4)(H_2O_2)]$ (Ib)					
O(1w)-H(1)···O(3)	0.822(17)	2.112(19)	2.913(2)	165(3)	x - 1/2, -y + 3/2, z - 1/2
O(1w)-H(2)····O(2)	0.835(17)	1.96(2)	2.771(2)	163(3)	-x + 1/2, y - 1/2, -z + 1/2
$[PuO_2(C_4H_2O_4)(H_2O)_2]$ (Ic)					
O(1w)-H(1)····O(3)	0.856(19)	2.11(4)	2.899(5)	153(7)	x - 1/2, -y + 3/2, z - 1/2
O(1w)-H(2)····O(2)	0.865(19)	1.99(4)	2.766(5)	148(5)	-x + 1/2, y - 1/2, -z + 1/2
$[UO_2(C_4H_2O_4)(H_2O)]$ (II)					
O(1w)-H(1)····O(3)	0.832(17)	2.013(10)	2.720(2)	142(3)	1-x, y, 1/2-z

РАДИОХИМИЯ том 65 № 1 2023

Рис. 4. Кристаллическая упаковка [UO₂(C₄H₂O₄)H₂O] (**II**), проекция вдоль направления [010]. Пунктирными линиями показаны водородные связи.

и угловой характеристики (~ 0.3°). При понижении температуры происходит заметное уменьшение параметра *c* (~0.13 Å). Такое изменение полностью согласуется со строением. Цепочки в слоях вытянуты вдоль диагоналей [110] и [110]. Такое расположение жестких лигандов с двойной связью С=С обеспечивает неизменность параметров *а* и *b*, но между слоями расстояние сокращается с уменьшением амплитуд температурных смещений атомов. Соответственно уменьшается и параметр *c*.

особенности Рассмотрим строения окружения координационного атомов An(VI) в соединениях I и II. В структуре дигидратов I карбоксилатные группы СОО фумарат-иона координированы к катионам AnO₂²⁺ бидентатноциклическим способом с образованием четырехчленного металлоцикла. В экваториальной плоскости бипирамид AnO8 длины связей An-O атомами кислорода фумарат-иона сильно с различаются (табл. 2). Обращает на себя внимание тот факт, что атом кислорода О(2) образует более

Таблица 4. Длины связей (d, Å) и валентные углы (ω , град) в структуре **П**^а

Связь	d	Угол	ω
U(1)=O(1)	1.761(2)	O(1)=U(1)=O(1a)	178.06(12)
U(1)–O(2)	2.354(2)	O(2)–U(1)–O(3 <i>b</i>)	72.07(7)
U(1)–O(3 <i>b</i>)	2.412(2)	O(3b)-U(1)-O(3c)	73.05(10)
U(1)–O(1w)	2.440(4)	O(2)-U(1)-O(1w)	71.42(5)
C(1)–O(2)	1.260(3)	O(2)–C(1)–O(3)	122.3(3)
C(1)–O(3)	1.274(3)	O(2)-C(1)-C(2)	118.8(2)
C(1)-C(2)	1.476(4)	O(3)-C(1)-C(2)	119.0(2)
C(2)-C(2d)	1.332(5)	C(1)-C(2)-C(2d)	121.3(3)

а
Операции симметрии: a - (1 - x, y, 1/2 - z), b - (1/2 - x, y + 1/2, z), c - (x + 1/2, y + 1/2, 1/2 - z), d - (-x, 1 - y, -z).

РАДИОХИМИЯ том 65 № 1 2023

прочную координационную связь и участвует в более прочной водородной связи (табл. 3). В структуре моногидрата II тетрадентатномостиковый фумарат-ион связывается с четырьмя катионами $UO_2^{2^+}$ монодентатным способом, в пентагональной бипирамиде UO_7 налицо другая картина. Координационная связь с атомом O(3) слабее, чем с атомом O(2) (табл. 4), но при этом атом O(2) не задействован в водородном связывании (табл. 3).

В табл. приведены 5 геометрические характеристики составных частей структур: максимальное отклонение атомов кислорода от среднеквадратичной экваториальной плоскости бипирамид AnO₈ (I) и UO₇ (II) ($\Delta_{_{3KB}}$, Å), отклонение атомов кислорода и углерода от среднеквадратичной плоскости фумарат-ионов ($\Delta_{\text{анион}}$, Å). Угловые характеристики представлены разворотом карбоксилатных групп относительно углеродного скелета фумарат-ионов (ϕ_1 , град) и диэдрическими углами между экваториальными плоскостями бипирамид и плоскостями анионов (ф2, град). Фумарат-ионы в структурах I и II имеют плоское строение. В структуре I разворот карбоксилатных групп относительно плоского углеводородного скелета не превышает 9°, в структуре II группы СОО развенуты на ~3°. Этим фумарат-ион отличается от своего цис-изомера – малеат-иона, у которого разворот может достигать ~90° [9].

