УДК 550.424

ФОРМЫ НАХОЖДЕНИЯ ²¹⁰Ро И ²¹⁰Рь В РАДИОАКТИВНО ЗАГРЯЗНЕННЫХ ПОЧВАХ

© 2023 г. Л. М. Шапошникова*, Н. Г. Рачкова

Институт биологии Коми НЦ УрО РАН, г. Сыктывкар, ул. Коммунистическая, д. 28 *e-mail: shaposhnikova.l.m@ib.komisc.ru

Поступила в редакцию 23.12.2020, после доработки 19.10.2021, принята к публикации 15.02.2022

Методом химического фракционирования образцов загрязненных радием подзолистой и аллювиально-дерновой почв установлены различия в миграционной способности ²¹⁰Po и ²¹⁰Pb, характер которых не зависел от типа почвы. Во фракциях «водорастворимая», а также в случае ²¹⁰Po во фракциях «обменная» (1 M CH₃COONH₄, pH 7) и «карбонатная» (1 M CH₃COONH₄, pH 5) количество радионуклидов было незначительно (менее 1% от их общей удельной активности в образцах). Наибольшая доля ²¹⁰Po обнаруживалась в экстрактах «оксиды и гидроксиды Fe и Mn» (0.1 M NH₂OH·HCl в 25% CH₃COOH), «органическое вещество» (30% H_2O_2 + HNO₃ до pH 2) и «аморфные силикаты» (0.2 M NaOH). Изотоп ²¹⁰Pb был выявлен в значимых количествах во всех миграционноспособных формах нахождения, кроме водорастворимой. Больше всего его обнаружено в экстрактах «органическое вещество» (до 19.7% от общего содержания в почвах). Во фракциях «нерастворимый остаток» доля ²¹⁰Po составила 72.0 и 82.8%, ²¹⁰Pb – 50.0 и 76.4% от их удельной активности в подзолистой и аллювиально-дерновой почвах соответственно.

Ключевые слова: полоний-210, свинец-210, последовательное химическое фракционирование, почвы, отношение удельных активностей ²¹⁰Ро/²¹⁰Рb.

DOI: 10.31857/S0033831123010136, EDN: OHYQGN

 210 Pb (период полураспада $T_{1/2} = 22.4$ года) и ²¹⁰Ро ($T_{1/2}$ = 138.4 сут) являются членами радиоактивного ряда ²³⁸U. Они вносят заметный вклад в облучение человека от естественных источников [1, 2]. В отличие от многих других радионуклидов уранового семейства ²¹⁰Pb и ²¹⁰Po образуются из радиоактивного газа ²²²Rn ($T_{1/2}$ = 3.823 сут). Продукты его распада в дальнейшем с атмосферными выпадениями возвращаются в почву, воду и другие объекты, оседают с дисперсными частицами на поверхности растений [3]. Множественность путей миграции радионуклидов и крайне высокая подвижность газообразного ²²²Rn осложняют прогнозирование поведения ²¹⁰Pb и ²¹⁰Po в окружающей среде, что подтверждается скудностью информации об их состоянии и биологической доступности в природных комплексах и агроэкосистемах [4].

В естественных условиях мощным источником вышеуказанных радионуклидов является природный радиогеохимический фон, в частности урановые аномалии и месторождения руд с содержанием минералов фосфора, свинца и редкоземельных металлов, зоны геологических разломов с интенсивным выходом радона и т.д. [5]. Распространенными техногенными источниками ²¹⁰Рb и ²¹⁰Ро являются продукты сжигания ископаемого топлива и радиоактивные отходы предприятий добывающей промышленности, содержащие ²³⁸U и ²²⁶Ra [6]. В объектах внешней среды в зонах с повышенным фоном радиации, связанным с присутствием урана и его дочерних продуктов, содержание радионуклидов существенно повышено [7-9]. В этих условиях биоаккумуляция ²¹⁰Ро и ²¹⁰Рb и их миграция в среды, сопредельные с загрязненной почвой, во многом зависят от происходящих в почвенной среде сорбционно-десорбционных взаимодействий, изучить которые можно посредством последовательных процедур экстракции, моделирующих эти процессы [10].

