УДК 66.061.16:546.79

РАСТВОРЕНИЕ ОКСИДОВ АКТИНОИДОВ В КАРБОНАТНЫХ РАСТВОРАХ¹

© 2023 г. Н. М. Червяков^{*a*, *ó*}, А. В. Бояринцев^{*a*, *ó*, *, Г. В. Костикова^{*b*}, С. И. Степанов^{*a*, *ó*}}

^а Российский химико-технологический университет им. Д.И. Менделеева,

^б Озерский технологический институт Национального ядерного университета «МИФИ»,

456783, Озерск Челябинской обл., пр. Победы, д. 48

^в Институт физической химии и электрохимии им. А.Н. Фрумкина РАН,

119071, Москва, Ленинский пр., д. 31, корп. 4

* e-mail: aboyarincev@muctr.ru

Поступила в редакцию 08.12.2022, после доработки 17.01.2023, принята к публикации 18.01.2023

Стадия растворения уранового и смешанного уран-плутониевого оксидного отработавшего ядерного топлива является ключевой начальной стадией новой альтернативной гидрометаллургической технологии – КАРБЭКС-процесса. В работе рассмотрены карбонатные окислительные системы NaHCO₃/Na₂CO₃–H₂O₂/2Na₂CO₃·3H₂O₂/M₂S₂O₈, где M = Na⁺, K⁺ или NH⁺₄, для растворения порошков оксидов актиноидов. Определены химические и физические факторы, определяющие скорость окислительного растворения порошков индивидуальных оксидов UO₂, U₃O₈, PuO₂ и NpO₂ в карбонатных средах. Полученные результаты являются важными для разработки вариантов окислительного и сонохимического растворения высокопрокаленных кристаллических образцов оксидов урана, плутония и нептуния, а также отработавшего ядерного топлива в карбонатных средах.

Ключевые слова: диоксид урана, октаоксид триурана, диоксид плутония, диоксид нептуния, окислительное растворение, карбонатные среды, пероксид водорода, персульфат

DOI: 10.31857/S0033831123030024, **EDN:** ENKEJB

ВВЕДЕНИЕ

Принципиальная возможность извлечения урана из техногенных и минеральных источников в карбонатных окислительных системах определила их применение в новых подходах некислотной переработки ОЯТ и РАО в Японии, Южной Корее, США и Российской Федерации [1–6]. Карбонатные окислительные среды рассматриваются в качестве нетрадиционных альтернативных систем для растворения диоксида урана UO₂ как основного компонента ОЯТ и октаоксида триурана U₃O₈ как основного компонента волоксидированного ОЯТ, а также для выщелачивания урана из различных материалов [7–

11]. В условиях электрохимического анодного или реагентного окислительного растворения в присутствии пероксида водорода оксиды UO₂ и U₃O₈ быстро и полностью растворяются в водных растворах Na_2CO_3 или (NH₄)₂CO₃, а продукты деления (ПД), такие как редкоземельные элементы РЗЭ(III), Ru, Rh, Pd, Sr, Ba, остаются в нерастворимом остатке. Таким образом, уже на стадии растворения ОЯТ в карбонатных средах происходит фракционирование ПД. В тоже время Cs, Mo, частично Zr и Tc переходят в карбонатный раствор совместно с ураном, поэтому возникает необходимость в проведении дополнительных аффинажных операций с целью получения очищенных соединений урана для фабрикации новых партий оксидного уранового или смешанного уран-плутониевого топлива.

^{125047,} Москва, Миусская пл., д. 9

¹По материалам доклада на X Российской конференции с международным участием «Радиохимия-2022» (Санкт-Петербург, 26–30 сентября 2022 г.)

Важным требованием к современным радиохимическим технологиям является возможность перерабатывать ОЯТ с большой глубиной выгорания, характеризующееся высоким содержанием плутония, минорных актиноидов и других ПД. Выделение и фракционирование плутония, нептуния и америция расширяет возможности радиохимической технологии, позволяет повысить глубину и комплексность переработки ОЯТ, вовлечь делящиеся материалы в ядерный топливный цикл и снизить количество высокотоксичных радиоактивных отходов, подлежащих захоронению.

