УДК: 542.61

ВЛИЯНИЕ ПРИРОДЫ РАЗБАВИТЕЛЯ НА ЭКСТРАКЦИЮ Eu(III), Am(III) И Сm(III) N,N,N',N'-ТЕТРАБУТИЛДИГЛИКОЛЬАМИДОМ ИЗ АЗОТНОКИСЛЫХ РАСТВОРОВ

© 2023 г. В. Э. Шаров*, Г. В. Костикова

Институт физической химии и электрохимии им. А.Н. Фрумкина РАН, 119991, Москва, Ленинский пр., д. 31, корп. 4 *e-mail: sharov.vladislav.4444@gmail.com

Поступила в редакцию 20.10.2022, после доработки 20.12.2022, принята к публикации 23.12.2022

Изучена экстракция азотной кислоты, индикаторных количеств ¹⁵²Eu(III), ²⁴¹Am(III) и ²⁴⁴Cm(III) N,N,N',N'-тетрабутилдигликольамидом в четырех разбавителях: смеси *н*-додекана с деканолом-1 (объемное отношение 90 : 10), бензоле, тетрахлорметане и *м*-трифторметилнитробензоле. Для всех исследованных разбавителей коэффициенты распределения металлов увеличиваются с ростом концентрации HNO₃ в равновесной водной фазе. Степень извлечения металла в экстракт увеличивается в ряду Cm(III) < Am(III) < Eu(III) и снижается в ряду разбавителей: F-3 > DD+Dec-1 > CCl₄ > PhH. Найдены условия разделения пар Eu(III)/Am(III) и Am(III)/Cm(III). Показано увеличение тепловых эффектов реакций экстракции при переходе от An(III) к Eu(III) для всех рассмотренных разбавителей.

Ключевые слова: экстракция, N,N,N',N'-тетрабутилдигликольамид, европий, америций, кюрий.

DOI: 10.31857/S0033831123010070, EDN: OHILQS

Организация замкнутого ядерного топливного цикла требует решения проблемы глубокого фракционирования отработавшего ядерного топлива (ОЯТ). Разработаны и хорошо отработаны промышленные процессы выделения таких макрокомпонентов, как U и Pu, чего нельзя сказать про лантаниды и минорные актиниды [1]. Химическая схожесть соединений указанных элементов не позволяет использовать методы, основанные на осаждении. Выходом из положения может служить применение жидкостной экстракции. К сожалению, традиционные экстрагенты, такие как три-н-бутилфосфат (ТВР), три-н-октилфосфиноксид (ТОРО) и ди-2-этилгексилфосфорная кислота (D2EHPA), не обладают нужной селективностью для разделения Ln(III) и An(III) [2]. Более перспективны амидные экстрагенты. В последнее время внимание исследователей все больше привлекают диамиды дигликолевой кислоты [3], обладающие высокой селективностью к Ln(III) и An(III) [4]. Наиболее изученным представителем данной группы соединений является N,N,N',N'-тетраоктилдигликольамид (TODGA) [5; 6], основным недостатком которого является склонность к агрегации и, следовательно, образованию третьей фазы [7; 8]. Этого минуса лишен дигликольамид с более короткими заместителями при амидном фрагменте – N,N,N',N'-тетрабутилдигликольамид (TBDGA). Уменьшение липофильности при переходе от TODGA к TBDGA приводит к некоторому росту растворимости экстрагента в водной фазе, что, однако, не является критичным для проведения экстракции [9]. Снижение стерических затруднений при координации металла с лигандом при уменьшении длины алкильных заместителей приводит к лучшей экстракционной способности ТВDGА по сравнению с ТОDGА [10]. Ранние исследования [11, 12] показали, что экстракционные системы с TBDGA в смеси предельного углеводорода с добавкой высокомолекулярного спирта обладают недостаточно высокими коэффициентами разделения пары Am(III)/Cm(III). Однако есть основания полагать, что использование других разбавителей может повысить селективность данного процесса. С учетом вышесказанного нами было исследовано влияние разбавителей на количественные и термодинамические характеристики процесса экстракции Eu(III), Am(III) и Cm(III) ТВDGA из азотнокислых сред.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Синтез TBDGA проводили, исходя из ангидрида дигликолевой кислоты. На первом этапе проводили его гидролиз, затем получали дихлорангидрид дигликолевой кислоты по методике, приведенной в работе [13], из него далее реакцией с дибутиламином получали целевое соединение [14].