Физико-химический показатель	Подзолистая почва	Аллювиально-дерновая почва		
рН почвенного раствора	3.53-5.63	5.00-7.10		
N, %	0.05–0.47	0.35–0.41		
С, %	7.4–31.5	4.35–6.1		
OB, %	до 8.2	до 9.3		
Fe, мг/кг	4950-39500	6850-29000		
Mn, мг/кг	243–2874	230–1100		
Аl, мг/кг	5800-22500	4650-15000		
Fe ₂ O ₃ , % (по Тамму)	0.34–2.6	0.16–1.40		
Al ₂ O ₃ , % (по Тамму)	0.33-1.14	0.12–0.30		

Таблица 1. Физико-химические характеристики загрязненных почв

Целью данной работы было определение содержания и форм нахождения ²¹⁰Ро и ²¹⁰Рb в загрязненных отходами производства по добыче радия почвах с применением экстракционных методов.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

В северотаежной подзоне Республики Коми локальные участки, загрязненные в результате добычи радия из минерализованных пластовых вод, появились в 1930–1950-е гг. [11]. Поскольку ²²⁶Ra характеризуется длительным периодом полураспада (1600 лет), то до настоящего времени его удельная активность в почве этих площадок сохраняется повышенной по сравнению с соответствующими фоновыми величинами [7].

Ход работы. Для проведения исследования отобрали образцы верхнего слоя (0–20 см) грунта на двух радиоактивно загрязненных участках. На каждом участке отбирали по 10–15 образцов, по 5 из которых были исследованы на формы нахождения ²¹⁰Ро и ²¹⁰Рb. Пробы почв высушивали в течение нескольких дней на воздухе, измельчали, просеивали через сито 1 мм, герметично упаковывали в пластиковые пакеты, выдерживали не менее 3 недель. За это время короткоживущие изотопы свинца и полония полностью распадались, а количеством вновь образовавшихся, с учетом длительности распада ²²⁶Ra, можно было пренебречь.

В образцах почв определяли удельные активности (УА) ²²⁶Ra, ²¹⁰Po и ²¹⁰Pb, анализировали формы нахождения ²¹⁰Po и ²¹⁰Pb. Физико-химический анализ почвенных образцов проводили в Экоаналитической лаборатории Института биологии Коми НЦ УрО РАН. Экспериментальные участки. Первая экспериментальная площадка с подзолистой почвой располагалась в смешанном лесу вдали от водотоков. Она была загрязнена промышленными отходами, которые в технологическом процессе использовались в качестве сорбента радия. Техногенный слой толщиной около 20 см находился под маломощной подстилкой. Образцы грунта представляли собой смесь почвы и техногенного материала. Второй участок с аллювиально-дерновой почвой располагался в речной пойме. В годы деятельности радиевого производства он служил площадкой сброса отработанных пластовых вод. Физико-химические характеристики почв в пределах загрязненных участков (для разных типов почв) сильно варьировали (табл. 1).

Определение форм нахождения ²¹⁰Ро и ²¹⁰Рb в почвах. Формы нахождения ²¹⁰Ро и ²¹⁰Рb определяли методом химического фракционирования по модифицированной схеме Tessier [12, 13]. Из образцов последовательно экстрагировали фракции: I – «водорастворимая» (перемешивание с H₂O_{лист} в течение 24 ч при 25°С); II – «обменная» (1 M CH₃COONH₄, pH 7, 24 ч при 25°С); III – «карбонаты» (1 М СН₃СООNH₄, рН 5, 8 ч при 25°С); IV – «полуторные оксиды и гидроксиды» (0.1 М NH₂OH·HCl в 25% CH₃COOH, 6 ч при 60°C); V – «органическое вещество» (30% H₂O₂ + HNO₃ до рН 2, 3 ч при 85°С); VI – «аморфные силикаты» (0.2 М NaOH, 40 мин при 80°С). Твердый остаток после проведения экстракции считали фракцией VII - «нерастворимая». Вклад экстрактов в общую УА радионуклида рассчитывали как долю от суммы его содержаний в каждой из фракций.

Определение удельной активности ²¹⁰Ро и ²¹⁰Рb. Удельную активность ²¹⁰Рo и ²¹⁰Pb в образцах почв и экстрактах определяли α-β-радиометрически

после спонтанного электрохимического осаждения из солянокислых растворов на никелевых дисках [14, 15]. УА ²¹⁰Pb определяли по содержанию ²¹⁰Bi в условиях радиоактивного равновесия, так как β -частицы ²¹⁰Bi характеризуются более высокой энергией по сравнению с β -частицами ²¹⁰Pb, а висмут эффективнее осаждается на никелевый диск [15].