Выбор карбонатных сред для переработки оксидного уранового и уран-плутониевого ОЯТ связан с высокой растворимостью и стабильностью карбонатных комплексов актиноидов [12], а также высокой селективностью и широкой вариативностью по составу карбонатных сред, обусловленных уникальностью координационной химии карбонатных и смешанных карбонатно-пероксидных, карбонатно-фторидных и других комплексов актиноидов. Высоким потенциалом для применения в процессах переработки ОЯТ и РАО обладают карбонатно-пероксидные системы. Роль H₂O₂ в таких системах не ограничивается только окислением U(IV). В отличие от кислотных сред, добавка пероксидного лиганда в карбонатный раствор не приводит к осаждению урана. В растворах Na₂CO₃ образуются устойчивые смешанные карбонатно-пероксидные моноядерные $\{Na_4[UO_2(O_2)_x(CO_3)_{3-x}]\}$ и полиядерные { $Na_4[(UO_2)_2(O_2)_2(CO_3)_2], Na_6[(UO_2)_3(O_2)_2(CO_3)_4]$ } анионные комплексы, обладающие более высокой растворимостью - 150-180 г/л U(VI) - по сравнению с комплексом Na₄[UO₂(CO₃)₃] [1-11]. Pu(IV), Np(IV) и Np(VI) также склонны к образованию карбонатно-пероксидных комплексов [7, 13, 14], однако химия и свойства таких соединений пока мало изучены. Регулирование параметров процесса окислительного растворения, таких как концентрация и тип окислителя, карбонатного реагента и рН раствора, позволяет селективно или совместно с минорными актиноидами переводить U(VI) в карбонатный раствор.

Эффективность использования растворов смесей $Na_2CO_3-H_2O_2$, $(NH_4)_2CO_3-H_2O_2$ в качестве растворителя была продемонстрирована при извлечении U(VI) из образцов коммерческого ОЯТ [15], отходов производства уран–гадолиниевого оксидного

РАДИОХИМИЯ том 65 № 3 2023

топлива ((U,Gd)O₂ [16, 17], твердых отходов производства изотопа ⁹⁹Мо [18–20], урансодержащего шлама и известкового осадка [21, 22], а также при растворении металлического урана [23].

Скорость окислительного растворения оксидов урана в карбонатных растворах в присутствии H₂O₂ возрастает с увеличением доли U(VI) в оксиде в следующем порядке: $UO_2 < U_3O_8 < UO_3 \cdot H_2O$ [24-26]. Растворимость UO2 и U3O8 в карбонатных средах повышается с ростом концентрации карбоната, окислителя и температуры среды [7-11, 16]. Скорость растворения UO2 или U3O8 в карбонатно-пероксидных растворах в зависимости от природы катиона карбонатной соли возрастает в следующем $Li_2CO_3 > Na_2CO_3 > K_2CO_3 > (NH_4)_2CO_3$ [7]. ряду: Значительное влияние на скорость окислительного растворения оксидов урана оказывают такие свойства исходных порошков, как удельная поверхность, распределение частиц по размерам и их морфология [27].

В зависимости от состава среды и других условий, Н₂O₂ может проявлять как окислительные, так и восстановительные свойства. Пероксид водорода обладает подходящим окислительно-восстановительным потенциалом (ОВП) для окисления в порошках UO_2 или U_3O_8 до UO_3 , в то время как порошки PuO₂ и NpO₂ H₂O₂ практически не окисляются [8]. Для перевода Pu(IV) и Np(IV) из оксидных фаз (МеО_{2-х}) в составе ОЯТ [28] в карбонатный раствор требуется их окисление до высших валентных состояний. В случае анодного растворения ОЯТ в карбонатных средах Np(IV) и Pu(IV) в составе индивидуальных оксидных фаз могут быть окислены до Np(VI) и Pu(VI) и стабилизированы в этом валентном состоянии озоном при его барботаже через слой суспензии [29]. Однако поведение индивидуальных оксидов трансурановых элементов (ТУЭ) и в составе ОЯТ в процессе окислительного растворения в карбонатно-пероксидных средах будет отличаться. Во-первых, при воздействии высоких радиационных полей при переработке ОЯТ, происходит радиолиз воды с образованием H₂O₂, O₂ и различных радикальных продуктов. Радикалы О' и ОН обладают чрезвычайно сильными окислительными свойствами, в том числе и в щелочных средах, что повышает окислительно-восстановительный потенциал (ОВП) растворительной системы. Несмотря на низкий выход, в присутствии продуктов радиолиза может происходить окислительное (радиолитическое) растворение NpO₂ и PuO₂ в водных растворах даже в отсутствие комплексообразующих лигандов CO₃²⁻ и HCO₃ [30, 31]. При этом скорость радиолитического растворения уменьшается в ряду $UO_2 > NpO_2 > PuO_2$. Во-вторых, ТУЭ в ОЯТ обычно находятся не только в виде интегрированных в основную фазу UO₂ самостоятельных фаз отдельных соединений, но и в большей степени в виде твердого раствора в фазе UO₂. В результате воздействия высоких температур (до 1700°С) и чрезвычайно интенсивных радиационных полей при работе ядерного реактора может протекать образование твердых растворов включения оксидов ТУЭ в матрице UO₂ [32-34]. Возможность количественного извлечения урана и ТУЭ из ОЯТ на основе UO₂ с глубиной выгорания 30-45 ГВт·сут/(т U) после 27-28-летней выдержки в водных растворах (NH₄)₂CO₃-H₂O₂ была продемонстрирована в работе [15].