В качестве разбавителей использовали *н*-додекан, деканол-1, бензол, *м*-трифторметилнитробензол квалификации ч. Остальные реактивы использовали квалификации х.ч. и о.с.ч. и не подвергали дополнительной очистке.

Для приготовления азотнокислых растворов заданной концентрации использовали HNO₃ квалификации о.с.ч. Концентрацию HNO₃ определяли методом кислотно-основного титрования раствором 0.1 M NaOH с индикатором бромфеноловым синим.

При изучении экстракционного распределения индикаторных количеств элементов в качестве исходных соединений использовали азотнокислые растворы, содержащие ²⁴¹Am(III), ^{152–154}Eu(III) и ²⁴⁴Cm (III). Далее готовили растворы азотной кислоты заданной концентрации, в которые вводили радиоактивную метку, перемешивали и использовали в качестве исходных водных фаз.

Экстракцию индикаторных количеств элементов проводили в стеклянных делительных воронках объемом 10 мл при соотношении объемов фаз 1 : 1, комнатной температуре ($22 \pm 2^{\circ}$ C) и интенсивном перемешивании. Время перемешивания, необходимое для установления равновесия, равное 3 мин, определяли на основании предварительного кинетического эксперимента. После расслаивания фаз в течение 10–15 мин в стеклянной делительной воронке органическую и водную фазу разделяли и измеряли их γ -счет.

Коэффициенты распределения металлов (D) рассчитывали на основании радиометрического определения проб (по 0.5 мл) равновесных водной и органической фаз ү-метрически при помощи гам-

ма-бета-альфа спектрометра-радиометра МКГБ-01 производства Scientific Technical Centre RADEK Ltd. на основе 51×51 мм NaI-детектора. Время измерения проб выбирали таким образом, чтобы погрешность радиометрических измерений не превышала 10%. Измеряли активность исходной водной, равновесной водной и равновесной органической фаз. Правильность измерений контролировали по сходимости материального баланса активности исходной водной и сумм активностей равновесных фаз. Значение D определяли как отношение активности равновесной органической фазы.

Зависимость коэффициентов распределения Eu, Am и Cm от температуры определяли, проводя экстракцию в стеклянной термостатируемой ячейке при перемешивании фаз на магнитной мешалке Stegler HS.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Экстракция HNO₃ TBDGA в различных разбавителях

В литературе отсутствуют данные об экстракции азотной кислоты TBDGA. Исследование систем с TODGA в н-додекане показывает наличие сверхстехиометрической экстракции кислоты при высоких концентрациях последней (>5 M) в равновесной водной фазе [15].

Прежде всего была исследована экстракция HNO₃ TBDGA в смеси *н*-додекан–деканол-1 (объемное отношение 90 : 10, DD + Dec-1). Известно, что спирты способны сами экстрагировать кислоты, поэтому отдельно была исследована экстракция HNO₃ указанной смесью («холостая» экстракция) (рис. 1).

Для других исследованных разбавителей, таких как бензол (PhH), CCl₄ и *м*-трифторметилнитробензол (F-3), холостая экстракция оказалась незначительной. На рис. 2 представлены изотермы экстракции азотной кислоты TBDGA в указанных разбавителях.