Основными этапами радиохимической подготовки образцов почв были [14] сплавление воздушно-сухой навески с Na2O2, выщелачивание гидроксидов концентрированной HCl, осаждение и отделение осадка кремнекислоты. Далее в фильтрате раствором NH₄OH (без CO₂) при рН 9-10 осаждали гидроксид железа(III). Совместно с ним осаждаются изотопы U, Th, Po, Pb, Bi [16]. Гидроксиды радия остаются в фильтрате и таким образом отделяются от указанных элементов [17]. Отделенный осадок гидроксида железа растворяли в горячей 2 н. HCl. Электрохимическому осаждению ²¹⁰Ро мешает избыток Fe³⁺, для его восстановления до Fe²⁺ в раствор добавляли аскорбиновую кислоту. Затем в него опускали фторопластовые ячейки с никелевыми дисками. Диски предварительно обезжиривали, освобождали от оксидной пленки обработкой 2 н. HNO₃, промывали дистиллированной водой и просушивали.

Осаждение радиоизотопов ²¹⁰Ро и ²¹⁰Ві проводили при скорости вращения мешалки 50-60 об/мин из раствора объемом 100 мл (концентрация по HCl \approx 0.75 н.) при 80°С и времени осаждения 4 ч. Авторами работы [14] экспериментально установлено, что при этих условиях на никелевые диски в среднем осаждается $96 \pm 4 \% ^{210}$ Ро и практически столько же ²¹⁰Ві. Изотопы U и Th при этом остаются в растворе [16]. После электрохимического осаждения никелевый диск промывали дистиллированной водой, высушивали и проводили одновременные измерения скорости счета α- и β-частиц на установке малого фона УМФ-2000 в течение 30 мин. Значения минимальной измеряемой активности образцов за время измерения 1000 с составляли по α-излучению не более 0.01 Бк, по β-излучению – не более 0.1 Бк. Предел допускаемой относительной погрешности измерений – 15%. В качестве рабочих эталонов использовали источник α-излучения на основе смеси изотопов ^{238,239,242}Ри и источник β-излучения с радионуклидами 90 Sr + 90 Y.

РАДИОХИМИЯ том 65 № 1 2023

В экстрактах определение ²¹⁰Pb и ²¹⁰Po начинали со стадии осаждения и растворения гидроксидов. Предварительно экстракты упаривали с последующим «мокрым» озолением остатка при температуре не более 80°С. Электрохимическое осаждение ²¹⁰Po и ²¹⁰Bi (²¹⁰Pb) проводили согласно вышеуказанной схеме.

Расчет удельной активности ²¹⁰Pb $[A_{yd}(^{210}\text{Pb})(t_0), \text{Бк/кг}]$ производили на дату отбора образцов t_0 и вычисляли по формуле

$$A_{yq}(^{210}\text{Pb})(t_0) =$$

= (NK{exp[- λ (²¹⁰Bi)(t_2-t_1)]} {exp[- λ (²¹⁰Pb)(t_1-t_0)]})/m\varepsilon,

где N – число β -импульсов за вычетом фона, имп/мин; K – коэффициент пересчета имп/мин в Бк; λ (²¹⁰Bi) – постоянная распада ²¹⁰Bi (0.138 сут⁻¹); λ (²¹⁰Pb) – постоянная распада ²¹⁰Pb (0.000086 сут⁻¹); m – масса навески, г; ε – эффективность регистрации β -частиц; $(t_2 - t_1)$ – промежуток времени между датой измерения на приборе t_2 и датой осаждения ²¹⁰Bi на никелевые диски t_1 , сут; $(t_1 - t_0)$ – промежуток времени между датой осаждения ²¹⁰Bi на никелевые диски t_1 и датой отбора образца t_0 , сут.

Так как до момента осаждения ²¹⁰Ві на никелевом диске ²¹⁰Рb присутствовал в анализируемом образце, то в формуле для расчета ²¹⁰Pb по ²¹⁰Ві имеется поправка {exp[$-\lambda$ (²¹⁰Pb)($t_1 - t_0$)]}, учитывающая распад ²¹⁰Pb за время от даты отбора пробы t_0 до момента осаждения ²¹⁰Ві на никелевый диск t_1 . Если времени от отбора до осаждения прошло менее 100 сут, то {exp[$-\lambda$ (²¹⁰Pb)($t_1 - t_0$)]} \approx 1 и влиянием распада ²¹⁰Pb можно пренебречь с учетом его длительного $T_{1/2}$.

