УДК 536.71

ТЕРМОДИНАМИЧЕСКОЕ МОДЕЛИРОВАНИЕ ТЕРМИЧЕСКИХ ПРОЦЕССОВ С УЧАСТИЕМ АКТИНИДОВ (U, Am, Pu) ПРИ НАГРЕВЕ РАДИОАКТИВНОГО ГРАФИТА В СМЕСИ ПАРОВ ВОДЫ И КИСЛОРОДА

© 2023 г. Н. М. Барбин^{а, б,*}, Н. О. Девяткин^а, Д. И. Терентьев^а, А. М. Кобелев^а

^а Уральский институт Государственной противопожарной службы МЧС России, 620062, Екатеринбург, ул. Мира, д. 22 ^б Уральский федеральный университет имени первого Президента России Б.Н. Ельцина, 620002, Екатеринбург, ул. Мира, д. 19 *e-mail: nmbarbin@mail.ru

Поступила в редакцию 27.08.2022, после доработки 02.12.2022, принята к публикации 08.12.2022

Методом термодинамического моделирования исследовано поведение соединений урана, америция, плутония, содержащихся в радиоактивном графите при его нагревании в смеси паров воды и кислорода. При помощи программы TERRA при температуре от 373 до 3073 К проведено термодинамическое моделирование с целью определения возможных соединений радионуклидов (U, Am, Pu) при утилизации радиоактивного графита путем его нагревания в смеси паров воды и кислорода. Термодинамическое моделирование показало, что уран, плутоний и америций, находящиеся в радиоактивном графите в виде примесей, при нагреве в парокислородной смеси при достижении определенных температур переходят в газовую фазу. Выделен основной список реакций и приведены константы равновесия при горении радиоактивного графита в смеси водяного пара и кислорода.

Ключевые слова: радионуклиды, пары воды, кислород, термодинамическое моделирование, радиоактивный графит, уран, америций, плутоний.

DOI: 10.31857/S0033831123010057, EDN: OGUWUE

По состоянию на 2022 г. в Российской Федерации, согласно данным сайта [1], эксплуатируется 11 атомных электростанций с 37 энергоблоками, из которых 9 являются реакторами большой мощности канальными, что составляет около 25% от общего числа энергоблоков РФ.

После выведения из эксплуатации необходимо утилизировать радиоактивный графит. Одним из методов утилизации радиоактивного графита является его сгорание в парах воды с добавками кислорода.

По результатам анализа ядерно-физических свойств и гигиенических нормативов радионуклидов, изложенных в статье [2], на основании которой была разработана база данных [3], особо опасными радионуклидами, содержащимися в радиоактивном графите, являются U, Am и Pu, которые представляют группу радиационной опасности A и Б, согласно нормативам [4]. При использовании методов моделирования поведения данных радионуклидов и их соединений в заданных условиях можно спрогнозировать масштабы последствий и меры предупреждения и ликвидации чрезвычайных ситуаций на реакторах большой мощности канальных (PБМК).

Разрабатываются физико-химические основы переработки радиоактивного графита в атмосфере водяного пара с получением горючего газа [5] и последующим получением электроэнергии. Для изменения состава газа предлагается в водяной пар добавлять кислород. Результаты расчета позволяют понять поведение радионуклидов U, Am, Pu при такой переработке радиоактивного графита.

Радионуклид в графите	Тип соединения в равновесной системе			
²³⁵ U, ²³⁶ U, ²³⁸ U	$UO_{2(\kappa)}, UO_{2(r)}, UO_{2}^{+}, UO_{(r)}, UO_{3(\kappa)}, UO_{3(r)}, U_{3}O_{8(\kappa)}, U_{4}O_{9(\kappa)}, UO^{+}, UO_{3}^{-}, U_{(r)}$			
²⁴¹ Am, ²⁴³ Am	$Am_{(r)}, AmO_{2(\kappa)}, Am_2O_{3(\kappa)}$			
²³⁹ Pu, ²⁴⁰ Pu, ²⁴¹ Pu, ²⁴² Pu	$PuOCl_{(\kappa)}, Pu_{(\Gamma)}, PuO_{(\Gamma)}, PuO_{2(\kappa)}, PuO_{2(\Gamma)}, Pu_2O_{3(\kappa)}, Pu^+, PuO^+$			

Таблица 1. Существующие формы радионуклидов

Ранее было проведено термодинамическое моделирование термических процессов с участием актинидов (U, Am, Pu) при нагреве радиоактивного графита в парах воды [6]. В данной работе проведено термодинамическое моделировании процессов, протекающих при нагреве радиоактивного графита, в котором содержатся U, Am, Pu, в парах воды с добавлением кислорода.