Из-за недостаточной изученности поведения оксидов PuO₂ и NpO₂ в процессах окислительного растворения в карбонатных средах нет полного понимания, как наиболее эффективно растворять оксилные фазы этих элементов в карбонатных средах. Поэтому возникает необходимость проведения более детальных систематических исследований, результаты которых позволят определить наиболее эффективные альтернативные системы и оценить их потенциал для применения в процессах растворения оксидного уранового и смешанного уран-плутониевого ОЯТ в новом водно-химическом процессе – КАРБЭКС-процессе. Использование персульфатов щелочных металлов или аммония в качестве окислителей Pu(IV) и Np(IV), привлечение методов химической и механической интенсификации могут стать определяющими факторами повышения скорости растворения кристаллических порошков оксидов актиноидов, прокаленных при высокой температуре, в том числе продуктов высокотемпературной волоксидации, обладающих прочной кристаллической решеткой, в карбонатных окислительных средах. Решение сложной задачи полного окислительного растворения PuO2 и NpO2 совместно с UO₂ или U₃O₈ в карбонатных растворах позволит в значительной степени расширить возможности КАРБЭКС-процесса в технологии переработки ОЯТ и РАО, а также обосновать варианты растворения оксидов актиноидов в карбонатных средах. Изучение химического поведения оксидов актиноидов в карбонатных окислительных системах важно с точки зрения как фундаментальной науки, так и практического применения при обращении с радиоактивными отходами в ядерном топливном цикле, включая хранение и переработку ОЯТ и РАО.

В настоящей работе исследовано окислительное растворение порошков диоксидов урана, плутония, нептуния и октаоксида триурана в водных карбонатных растворах.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Вработе использовали кристаллические соединения Na₂CO₃, перкарбонат натрия ($2Na_2CO_3 \cdot 3H_2O_2$), NH₄HCO₃, (NH₄)₂S₂O₈, Na₂S₂O₈, K₂S₂O₈, 8-оксихинолин, динатриевую соль этилендиаминтетрауксусной кислоты (Трилон Б) и 30%-ный раствор H₂O₂ квалификации х.ч. Для приготовления водных растворов использовали дистиллированную воду.

В работе использовали диоксид плутония-239, полученный из оксалата плутония-239 при термической выдержке в течении 4 ч при 1200°С в воздушной атмосфере, представляющий кристаллический порошок оливково-зеленого цвета. Также использовали порошки диоксида нептуния-237 и оксидов природного урана: UO_{2.25}, U₃O₈. Значения величины удельной поверхности (S_{vd}) используемых в работе образцов порошков оксидов актиноидов представлены в табл. 1. Образцы порошков U₃O₈ получали при термической обработке порошка UO_{2.25} в атмосфере воздуха в режиме 120 мин нагрев-120 мин изотермическая выдержка-медленное охлаждение вместе с печью. С повышением температуры обработки UO_{2.25} происходит снижение S_{yg} образцов U_3O_8 , что обусловлено увеличением среднего размера частиц (табл. 1). Средний размер частиц (D_{50}) для порошков U₃O₈ возрастает

Таблица 1. Величины S_{yg} и D_{50} образцов порошков PuO_2 , UO_{2.25} и U₃O₈

Образец	PuO ₂	UO _{2.25}	U ₃ O ₈					
$t_{\text{прок}}, ^{\circ}\text{C}$	1200	—	480	600	800	1000	1200	
$S_{\rm yg}$, м $^2/\Gamma$	0.2	3.3	3.8	3.7	1.8	0.8	0.1	
D_{50}	23.5	2.6	5.8	5.9	8.6	9.5	32.2	

от 2.6 до 32.2 мкм при увеличении температуры обработки (*t*_{прок}) UO_{2.25} от 480 до 1200°С.