При расчете УА ²¹⁰Ро необходимо было учесть увеличение его УА в счетном образце за счет распада ²¹⁰Рb (²¹⁰Вi) с момента отбора образца и в то же время снижение УА ²¹⁰Ро за счет его собственного распада. Поэтому удельную активность ²¹⁰Ро [A_{yq} (²¹⁰Ро)(t_0), Бк/кг], приведенную к дате отбора t_0 , рассчитывалась как

$$A_{yg}(^{210}Po)(t_0) = (A_{yg}(^{210}Po)(t_1) - A_{yg}(^{210}Pb)(t_0) \{1 - \exp[-\lambda(^{210}Po)(t_1 - t_0)]\})/\exp[-\lambda(^{210}Po)(t_1 - t_0)], A_{yg}(^{210}Po)(t_1) = NK/m\varepsilon,$$

....

где $A_{yq}(^{210}\text{Po})(t_1)$ – УА ²¹⁰Ро на дату осаждения t_1 ; $A_{yq}(^{210}\text{Pb})(t_0)$ – УА ²¹⁰Рb на дату отбора образца t_0 ; N – число α-импульсов за вычетом фона, имп/мин; K – коэффициент пересчета имп/мин в Бк; $\lambda(^{210}\text{Po})$ –

Отношение УА	Подзолистая почва			Аллювиально-дерновая почва				
	x	med	S_{d}	п	x	med	S_{d}	п
²¹⁰ Po/ ²¹⁰ Pb	2.63	2.17	2.07	11	2.08	1.38	1.95	15
²¹⁰ Po/ ²²⁶ Ra	1.85	1.47	1.35	11	2.33	1.22	1.84	15
²¹⁰ Pb/ ²²⁶ Ra	1.07	1.01	0.90	11	1.09	0.83	0.74	15

Таблица 2. Отношения УА изотопов ²¹⁰Ро, ²¹⁰Рb и ²²⁶Ra в образцах верхнего слоя загрязненных почва ^а

a x - среднеарифметическое значение, med - медианное значение; S_d - стандартное отклонение,*n*- количество образцов.

постоянная распада ²¹⁰Ро (0.005 сут⁻¹); *m* – масса навески, г; ε – эффективность регистрации α-частиц; $(t_1 - t_0)$ – промежуток времени между датой осаждения ²¹⁰Ро на никелевые диски и датой отбора образца, сут.

Для контроля чистоты осаждения ²¹⁰Ві через 5 сут после электрохимического осаждения никелевые диски повторно пересчитывали. Разница между расчетными и экспериментально полученными количествами импульсов не превышала пределов допускаемой относительной погрешности метода измерений.

Определение удельной активности ²²⁶Ra. УА ²²⁶Ra в образцах почв измеряли на гамма-спектрометрическом комплексе с программным обеспечением «Прогресс». Время измерения образцов составляло 30 мин. Минимальная детектируемая активность по паспорту – 8 Бк/кг. В качестве контрольного образца использовали источник $^{137}Cs + ^{40}K$.

Описательная статистика. Статистическую обработку результатов проводили в программе Statistica 6.1 (StatSoft Inc.). Все измерения проводили в 3-кратных повторностях. Описательную статистику рассчитывали при доверительном интервале 95%. Статистическую связь между показателями оценивали на основе коэффициентов корреляции Спирмена. Достоверность различий оценивали по *U*-критерию Манна–Уитни. Значения УА всех изотопов приводятся в расчете на воздушно-сухую навеску.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

В ранних исследованиях были найдены повышенные концентрации ²²⁶Ra в исследуемых почвах и показана значительная вариабельность уровня их загрязнения по площади участков [7]. В отобранных нами образцах УА ²²⁶Ra варьировали в пределах

0.03-116 Бк/г для подзолистой и 0.02-40.0 Бк/г для аллювиально-дерновой почв. Повышенные концентрации ²²⁶Ra обусловливали значительное содержание продуктов его распада в почвах. Так же как и в случае с материнским радионуклидом, содержания ²¹⁰Ро и ²¹⁰Рb в грунте существенно варьировали. Так, значения УА²¹⁰Ро в образцах подзолистой почвы изменялись от 0.11 до 33.7 Бк/г, ²¹⁰Pb – от 0.08 до 83.0 Бк/г. Для аллювиально-дерновой почвы диапазоны вариации этих показателей были меньше и составили 0.11-19.0 и 0.13-15.6 Бк/г соответственно. Удельные активности ²¹⁰Ро и ²¹⁰Рb были функционально связаны с концентрациями ²²⁶Ra. Коэффициенты корреляции (r) между УА ²²⁶Ra и ²¹⁰Ро составили 0.98 ($p \le 0.05$) в случае подзолистой и 0.68 ($p \le 0.05$) в случае аллювиально-дерновой почвы, между УА ²²⁶Ra и ²¹⁰Pb для соответствующих почв – 0.95 и 0.99 ($p \le 0.05$). Статистическая связь между УА ²¹⁰Ро и ²¹⁰Рb также была значимой ($p \le$ 0.05), коэффициенты корреляции между УА указанной пары радионуклидов составили 0.91 для подзолистой и 0.67 для аллювиально-дерновой почв.