МЕТОДИКА РАСЧЁТА

Термодинамическое моделирование применяется для исследования разнообразных процессов. Достоинством термодинамического метода является его универсальный характер, позволяющий исследовать произвольные по химическому составу системы. В основу положен принцип максимума энтропии, который справедлив в соответствии со вторым началом термодинамики для любой равновесной системы независимо от пути, по которому система достигла равновесия.

Определение параметров равновесного состояния заключается в нахождении значений всех зависимых переменных, включая числа молей компонентов и фаз, при которых энтропия достигает максимума. Одной из программ, реализующих такие расчеты, является программный комплекс TERRA [7–9]. Данный метод успешно использовался в высокотемпературных системах [7–10].

Таблица 2. Исходный состав системы

Фаза	Фазовый	Содержание,	
	состав	мас%	
Газовая (68.75%)	H ₂ O	73.7	
	O ₂	26.3	
Конденсированная (31.25%)	С	99.99	
	Pu	7.2×10^{-5}	
	Am	10 ⁻⁵	
	U	0.01	

РАДИОХИМИЯ том 65 № 1 2023

Предполагаемые формы существования радионуклидов в данной системе приведены в табл. 1 [11, 12]. Типы соединений радионуклидов в равновесной системе рассчитывались с применением баз данных по свойствам индивидуальных веществ ИВТАНТЕРМО и HSC, TERRA. Информация об исходном составе реакторного графита взята из источников [11, 12] и приведена в табл. 2. После завершения вычислений получали зависимость равновесного состава от температуры.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Распределение америция по фазам представлено на рис. 1. При температуре от 373 до 2073 К америций находится в конденсированной фазе в виде AmO_2 (до ~100 мол%). При повышении температуры от 1973 до 2073 К резко возрастает содержание конденсированного Am_2O_3 и резко снижается содержание AmO_2 , в диапазоне температур от 2073 до 2473 К конденсированный Am_2O_3 исчезает с образованием газообразного Am в соответствии с реакцией (3), при дальнейшем повышении температуры до 3073 К весь америций находится в виде пара.

Распределение плутония по фазам представлено на рис. 2. До температуры 1873 К весь плутоний находится в виде конденсированного PuO_2 . В интервале температур 1873–2073 К происходит резкое уменьшение доли конденсированного PuO_2 с одновременным возрастанием доли парообразного PuO_2 , дальнейшее повышение температуры до 3073 К ведет к уменьшению доли паров PuO_2 до ~84 мол%. В интервале температур 1973–3073 К происходит линейное возрастание доли паров PuO от 0 до ~9.8 мол%. Содержание в газовой фазе ионизированного PuO^+ составляет ~0.002 мол% при температуре 1873 К и при росте температуры до 3073 К повышается до ~6.18 мол%.

Распределение урана по фазам представлено на рис. 3. При температуре от 373 до 1673 К уран находится в виде конденсированного UO_2 с содер-

Рис. 1. Распределение америция по фазам. $1 - \text{AmO}_{2(\kappa)}$, $2 - \text{Am}_{(\Gamma)}$, $3 - \text{Am}_2\text{O}_{3(\kappa)}$.

жанием 100 мол%. Увеличение температуры от 1773 до 2073 К ведет к уменьшению доли конденсированного UO₂ практически до 0 мол%. Начиная с температуры 1773 К в системе образуется парообразный UO₃, содержание которого возрастает до 74.6 мол%, увеличение температуры с 2073 до 3073 К ведет к уменьшению содержания пара UO₃ от 74.6 до 49.7 мол%. В системе образуется ионизированный UO₃, при температуре 1873 К его содержание составляет ~2.1, а при температуре 3073 К – ~21.3 мол%. Ионизированный UO₂⁺ присутствует в интервале температур 1873–3073 К, его содержание составляет от ~2.1 до 15.9 мол. %. Пары UO₂ появляются в системе в интервале температур 1873– 3073 К, его содержание составляет 2.0–13.1 мол%.

В соответствии с основными компонентами, приведенными на рис. 1–3, был записан минимальный список основных реакции (табл. 3). По полученным значениям концентрации (мольная доля) были рассчитаны константы равновесия для каждой реакции. Их определяли в предположении

Рис. 3. Распределение урана по фазам. $1 - UO_{2(\kappa)}$, $2 - UO_{3(r)}$, $3 - UO_{3(r)}^-$, $4 - UO_{2(r)}^+$, $5 - UO_{2(r)}^-$.