Содержание U(VI) в растворах с концентрацией выше 1.0 г/л определяли титрованием с раствором 0.0084 моль/л ванадата аммония в присутствии индикатора – натриевой соли дифениламин-4-сульфокислоты [35]. Содержание U(VI) в растворах с концентрацией ниже 1.0 г/л определяли спектрофотометрическим методом с арсеназо III по поглощению зелено–голубого комплексного соединения уранил–арсеназо ($\lambda_{max} = 653$ нм, предел обнаружения ~0.5 мкг/л) [36].

Концентрации плутония и нептуния в водных растворах определяли радиометрическим методом по α-счету с использованием гамма-бетаальфа-спектрометра-радиометра марки МКГБ-01 (НТЦ «РАДЭК», Россия) и интегрального альфа-спектрометра Alpha Analyst (Canberra, США).

Концентрацию H_2O_2 в растворах определяли титрованием аликвоты раствором 0.1 моль/л перманганата калия. Водные растворы H_2O_2 использовали незамедлительно после приготовления.

Концентрацию CO₃²⁻ и HCO₃⁻ в растворе определяли потенциометрическим титрованием аликвоты раствором 0.1 моль/л HCl со стеклянным электродом P13/BNC при использовании цифрового иономера Elite 3320.

Удельную поверхность рассчитывали по изотерме адсорбции газообразного аргона на испытуемых образцах порошков, полученную на приборе Quadrasorb Kr/SI (Quantachrome Instruments, США) с использованием программного обеспечения QuadraWin (версия 5.02).

Окислительное растворение порошков $UO_{2.25}$ и U_3O_8 проводили в стеклянном термостатируемом реакторе емкостью 100 мл при перемешивании суспензии магнитной мешалкой со скоростью 500 об/мин в выбранном интервале температур (25–75) ± 0.1°C.

В случае ультразвуковой интенсификации процесса в реактор помещали волновод, соединенный с генератором ультразвуковых колебаний и пультом управления установки Булава-П УЗАП-3/22-ОП (Центр ультразвуковых технологий, Россия). Ультразвуковую обработку (УЗО) в процессе растворения проводили при частоте (v) 22 ± 1.65 кГц и интенсивности 10 Вт/см². После загрузки всех ре-

РАДИОХИМИЯ том 65 № 3 2023

агентов в реактор включали подачу газообразного CO₂, расход которого 0.2 л/мин устанавливали при помощи газового расходомера. Процесс проводили в режиме 5 мин перемешивания магнитной мешал-кой – 5 мин УЗО.

Окислительное растворение порошков PuO₂ и NpO₂ проводили в пластиковых пробирках. Навеску образца порошка оксида массой 2-5 мг взвешивали с точностью ±0.1 мг на аналитических весах HR-250AZG (AND, Китай). Перемешивание проводили при помощи магнитной мешалки со скоростью 500 об/мин. Для определения концентраций металлов из пробирки отбирали 0.5 мл жидкой фазы. Перед анализом жидкие образцы центрифугировали при 5000 об/мин в течение 5-10 мин на микроцентрифуге СМ-50 (ELMI, Латвия) для отделения остатков твердой фазы. Растворы после центрифугирования направляли на α-спектрометрию. Для ультразвуковой интенсификации растворения порошка NpO₂ использовали ультразвуковую ванну Elmasonic xtra TT 30H (W = 130 BT, v = 37 кГц).

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Окислительное растворение диоксида урана и октаоксида триурана в карбонатных средах