Соотношения между удельными активностями ²¹⁰Ро, ²¹⁰Рb и ²²⁶Ra свидетельствовали о смещении равновесия между радионуклидами в образцах загрязненных почв (табл. 2). В случае подзолистой почвы средние и медианные значения отношений удельных активностей отличались незначительно. Для аллювиально-дерновой почвы медианы были ниже, но в целом общее представление о соотношении УА радионуклидов в почве не меняли. Значительные отклонения от средних и медианных значений мы наблюдали только в отдельных образцах. Согласно полученным данным, УА ²¹⁰Ро в подавляющем большинстве образцов превышали соответствующие значения для ²¹⁰Pb и ²²⁶Ra. Отношения УА для пары ²¹⁰Pb/²²⁶Ra в случае почв обоих типов были близки к 1. Данные литературы свидетельствуют [5, 18, 19], что дисбаланс в отношениях УА ²¹⁰Ро/²¹⁰Рb является характерным для почв, может отличаться для разных почвенных слоев и указывает на процессы мобилизации радионуклидов. Максимальные значения УА изотопов часто наблюдаются в органогенном горизонте [3, 5, 18, 20]. С одной стороны, есть данные [5], что для гумусового слоя почв наиболее свойственны отношения УА ²¹⁰Ро/²¹⁰Рb меньше единицы. Заметим, что это же характерно и для радионуклидного состава атмосферных выпадений. С другой стороны, имеются сведения [18], что в органическом и минеральном слоях бореальных лесных почв соотношение УА ²¹⁰Ро/²¹⁰Рb близко к единице, а в слое подстилки наблюдается явный избыток ²¹⁰Ро, свидетельствующий о рециркуляции радионуклида из корневой зоны в поверхностные почвенные слои. Так, в работе [21] показано, что в почвенном слое 0-5 см УА ²¹⁰Ро может в несколько раз превышать его содержание в нижележащих слоях почвы, а в работе [18] приводятся данные отношений УА ²¹⁰Po/²¹⁰Pb в слое лесной подстилки, достигающие значения 2.5, которые ниже по профилю почв между собой выравниваются. Учитывая, что в своей работе мы отбирали только верхний слой почвы и не исследовали нижележащие горизонты, и опираясь на приведенные данные литературы, мы считаем вполне вероятными полученные нами значения отношений YA ²¹⁰Po/²¹⁰Pb.

Подвижность ²¹⁰Ро и ²¹⁰Рb в загрязненных природных комплексах характеризует их способность участвовать в процессах распределения в почвенном профиле и определяет интенсивность миграции этих изотопов в сопредельные среды в разных формах нахождения. Так, изотопы свинца сорбируются почвой в катионной (Pb²⁺) и анионной Pb(OH)⁻ формах. ²¹⁰Pb активно связывается с глинистыми минералами, включается в состав оксидов Mn, гидроксидов Fe и Al, устойчивых комплексов с гумусовыми соединениями, прочно сорбируется органическим веществом почвы [22, 23]. Результаты нашего исследования полтвердили эти данные о формах нахождения ²¹⁰Pb в радиоактивно загрязненных почвах Республики Коми и показали в целом сходное распределение радионуклида в последовательно выделенные из почв обоих типов экстракты (рис. 1). Менее всего он экстрагировался дистиллированной водой. Доля водорастворимого 210 Pb в исследованных почвах составила менее 1%. Из миграционноспособных форм нахождения боль-

Рис. 1. Относительное содержание (% от общей УА) ²¹⁰Pb в экстрактах, последовательно выделенных из радиоактивно загрязненных почв. Фракции: I – «водорастворимая», II – «обменная», III – «карбонатная», IV – «оксиды и гидроксиды Fe и Mn», V – «органическое вещество», VI – «аморфные силикаты», VII – «нерастворимая»; то же на рис. 2 и 3.

ше всего его обнаруживалось во фракциях «органическое вещество» – 19.7 и 11.5% от общего содержания радионуклида в подзолистой и аллювиально-дерновой почвах соответственно. В целом подвижность ²¹⁰Pb в почве подзолистого типа была выше. Практически во всех фракциях, выделенных из нее, содержание радионуклида было больше, чем в экстрактах из аллювиально-дерновой почвы, хотя различия не всегда были достоверны. В нерастворимых остатках образцов подзолистой и аллювиально-дерновой почв сохранялось в среднем 50.0 и 76.4% от общего содержания ²¹⁰Pb соответственно.