Для систем с TODGA в н-додекане ранее было установлено, что при экстракции HNO₃ образуется соединение, в котором на одну молекулу лиганда приходится одна молекула кислоты [7]. В случае

Рис. 1. Изотермы экстракции HNO_3 смесью додекандеканол-1 (объемное отношение 90 : 10): 1 -«холостая» экстракция (органическая фаза без TBDGA), 2 -[TBDGA]_{org.ph} = 0.1 M.

TBDGA для всех разбавителей наблюдается сверхстехиометрическая экстракция HNO₃ при высокой ее концентрации в равновесной водной фазе.

Переход кислоты в равновесную органическую фазу увеличивается в ряду DD + Dec-1 < PhH < $CCl_4 < F$ -3. Наблюдается существенный рост экстрагируемости HNO₃ при ее концентрации свыше 1 M.

Экстракция индикаторных количеств ¹⁵²Eu(III), ²⁴¹Am(III) и ²⁴⁴Cm(III) TBDGA в различных разбавителях из азотнокислых растворов

Для TBDGA систематические данные о зависимости экстракции Eu(III), Am(III) и Cm(III) из азотнокислых растворов от природы разбавителя в литературе отсутствуют. Подобные данные имеются для экстракции некоторых Ln(III) TBDGA из солянокислых сред [16; 17] и Ln(III) и An(III) TODGA из HNO₃ [18].

Для TODGA наблюдается уменьшение коэффициентов распределения Am(III) в следующем ряду разбавителей: нитробензол > h-додекан > бензол > CCl₄ [6]. Для TBDGA в октаноле-1 наблюдается увеличение экстрагируемости с увеличением концентрации HNO₃ в равновесной водной фазе [11], при этом для Ln(III) характерно более высокое извлечение в органическую фазу, чем для An(III).

Исследование зависимости коэффициентов распределения Eu(III), Am(III) и Cm(III) при экстракции TBDGA в DD + Dec-1 из азотнокислых растворов от концентрации кислоты в равновесной водной фазе показывает (рис. 3), что с увеличением последней наблюдается увеличение экс-

РАДИОХИМИЯ том 65 № 1 2023

Рис. 2. Изотермы экстракции HNO₃ TBDGA в бензоле (*1*), CCl₄ (*2*) и F-3 (*3*) ([TBDGA]_{org.ph} = 0.1 M).

трагируемости всех трех металлов. Коэффициенты распределения металлов увеличиваются в ряду: Cm(III) < Am(III) < Eu(III). Для концентрации HNO₃, равной 1 М (табл. 1), наблюдается разделение пары Eu(III)/Am(III), что говорит о возможности использования данной системы в процессах разделения Ln(III)/An(III). При [HNO₃]_{ad,ph} > 2 M все три металла практически полностью переходят в органическую фазу. Интересно, что в случае ТОДСА [10] коэффициенты распределения Am(III) и Cm(III) непрерывно растут с увеличением концентрации HNO₃ в равновесной водной фазе. Такое же поведение Am(III) характерно для экстракции дибутил-N,N-диэтилкарбамоилфосфонатом его (DBDECP) и дибутил-N,N-диэтилкарбамоилметилфосфонатом (DBDECMP) [19].

Для зависимостей D Eu(III), Am(III) и Cm(III) при экстракции TBDGA в F-3 наблюдается максимум (рис. 4) при [HNO₃]_{aq.ph} ~3 M, что, по-видимо-

Рис. 3. Зависимость коэффициентов распределения Eu(III) (1), Am(III) (2) и Cm(III) (3) от концентрации HNO₃ в равновесной водной фазе при экстракции 0.02 M TBDGA в DD + Dec-1 (индикаторные количества).

Рис. 4. Зависимость коэффициентов распределения Eu(III) (1), Am(III) (2) и Cm(III) (3) от концентрации HNO₃ в равновесной водной фазе при экстракции 0.01 M TBDGA в F-3 (индикаторные количества).