Таким образом, исследовано строение дигидратов фумаратов An(VI) общего состава $[AnO_2(C_4H_2O_4)(H_2O)_2]$ (An = U, Np, Pu) (I) и моногидрата $[UO_2(C_4H_2O_4)H_2O]$ (II). Переход от

Соединение	$\Delta_{_{3KB}}$, Å	$\Delta_{ m aниoh},$ Å	φ ₁ , град	<i>ф</i> ₂ , град	Операции симметрии
Ia	±0.146(2)	±0.058(3)	7.5(7)	15.2(1)	
Ib	$\pm 0.148(1)$	$\pm 0.058(2)$	7.6(5)	15.0(1)	
Ic	±0.151(2)	$\pm 0.070(5)$	9(1)	15.1(2)	
II	±0.019(2)	±0.021(3)	2.8(7)	24.28(8)	
				24.28(8)	1 + x, 1 - y, 1/2 + z
				66.90(4)	1/2 + x, 3/2 - y, -z
				66.90(4)	1/2 - x, $3/2 - y$, $1/2 + z$

Таблица 5. Отклонение (Δ , Å) атомов от среднеквадратичной экваториальной плоскости КП AnO₈ (I) и UO₇ (II) и фумарат-ионов C₄H₂O₄^{2–}

дигидратов к моногидрату сопровождается как изменением КП атома An(VI) и типа координации фумарат-иона, так и изменением типа структуры. В соединениях со структурой I актинидное сжатие проявляется в уменьшении межатомного расстояния в группировках AnO₂ и в уменьшении объема полиэдров Вороного–Дирихле по ряду U(VI)–Np(VI)–Pu(VI).

БЛАГОДАРНОСТИ

Рентгенодифракционные эксперименты выполнены в Центре коллективного пользования физическими методами исследования ИФХЭ РАН.

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют об отсутствии конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- 1. Loiseau T., Mihalcea I., Henry N., Volkringer C. // Coord. Chem. Rev. 2014. Vol. 266–267. P. 69–109.
- Borkowski L.A., Cahill C.L. // Cryst. Growth Des. 2006. Vol. 6, N 10. P. 2241–2247.
- Сережкина Л.Б., Новиков С.А., Григорьев М.С., Колотилина М.А., Сережкин В.Н. // Радиохимия. 2016. Т. 58, № 5. С. 390–394.
- Сережкина Л.Б., Григорьев М.С., Новиков С.А., Колотилина М.А., Сережкин В.Н. // Радиохимия. 2017. Т. 59, № 1. С. 34–38.

- 5. *Kim J.-Y., Norquist A.J., O'Hare D. //* Dalton Trans. 2003. P. 2813–2814.
- 6. Чарушникова И.А., Федосеев А.М., Бессонов А.А. // Радиохимия. 2019. Т. 61, № 2. С. 100–107.
- Чарушникова И.А., Федосеев А.М., Буданцева Н.А., Полякова И.Н., Муази Ф. // Координац. химия. 2007. Т. 33, № 1. С. 63–69.
- Bombieri G., Benetollo F., Rojas R.M., De Paz M.L. // J. Inorg. Nucl. Chem. 1981. Vol. 43, N 12. P. 3203–3207.
- Savchenkov A.V., Grigoriev M.S., Udivankin P.A., Pushkin D.V., Serezhkina L.B. // Polyhedron. 2017. Vol. 127. P. 331–336.
- 10. Чарушникова И.А., Крот Н.Н., Старикова И.А. // Радиохимия. 2004. Т. 46, № 6. С. 521–523.
- Bombieri G., Benetollo F., Rojas R.M., De Paz M.L., Del Pra A. // Inorg. Chim. Acta. 1982. Vol. 61. P. 149– 154.
- 12. *Falaise C., Volkringer C., Loiseau T. //* Cryst. Growth Des. 2013. Vol. 13. P. 3225–3231.
- 13. *Rojas R. M., De Paz M. L., Vila E. //* J. Therm. Anal. 1985. Vol. 30. P. 83–96.
- 14. Федосеев А.М., Гоголев А.В., Шилов В.П. // Радиохимия. 2017. Т. 59, № 6. С. 502–509.
- 15. *Sheldrick G.M.* SADABS. Madison, Wisconsin (USA): Bruker AXS, 2008.
- Sheldrick G.M. // Acta Crystallogr., Sect. A. 2008. Vol. 64, N 1. P. 112–122.
- Sheldrick G.M. // Acta Crystallogr., Sect. C. 2015. Vol. 71, N 1. P. 3–8.
- Сережкин В.Н., Савченков А.В., Сидоренко Г.В., Сережкина Л.Б. // Радиохимия. 2019. Т. 61, № 4. С. 297–307.
- Blatov V.A., Shevchenko A.P., Proserpio D.M. // Cryst. Growth Des. 2014. Vol. 14, N 7. P. 3576–3586.
- 20. Сережкин В.Н., Карасев М.О., Сережкина Л.Б. // Радиохимия. 2013. Т. 55, № 2. С. 97–105.