В процессах образования форм нахождения ²¹⁰Ро в загрязненных почвах, как и для многих других радионуклидов, важную роль играет их кислотность. В кислой среде полоний находится в виде катионов, при pH 2–5 может образовывать псевдоколлоиды. При увеличении pH соединения радионуклида гидролизуются с образованием молекулярной формы гидроксида полония и его отрицательно заряженного коллоида. Еще одной характерной особенностью ²¹⁰Ро является способность к комплексообразованию, что обусловливает его сорбцию органическим веществом и илистой фракцией почвы, вместе с которыми радионуклид мигрирует в почвах [3, 22].

Согласно полученным нами данным, распределение ²¹⁰Ро и ²¹⁰Рb в почвенных экстрактах отличалось (рис. 2). Меньше всего ²¹⁰Ро обнаруживался во фракциях «водорастворимая», «обменная» и «карбонатная». В среднем суммарная доля радио-

Рис. 2. Относительное содержание (% от общей УА) ²¹⁰Ро в экстрактах, последовательно выделенных из радиоактивно загрязненных почв.

нуклида в них составила $0.84 \pm 0.21\%$ от его общего содержания в подзолистой и $0.99 \pm 0.45\%$ в аллювиально-дерновой почвах. Дальнейшая обработка образцов десорбирующими растворами показала повышенный выход радионуклида, однако разные типы почв по доле полония во фракциях достоверно не различались. Так, во фракции «оксиды и гидроксиды Fe и Mn» обнаружилось в среднем 6.52 и 7.91% от общего содержания радионуклида в подзолистой и аллювиально-дерновой почвах соответственно. В составе экстракта «органическое вешество» содержание радионуклида составило 2.95 и 1.39 %, «аморфные силикаты» – 17.7 и 6.62% его УА в почвах. В нерастворимых остатках почвенных образцов содержалось наибольшее количество полония. От его общего содержания оно составило в среднем 72.0% в подзолистой и 82.8% в аллювиально-дерновой почвах, что выше соответствующих показателей, характерных для ²¹⁰Pb.

Сравнительный анализ отношений УА ²¹⁰Ро/²¹⁰Рb в отдельных почвенных экстрактах свидетельствует о преобладании в них одного из радиоизотопов. Так, несмотря на то, что оба радионуклида в тех или иных количествах обнаруживались во фракциях «оксиды и гидроксиды Fe и Mn», «органическое вещество» и «аморфные силикаты» (рис. 1 и 2), отношения УА ²¹⁰Ро/²¹⁰Рb в этих экстрактах свидетельствовали о различиях в химическом поведении радионуклидов. При обработке почвы 30%-ной H_2O_2 («органическая фракция») в фазу экстрагента в долевом выражении переходило примерно в 3 раза больше ²¹⁰Pb, чем ²¹⁰Po. Судя по отношению УА ²¹⁰Po/²¹⁰Pb, десорбирующий эффект от такого окисления был одинаковым для обоих типов почв.

Поскольку содержание радиоактивного свинца в исходных почвенных образцах ниже, чем полония, то можно предположить более активное поглошение ²¹⁰Рb органическим веществом почв. Материалы публикаций [18, 23] свидетельствуют о том, что помимо органического вещества удельная активность ²¹⁰Рb статистически связана с содержанием в почве Fe, Al и Mn. По данным литературы [24]. значительные количества ²¹⁰Рb обнаруживаются в кислотнорастворимой (в среднем $21.2 \pm 1.6\%$) и в восстановленной химических фракциях (в среднем $11.8 \pm 1.7\%$), экстрагированных из почв, что позволило авторам предположить связывание ²¹⁰Pb в почвах с карбонатами и полуторными оксидами. Эти данные согласуются с результатами наших экспериментов. В восстановительной среде (при действии раствора 0.1 М NH₂OH·HCl в 25%-ной CH₃COOH) относительные доли ²¹⁰Рb и ²¹⁰Ро в выделенном экстракте были близки и находились в пределах 6.52-8.03% (рис. 1 и 2), что предполагает связь указанных радионуклидов с оксидами и гидроксидами Fe и Mn, содержащимися в почвах (табл. 1). Значения УА ²¹⁰Ро в этой фракции были в среднем в 4.7-6.4 раза больше по сравнению с УА ²¹⁰Pb, что несколько больше отношения УА ²¹⁰Ро/²¹⁰Рb в исходных загрязненных почвах. В целом это сопоставление указывает в пользу большей склонности ²¹⁰Ро к связыванию с оксилами и гидроксилами Fe и Mn. В работе [25] ²¹⁰Pb и ²¹⁰Po показали сходное поведение в почвах: их содержание в оксидах и остатках превышало 80%. Отсутствие значительной алсорбции на таких почвенных сорбентах как SiO₂ и CaCO₃ авторы объясняют тем, что оксиды Mn и Fe окисляют ²¹⁰Pb и ²¹⁰Po сильнее. Возможность адсорбции ²¹⁰Ро на сорбентах МпО₂-СТА показана в работе [26]. В публикации [27] была показана тесная связь ²¹⁰Ро в почвах с карбонатами. Во фракции «карбонаты» мы обнаруживали более высокую УА ²¹⁰Рb, нежели ²¹⁰Рo.