му, связано с конкурирующей экстракцией азотной кислоты. Для всех элементов наблюдались достаточно высокие D. Причина такого эффекта заключается в дополнительной сольватации образующихся комплексных соединений NO₂-группами разбавителя. Такой вывод можно сделать, сопоставив полученные данные с опубликованными ранее для систем с TODGA, в которых высокие D сочетаются с соотношением металл : лиганд в экстрагируемом соединении, равным 1 : 2 [20]. Порядок экстрагируемости остается таким же, как и в случае DD + Dec-1. Коэффициенты разделения при экстракции TBDGA в F-3 приведены в табл. 2.

На графиках зависимостей *D* Eu(III), Am(III) и Cm(III) от [HNO₃]_{aq.ph} при их экстракции TBDGA в PhH (рис. 5) в области низких концентраций кислоты (0.01–0.5 М) наблюдаются перегибы, связанные, по-видимому, с экстракцией частично гидролизо-

Рис. 6. Зависимость коэффициентов распределения Eu(III) (1), Am(III) (2) и Cm(III) (3) от концентрации HNO₃ в равновесной водной фазе при экстракции 0.1 M TBDGA в CCl₄ (индикаторные количества).

Рис. 5. Зависимость коэффициентов распределения Eu(III) (1), Am(III) (2) и Cm(III) (3) от концентрации HNO₃ в равновесной водной фазе при экстракции 0.1 M TBDGA в PhH (индикаторные количества).

ванных соединений. Порядок экстрагируемости остается тем же: Eu(III) > Am(III) > Cm(III). При высоких концентрациях HNO₃ зависимости выходят на плато, что связано с конкурирующей экстракцией кислоты. Интересно, что различие в экстракции частично гидролизованных соединений приводит к высоким коэффициентам разделения пары Am(III)/Cm(III) в области низких концентраций кислоты (табл. 1). Следует отметить, что для TBDGA в бензоле и толуоле характерны значительно более высокие коэффициенты распределения Eu(III), Am(III) и Cm(III), чем для TODGA и N,N,N',N'-тетрагексилдигликольамида (THDGA) [21].

При использовании в качестве разбавителя CCl₄ в области значительных концентраций азотной кислоты наблюдается существенное различие в экстракции рассматриваемых металлов. Графики зависимостей D Eu(III), Am(III) и Cm(III) от [HNO₃]_{ад.ph} так же, как и при использовании смеси DD + Dec-1 и PhH, выходят на плато при высоких концентрациях кислоты в равновесной водной фазе (рис. 6). Порядок экстрагируемости остается таким же, как и в случае остальных разбавителей. Коэффициенты разделения при экстракции TBDGA в CCl₄ приведены в табл. 2. Следует отметить, что для TBDGA в тетрахлорметане коэффициенты распределения рассматриваемых металлов выше, чем для TBDGA в бензоле, хотя в случае как TODGA [20], так и ТВР [22] наблюдается обратная зависимость.

Таким образом, наблюдается увеличение экстрагируемости исследуемых металлов в следующем ряду разбавителей: PhH < CCl₄ < DD + Dec-1 < F-3.

РАДИОХИМИЯ том 65 № 1 2023

Рис. 7. Зависимость $ln(D_M)$ Eu(III) (1), Am(III) (2) и Cm(III) (3) от 1/*T* при их экстракции 0.02 М ТВDGA в DD + Dec-1 и Eu(III) (4), Am(III) (5) и Cm(III) (6) при экстракции 0.1 М ТВDGA в CCl₄, [HNO₃]_{aq.ph} =1 М (индикаторные количества).