Рис. 2. Распределение плутония по фазам. $1 - PuO_{2(\kappa)}$, $2 - PuO_{2(\Gamma)}$, $3 - PuO_{(\Gamma)}$, $4 - PuO^{+}_{(\Gamma)}$.

идеального поведения компонентов системы. Константы равновесия представлены аналитическими уравнения вида (1):

$$InK_i = A_i + B_i (1/T).$$
 (1)

Коэффициенты в уравнениях констант равновесия реакции приведены в табл. 3.

Реакция (6) (PuO_{2(к)} = PuO₂) и реакция (11) (UO_{2(к)} = UO₂) представляет собой реакции испарения PuO₂ и UO₂. Константы равновесия реакции (6) и (11) могут быть сравнены с константами равновесия реакции испарения PuO₂ и UO₂, приведенными в справочнике [13]. Для 1873 К и давления 1 атм рассчитанные константы (табл. 3) $K_6 = 1.4 \times 10^{-8}$, $K_{11} = 1.6 \times 10^{-8}$. По данным справочника, константы испарения PuO₂ равна 0.8×10^{-8} , а константа испарения UO₂ равна 1.2×10^{-8} . Можно сделать вывод, что результаты нашего расчета близки к справочным данным.

ЗАКЛЮЧЕНИЕ

Изменение реакционной среды (пар или пар + кислород) ведет к изменению химических реакции, протекающих в процессе переработки реакторного графита. В системе радиоактивный графит–смесь водяного пара и кислорода протекало пять реакций с участием америция, пять реакций с участием плутония, десять реакций с участием урана. В системе радиоактивный графит–водяной пар [6] проходило две реакции с участием америция, три реакции с участием плутония, пятнадцать реакций с участием урана. В различных атмосферах для америция протекает реакция (2), при этом температура протекания реакции на 100°С выше для системы радиоак-

Номер реакции	Реакция	ΔT , K	Α	В	ΔA	ΔB
1	$2AmO_{2(\kappa)} = Am_2O_{3(\kappa)} + O$	1973–2073	1612.58628	-3260884.342	699.9388251	1447595.424
2	$Am_2O_{3(\kappa)} + 3H_2 = 2Am + 3H_2O$	2073–2373	31.36107833	-172677.2943	0.171859156	380.5915771
3	$Am_2O_{3(\kappa)} = 2Am + 3O$	2073–2373	76.44303846	-355656.9621	0.15461373	342.4006295
4	$AmO_{2(\kappa)} = Am + 2O$	1973–2173	589.9058863	-1264028.288	207.5083806	429163.4804
5	$2Am_2O_{3(\kappa)} = 4Am + 3O_2$	2173–2373	172.7288466	-445865.0148	17.66845398	40082.639
6	$PuO_{2(\kappa)} = PuO_2$	1773–1973	20.34896203	-72010.53704	0.062509541	116.7464718
7	$PuO_2 = PuO + O$	2073-3073	16.10271611	-72167.57044	0.007936633	19.95315505
8	$PuO_2 = PuO^+ + O^-$	2073-3073	14.96484582	-121972.4259	0.002391234	6.011699548
9	$PuO_{2(\kappa)} + CO = PuO + CO_2$	373–673	-49.16391936	10790.71233	0.035534282	17.28203552
10	$UO_{2(\kappa)} + CO_2 = UO_2^+ + CO + O^-$	1673–1873	35.56051003	-179322.0611	0.070757344	125.0534778
11	$UO_{2(\kappa)} = UO_2$	973–1973	19.94800826	-70933.8677	0.086090913	117.7357528
12	$2UO_3 = 2UO_2 + O_2$	2073-3073	16.82562401	-80226.3659	0.0398638	100.219899
13	$UO_3 + CO_2 = UO_2 + CO + 2O$	2073-3073	34.5148868	-134807.1825	0.015616936	39.26188204
14	$2UO_3 = 2UO_2^+ + O_2^- + 2e^-$	2073-3073	29.30404342	-216846.3645	0.112829829	283.6607185
15	$UO_3 + CO_2 = UO_2^+ + CO + 2O + e^-$	2073-3073	55.20383876	-206063.0783	0.122462696	307.8783031
16	$UO_3^- = UO_2^+ + O + 2e^-$	1973–3073	28.47359604	-204012.1887	0.097837924	239.8172378
17	$UO_3^- = UO_2 + O^-$	1973–3073	13.19584826	-109604.4329	0.062084319	152.1791275
18	$2UO_3^- = 2UO_2^+ + O_2^- + 4e^-$	1973–3073	40.78294688	-346448.1585	0.18874524	462.6463856
19	$UO_{3} = UO_{3}^{-} + e^{-}$	1973-3073	8.309826725	-77565.0146	0.069801436	171.0950803