В раствор 0.2 М NaOH ²¹⁰Pb и ²¹⁰Po лучше выделялись из образцов загрязненной подзолистой почвы (рис. 1 и 2). В долевом выражении полоний экстрагировался в эту фракцию значительно интенсивнее, чем свинец – в среднем в 11.2 раза сильнее в аллювиально-дерновой и 21.8 раз в подзолистой почвах (рис. 3). Водорастворимая форма ²¹⁰Po также характеризовалась большей (в среднем в 1.9– 3.8 раза) УА по сравнению с аналогичной у ²¹⁰Pb,

что предполагает превосходящую биологическую доступность полония. Оценка эффективности экстракции радионуклидов раствором CH₃COONH₄ с рН 7 дает неоднозначный результат. Он зависел от типа исследуемых почв и может быть обусловлен различиями их физико-химического состава и уровня радионуклидного загрязнения. Так, из образцов подзолистой почвы в обменную фракцию выделялось в абсолютном значении удельной активности больше ²¹⁰Pb, а из аллювиально-дерновой – ²¹⁰Po. В долевом выражении это количество полония было невелико (<1%), а доля свинца составила заметную величину – в среднем 5.0 и 2.1% от его общего содержания соответственно. Таким образом, извлечение ²¹⁰Pb из подзолистой почвы было более существенным. Решающим фактором здесь могло стать различие в кислотности подзолистой и аллювиально-дерновой почв (табл. 1).

Таким образом, исследование форм нахождения ²¹⁰Ро и ²¹⁰Рb в образцах подзолистой и аллювиально-дерновой почв, загрязненных в результате деятельности радийдобывающего предприятия, методом последовательного химического фракционирования позволило нам установить различную миграционную способность ²¹⁰Ро и ²¹⁰Рb в почвах вне зависимости от их типа. Так, относительно высокие концентрации ²¹⁰Ро были выявлены во фракциях «оксиды и гидроксиды Fe и Mn», «органическое вещество» и «аморфные силикаты». ²¹⁰Рb в почвах был более подвижен и обнаруживался во всех фракциях, за исключением водорастворимой, в значимых количествах. В нерастворимых остатках подзолистой и аллювиально-дерновой почв сохранялось в среднем 50.0 и 76.4% от его общего содержания в соответствующих образцах. В то же время для ²¹⁰Ро эти значения составили 72.0 и 82.8%, что указывает на более низкую миграционную способность полония по сравнению с изотопом свинца и позволяет объяснить более высокое его содержание в исследуемых образцах, о чем свидетельствовало сопоставление отношений УА ²¹⁰Ро/²¹⁰Рb. В качестве контрольного оценочного показателя миграционной способности радионуклидов может стать изучение их биологического поглощения из этих почв.

Рис. 3. Отношение УА ²¹⁰Ро/²¹⁰Рb в экстрактах, последовательно выделенных из загрязненных почв. Ось абсцисс диаграммы проходит через равновесное значение отношения УА ²¹⁰Ро/²¹⁰Рb, равное 1.

ФОНДОВАЯ ПОДДЕРЖКА

Исследования выполнены в рамках ГЗ ИБ ФИЦ Коми НЦ УрО РАН N AAAA-A18-118011190102-7.