Это хорошо согласуется с результатами, полученными для TODGA [6] и для TBDGA при экстракции из HCl [16]. Худшая экстракция Eu(III) и An(III) при использовании в качестве разбавителей PhH и CCl₄ связана с сольватацией данными соединениями активных групп экстрагента, что уменьшает доступность последних. В системах с F-3 высокие D связаны, по-видимому, с дополнительной сольватацией катиона металла NO2-группами. Во всех случаях наблюдается резкий рост D при концентрации HNO₃ в равновесной водной фазе выше 0.7 М. Сопоставление изотерм экстракции HNO₃ с зависимостями коэффициентов распределения металлов от ее концентрации в равновесной водной фазе позволяет отметить резкое увеличение экстрагируемости Eu(III), Am(III) и Cm(III) с началом экстрак-

Рис. 8. Зависимость $\ln(D_M)$ Eu(III) (1), Am(III) (2) и Cm(III) (3) от 1/T при их экстракции 0.1 М ТВDGA в PhH и Eu(III) (4), Am(III) (5) и Cm(III) (6) 0.01 М ТВDGA в F-3, [HNO₃]_{aq,ph} = 1 М (индикаторные количества).

ции HNO₃. В области высоких концентраций HNO₃ увеличение содержания кислоты в водной фазе не приводит к существенному увеличению перехода металлов в органическую фазу вследствие конкурирующей экстракции.

Увеличение перехода металла в экстракт для всех разбавителей наблюдается в ряду: Cm(III) < Am(III) < Eu(III). Для систем с DD + Dec-1 найдены условия разделения пары Eu(III)/Am(III), а для систем с PhH – пары Am(III)/Cm(III). Необходимо отметить, что при высоких концентрациях HNO₃ в равновесной водной фазе наблюдаются высокие коэффициенты разделения как Eu(III) и Am(III), так и Am(III) и Cm(III), однако процесс разделения в указанных условиях организовать невозможно вслед-

[HNO ₃], M 0.02 M β Eu/Am (β Am/Eu	0.02 M TBDGA–DD + Dec-1		0.1 M TBDGA–PhH	
	β Eu/Am (β Am/Eu)	β Am/Cm (β Cm/Am)	β Eu/Am (β Am/Eu)	β Am/Cm (β Cm/Am)
0.01	1.31	(1.63)	1.65	(5.76)
0.10	2.39	(1.28)	2.73	(2.77)
0.52	4.09	(1.15)	1.17	1.47
0.71	4.56	(1.05)	1.41	1.17
1.08	4.19	1.10	1.53	1.30
2.16	2.45	2.56	2.00	6.27
3.22	1.18	8.98	(2.00)	24.2
5.35	(1.45)	19.8	(2.44)	6.67

Таблица 1. Коэффициенты разделения (β) пар Eu(III)/Am(III) и Am(III)/Cm(III) при их экстракции 0.02 М ТВDGA в DD + Dec-1 и 0.1 М ТВDGA в PhH из HNO₃

РАДИОХИМИЯ том 65 № 1 2023

	0.1 M TBDGA–CCl ₄		0.01 M TBDGA-F-3			
[HNO ₃], M	$\begin{bmatrix} D_3 \end{bmatrix}$, β Eu/Am β Am/Cr (β Am/Eu) (β Cm/Ar		$\begin{array}{c} \beta \ Eu/Am \\ (\beta \ Am/Eu) \end{array}$	β Am/Cm (β Cm/Am)		
0.01	(1.05)	2.36	1.35	(1.05)		
0.10	1.62	1.42	1.43	1.20		
0.52	2.35	1.55	1.70	1.34		
0.71	2.56	2.06	2.01	1.23		
1.08	3.04	3.05	2.26	1.34		
2.16	5.08	9.93	3.97	1.38		
3.22	2.72	13.7	5.91	1.37		
5.35	2.84	4.45	9.23	1.06		

Таблица 2. Коэффициенты разделения (β) пар Eu(III)/ Am(III) и Am(III)/Cm(III) при экстракции их 0.1 M TBDGA в CCl₄ и 0.01 M TBDGA в F-3 из HNO₃

ствие высокой степени извлечения всех металлов в экстракт.