Таблица 3. Основные реакции и константы равновесия при горении радиоактивного графита в смеси водяного пара и кислорода

тивный графит-смесь водяного пара и кислорода. Для плутония в различных атмосферах протекают реакции (6), (7) и (8), температура протекания для всех реакций на 100°С выше для системы радиоактивный графит-смесь водяного пара и кислорода. Для урана в различных атмосферах протекает реакция (12), температура которой на 100°С ниже для системы радиоактивный графит-смесь водяного пара и кислорода. Также протекают реакции (13), (14), температура их протекания на 100°С выше для системы радиоактивный графит-смесь водяного пара и кислорода. Для реакций (19) температура протекания на 100°С ниже в системе радиоактивный графит-смесь водяного пара и кислорода. Данные сведения необходимы для разработки установок по переработке радиоактивного графита.

Термодинамическое моделирование показало, что уран, плутоний и америций, находящиеся в радиоактивном графите в виде примесей, при нагреве в парокислородной смеси при достижении определенных температур переходят в газовую фазу. Это связано с взаимодействием графита и оксидной

РАДИОХИМИЯ том 65 № 1 2023

конденсированной фазы с парами воды и кислородом в исследованном диапазоне температур.

ФОНДОВАЯ ПОДДЕРЖКА

Работа выполнена по плану НИР МЧС России (Приказ МЧС России от 21.12.2021 № 893).

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют об отсутствии конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- 1. Сайт Государственной корпорации по атомной энергии «Росатом» https://rosatom.ru/production/ generation. Дата обращения 05.08.2022.
- Девяткин Н.О., Барбин Н.М. // Техносферная безопасность. 2022. № 2 (35). С. 9–17.

- 3. Девяткин Н.О., Барбин Н.М., Кобелев А.М., Бессонов Д.В. Свидетельство о регистрации базы данных № 2022620807 от 15.04.2022.
- Постановление Главного государственного санитарного врача Российской Федерации от 7 июля 2009 года № 47. Нормы радиационной безопасности НРБ-99/2009.
- Кобелев А. М. Комбинированный способ переработки реакторного графита в водяном паре и оксидно-солевых расплавах: дис. ... к.т.н. Екатеринбург: Уральский федеральный ун-т имени первого Президента России Б.Н. Ельцина, 2021. 264 с.
- 6. Барбин Н.М., Кобелев А.М., Терентьев Д.И., Алексеев С.Г. // Радиохимия. 2017. Т. 59, № 5. С. 445–448.
- Белов Г. В., Трусов Б. Г. Термодинамическое моделирование химически реагирующих систем. М.: МГТУ им. Н. Э. Баумана, 2013. 96 с.
- Ватолин Н.А., Моисеев Г.К., Трусов Б.Г. Термодинамическое моделирование в высокотемпературных системах. М.: Металлургия, 1994. 352 с.

- Моисеев Г.К., Вяткин Г.П., Барбин Н.М. Применение термодинамического моделирования для изучения взаимодействия с участием ионных расплавов. Челябинск: Изд-во ЮУрГУ, 2002. 166 с.
- Барбин Н.М., Кобелев А.М., Терентьев Д.И., Алексеев С.Г. // Пожаровзрывобезопасность. 2014. Т. 23, № 10. С. 38–48.
- Роменков А.А., Туктаров М.А., Карлина О.К., Павлова Г.Ю., Юрченко А.Ю., Апаркин Ф.М., Горелов К.А., Барбин Н.М. Опытная установка для окисления графитовых РАО в расплаве солей: результаты испытаний // Сб. статей «Годовой отчет НИКИЭТ-2010». М.: НИКИЭТ, 2010. С. 150.
- 12. Шидловский В.В., Роменков А.А., Хаттарова Е.А., Гуськов А.В., Мартьянов А.В. Анализ радиационной опасности графитовых кладок остановленных промышленных уран-графитовых реакторов ФГУП «ПО «МАЯК»» // Сб. статей «Годовой отчет НИКИ-ЭТ-2010. М.: НИКИЭТ, 2010. С. 178.
- 13. *Казенас Е.К., Цветков Ю.В.* Термодинамика испарения оксидов. М.: Изд-во ЛКИ, 2008. 480 с.

40