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют об отсутствии конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- Пучкова Е.В., Богданова О.Г. // Радиохимия. 2015. Т. 57, № 2. С. 183–191.
- Венунатан Н., Нарайана И. // Радиохимия. 2016. Т. 58, № 5. С. 478–480.
- Persson B.R.R., Holm E. // J. Environ. Radioact 2011. Vol. 102. P. 420–429. https://doi:10.1016/j.jenvrad.2011.01.005
- 4. Санжарова Н.И., Фесенко С.В., Шубина О.А., Исамов Н.Н. (мл.), Санжаров А.И. // Радиационная биология. Радиоэкология. 2009. Т. 49, № 3. С. 268–276.
- 5. Бахур А.Е., Мануилова Л.И., Овсянникова Т.М. // АНРИ. 2009. N 1. С. 29–40.
- 6. *Jia G.* // Appl. Radiat. Isot. 2018. Vol. 137. P. 12–17. https://doi.org/10.1016/j.apradiso.2018.02.019
- Носкова Л.М., Шуктомова И.И. // Экология. 2009. № 1. С. 73–76. https://doi.org/10.1134/S1067413610050073
- Рачкова Н.Г., Шапошникова Л.М. // Геохимия. 2020. № 6. С. 599–608. https://doi.org/10.31857/S0016752520050106
- Chao J.H., Chuang C.Y. // Appl. Radiat. Isot. 2011. Vol. 69. P. 261–267.

- Heltai G., Gyori Z., Fekete I., Halasz G., Kovacs K., Takacs A., Boros N., Horvath M. // Microchem. J. 2018. Vol. 136. P. 85–93.
- Таскаев А.И., Кичигин А.И. Водный промысел: производство радия в Республике Коми. Сыктывкар, 2002. 30 с.
- 12. Tessier A., Campbell P.G.C., Bisson M. //Anal. Chem. 1979. Vol. 51, N 7. P. 844–851.
- Klemt E., Spasova Y., Zibold G. // Environmental Radioactivity in the Arctic and Antarctic: Proc. 15th Conf. St. Petersburg, 2002. P. 67–70.
- Адамова Л.И., Таскаев А.И. // Миграция и биологическое действие естественных радионуклидов в условиях северных биогеоценозов. Сыктывкар, 1980. С. 64–71.
- Blanchard R.L. // Anal. Chem. 1966. Vol. 38. P. 189– 192.
- Скоробогатов Г.А., Тимофеев С.А., Кузин В.И., Кадука М.В., Швыдко Н.С., Гончарова Ю.Н. // Радиохимия. 2010. Т. 52, № 5. С. 458–463.
- 17. Бекман И.Н. Радиохимия. Т. 2: Радиоактивные элементы: Учеб. пособие. М.: ОнтоПринт, 2014. 400 с.
- Vaaramaa K., Aro L., Solatie D., Lehto J. // Sci. Total Environ. 2010. Vol. 408. P. 6165–6171.
- Bister S., Birkhan J., Lüllau T., Bunka M., Solle A., Stieghorst C., Riebe B., Michel R., Walther C. // J. Environ. Radioact. 2015. Vol. 144. P. 21–31.

 Brown J.E., Gjelsvik R., Roos P., Kalas J.A., Outola I., Holm E. // J. Environ. Radioact. 2011. Vol. 102. P. 430– 437.

https://doi:10.1016/j.jenvrad.2010.06.016

- Karunakara N., Avadhani D.N., Mahesh H.M., Somashekarappa H.M., Narayana Y., Siddappa K. // J. Environ. Radioact. 2000. Vol. 51. P. 349–362.
- 22. Алексахин Р.М., Архипов Н.П., Бархударов Р.М., Василенко И.Я., Дричко В.Ф., Иванов Ю.А., Маслов В.И., Маслова К.И., Никифоров В.С., Поликарпов Г.Г., Попова О.Н., Сироткин А.Н., Таскаев А.И., Тестов Б.В., Титаева Н.А., Февралева Л.Т. Тяжелые естественные радионуклиды в биосфере: Миграция и биологическое действие на популяции и биогеоценозы / Под ред. Р.М. Алексахина. М.: Наука, 1990. 368 с.
- 23. *Торшин С.П., Смолина Г.А.* Биогеохимия радионуклидов. М.: ИНФРА-Москва, 2016. 319 с.
- Virtanen S., Vaaramaa K., Lehto J. // Appl. Geochem. 2013. Vol. 38. P. 1–9. http://dx.doi.org/10.1016/j.apgeochem.2013.08.004
- Al-Masri M.S., Amin Y., Khalily H., Al-Masri W., Al-Khateeb Y. // J. Environ. Radioact. 2021. Vols. 229– 230. Article 106538.
- Semenishchev V.S., Tomashova L.A., Titova S.M. // J. Radioanal. Nucl. Chem. 2021. Vol. 327, N 2. P. 997– 1003.
- 27. Le T.-H.-H., Michel H., Champion J. // J. Environ. Radioact. 2019. Vols. 199–200. P. 1–6.