Температурные зависимости коэффициентов распределения индикаторных количеств ¹⁵²Eu(III), ²⁴¹Am(III) и ²⁴⁴Cm(III) при их экстракции TBDGA в различных разбавителях

Систематические данные о зависимости экстракции Ln(III) и An(III) ТВDGA в различных разбавителях из азотнокислых растворов от температуры в литературе отсутствуют. Аналогичные результаты имеются для солянокислых сред [16; 17]. Для ТОDGA в предельных углеводородах и их смесях с высокомолекулярными спиртами тепловые эффекты экстракции из HNO₃ уменьшаются в следующем ряду: An(III) > An(IV) ~ An(VI) [23–25].

Зависимости *D* Eu(III), Am(III) и Cm(III) от температуры при экстракции их TBDGA в DD+Dec-1, CCl₄ (рис. 7), PhH и F-3 (рис. 8) линеаризовались в координатах $\ln(D_M) - 1/T$. Тангенсы углов наклона полученных прямых позволили рассчитать энтальпии экстракции для всех исследованных систем (табл. 3).

Приведенные выше данные показывают, что экстракция исследуемых металлов TBDGA характеризуется значительными тепловыми эффектами.

Таблица 3. Энтальпии экстракции Eu(III), Am(III) и Cm(III) ТВDGA в различных разбавителях из 1 М HNO₃

М	Разбавитель	tg α	R^2	∆ <i>Н</i> , кДж/моль
Eu	DD + Dec-1	12.3	0.9984	-102
	PhH	8.51	0.9943	-70.7
	CCl_4	6.46	0.9962	-53.7
	F-3	7.04	0.9988	-58.5
Am	DD + Dec-1	10.37	0.9983	-86.2
	PhH	8.61	0.9922	-71.5
	CCl ₄	5.68	0.9987	-47.2
	F-3	5.02	0.9947	-41.7
Cm	DD + Dec-1	10.3	0.9988	-85.9
	PhH	7.02	0.9982	-58.3
	CCl_4	1.53	0.8518	-12.7
	F-3	4.84	0.9986	-40.2

Значения энтальпий экстракции возрастают в ряду: $CCl_4 < F-3 < PhH < DD + Dec-1$. Схожая зависимость наблюдается для солянокислых сред [14, 15], но для азотнокислых сред тепловые эффекты существенно выше. Рассчитанные значения энтальпий экстракции металлов схожи с таковыми для экстракционных систем при использовании в качестве экстрагента растворов TODGA в предельных углеводородах [23]. Для Am(III) и Cm(III) полученные значения близки во всех случаях, кроме систем с CCl_4 . Экстракция же Eu(III) характеризуется значительно более высокими тепловыми эффектами.

ЗАКЛЮЧЕНИЕ

Изучена зависимость экстракции Eu(III), Am(III) и Cm(III) ТВDGА из азотнокислых растворов от природы разбавителя. D металлов увеличиваются в ряду: PhH < CCl₄ < DD + Dec-1 < F-3. Во всех исследованных разбавителях наблюдается следующий порядок экстрагируемости: Eu(III) > Am(III) > Cm(III). Системы с DD + Dec-1 подходят для разделения пары Eu(III)/Am(III), а различие в экстракции частично гидролизованных форм америция и кюрия ТВDGA в PhH можно использовать для разделения пары Am(III)/Cm(III). Все реакции экстракции оказались экзотермичны и имели высокие значения энтальпии.

ФОНДОВАЯ ПОДДЕРЖКА

Работа выполнена при частичном финансировании Министерства науки и высшего образования Российской Федерации в рамках госзадания ИФХЭ РАН на 2022 год с использованием оборудования ЦКП ИФХЭ РАН.

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют об отсутствии конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- Salvatores M., Palmiotti G. // Prog. Particle Nucl. Phys. 2011. Vol. 66, N 1. P. 144–166.
- 2. *Leoncini A., Huskens J., Verboom W. //* Chem. Soc. Rev. 2017. Vol. 46, N 23. P. 7229–7273.
- 3. *Matveev P., Mohapatra P.K., Kalmykov S.N., Petrov V. / /* Solvent Extr. Ion Exch. 2021. Vol. 39, N 7. P. 679–713.
- 4. *Sasaki Y., Sugo Y., Suzuki S., Tachimori S. //* Solvent Extr. Ion Exch. 2001. Vol. 19, N 1. P. 91–103.
- Mowafy E.A., Aly H.F. // Solvent Extr. Ion Exch. 2007. Vol. 25, N 2. P. 205–224.
- Ansari S.A., Pathak P.N., Manchanda V.K., Husain M., Prasad A.K., Parmar V.S. // Solvent Extr. Ion Exch. 2005. Vol. 23, N 4. P. 463–479.
- Yaita T., Herlinger A.W., Thiyagarajan P., Jensen M.P. // Solvent Extr. Ion Exch. 2004. Vol. 22, N 4. P. 553–571.
- Nave S., Modolo G., Madic C., Testard F. // Solvent Extr. Ion Exch. 2004. Vol. 22, N 4. P. 527–551.
- Sasaki Y., Kimura T., Oguma K. // J. Ion Exch. 2007. Vol. 18, N 4. P. 354–359.
- Sasaki Y., Sugo Y., Tachimori S. // Int. Conf. «Scientific Research on the Back-End of the Fuel Cycle for the 21 Century» Atalante 2000. P. 6.

- Mincher M.E., Quach D.L., Liao Y.J., Mincher B.J., Wai C.M. // Solvent Extr. Ion Exch. 2012. Vol. 30, N 7. P. 735–747.
- Gujar R.B., Ansari S.A., Mohapatra P.K., Leoncini A., Verboom W. // J. Radioanal. Nucl. Chem. 2016. Vol. 309. P. 819–825.
- 13. *Yan M., Cao S., Zhu S.* Patent CN 113861063A. Dec. 31, 2021.
- Chapron S., Marie C., Arrachart G., Miguirditchian M., Pellet-Rostaing S. // Solvent Extr. Ion Exch. 2015. Vol. 33, N 3. P. 236–248.
- 15. *Rama Swami K., Venkatesan K.A., Antony M.P. / /*Ind. Eng. Chem. Res. 2018. Vol. 57, N 40. P. 13490–13497.
- 16. *Cui Y., Yang J., Yang G., Xia G., Nie Y., Sun G. //* Hydrometallurgy. 2012. Vols. 121–124. P. 16–21.
- Yang J.H., Cui Y., Sun G.X., Nie Y., Xia G.M., Zheng G.X. // Journal Serb. Chem. Soc. 2013. Vol. 78, N 1. P. 93–100.
- Chen Z., Yang X., Song L., Wang X., Xiao Q., Xu H., Feng Q., Ding S. // Inorg. Chim. Acta. 2020. Vol. 513. Article 119928.
- Burger L.L.// General Electric Co. Hanford Atomic Products Operation, Richland, Washington, 1962. N HW-SA-2796.
- Panja S., Mohapatra P.K., Tripathi S.C., Gandhi P.M., Janardan P. // J. Membr. Sci. 2012. Vols. 403–404. P. 71–77.
- Mowafy E.A., Mohamed D. // Sep. Purif. Technol. 2014. Vol. 128. P. 18–24.
- Siekierski S. // J. Inorg. Nucl. Chem. 1962. Vol. 24, N 2. P. 205–214.
- 23. *Arisaka M., Kimura T.* // Solvent Extr. Ion Exch. 2011. Vol. 29, N 1. P. 72–85.
- 24. *Gujar R.B.*, *Dhekane G.B.*, *Mohapatra P.K.* // Radiochim. Acta. 2013. Vol. 101, N 11. P. 719–724.
- 25. *Gujar R.B., Pathak P.N., Dhekane G.B., Mohapatra P.K.* // Solvent Extr. Ion Exch. 2014. Vol. 32, N 6. P. 637–649.