Необходимым условием полноты растворения UO₂ и U₃O₈ в растворах M₂CO₃, где М – катион щелочного металла или аммония, является достижение и поддержание требуемого значения ОВП в системе. Пероксид водорода является бессолевым реагентом и имеет подходящий ОВП (200-250 мВ), который может окислять уран и демонстрирует высокую скорость окисления U(IV) по сравнению с другими окислителями [7]. Пероксид ион является лигандом для UO_2^{2+} -иона (пероксидная группа O_2^{2-} встраивается во внутреннюю координационную сферу карбонатных комплексов уранила, образуя высоко растворимые в карбонатных растворах карбонатно-пероксидные комплексы), а протон слабой кислоты, которой является H₂O₂, нейтрализует NaOH, образующийся при растворении оксида. Вариант однократного добавления стехиометрического количества H₂O₂ в карбонатный раствор в начале процесса, как правило, не позволяет добиться полного растворения UO2 или U3O8. Избыток H2O2 полностью разлагается в растворе через 10–20 мин перемешивания в зависимости от концентрации карбоната и температуры [37], в результате чего карбонатная система быстро теряет окислительную способность. Такого короткого интервала времени недостаточно для полноты окисления и взаимодействия H_2O_2 с прокаленными и хорошо кристаллизованными порошками UO₂ и U₃O₈. Для поддержания постоянного значения ОВП в карбонатной окислительной системе необходимо осуществлять дробную подачу концентрированного раствора H_2O_2 [27].

Кристаллический перкарбонат натрия $2Na_2CO_3 \cdot 3H_2O_2$ рассматривается в качестве альтернативного раствору H_2O_2 окислителя в карбонатных системах в отличие от пероксида натрия, который характеризуется низкой эффективностью в процессах окислительного растворения порошков UO_2 и U_3O_8 . В процессе разложения пероксида натрия происходит образование и накопление NaOH в карбонатном растворе, что приводит к повышению рН и выделению урана(VI) из раствора в виде малорастворимых полиуранатов.

Порошкообразные образцы UO₂ и образцы U₃O₈, полученные в диапазоне температур 480–800°С, могут быть быстро (в течение 90–180 мин) и количественно (>99.9%) растворены в растворах, содержащих 1.0 моль/л NaHCO₃/Na₂CO₃–*x* моль/л H₂O₂ где x = 0.1-0.5, в условиях дробной подачи H₂O₂ или 2Na₂CO₃·3H₂O₂. Повышение концентрации H₂O₂, карбонатного реагента и температуры среды, приводит к повышению скорости растворения UO₂ и U₃O₈ (табл. 2), что согласуется с литературными данными [7, 27].

Скорость растворения порошков U_3O_8 , полученных при температурах выше 1000°С, значительно снижается, в результате не достигается полнота их растворения даже при повышенном расходе окислителя и при непрерывном длительном агитационном перемешивании. Это вызвано уменьшением удельной поверхности, увеличением размера частиц и кристалличности порошков U_3O_8 при повышении температуры прокаливания исходного порошка UO_2 . Таким образом, физические свойства – морфология, удельная поверхность, размер частиц порошков U_3O_8 – являются важными факторами, влияющими на скорость растворения в карбонатных средах.

Химические и механические методы могут быть эффективными для интенсификации окислительного растворения UO₂ и U₃O₈ [38, 39]. Химическая интенсификация заключается в добавлении комплексообразующих лигандов, которые образуют с уранилом хорошо растворимые стабильные комплексные анионы. В качестве таких реагентов, например, могут выступать Трилон Б и 8-оксихинолин [40]. Добавка 0.1 моль/л 8-оксихинолина или Трилона Б к смеси 1.0 моль/л Na₂CO₃-0.1 моль/л H₂O₂ в условиях одностадийного растворения при 75°С, Т: Ж = 1:50 и дробной подаче окислителя позволила повысить степень растворения порошка U₃O₈ полученного при 1200°С, с 42.7 до 90% в случае раствора 0.1 моль/л 8-оксихинолина и более 99.9% в случае раствора 0.1 моль/л Трилона Б (табл. 2).

Ультразвуковая обработка суспензии порошка U₃O₈, выдержанного при 800°С, в смеси 1.0 моль/л Na₂CO₃-0.1 моль/л H₂O₂ позволяет значительно увеличить скорость окислительного растворения и получить карбонатные растворы, содержащие более 150 г/л по U(VI) при снижении T : Ж от 1 : 50 до 1: (3-5) [38]. Однако в этом случае требуется регулировка рН карбонатного раствора для предотвращения образования малорастворимых соединений U(VI) из-за накопления щелочи, образующейся при растворении UO₂ и U₃O₈. Такая корректировка рН может быть осуществлена, например, ограниченной подачей газообразного СО2 в объем суспензии [38]. При низком содержании U(VI) в карбонатном растворе, когда степень превращения мала или отношение Т : Ж повышено в пользу жидкой фазы, изменение рН при окислительном растворении незначительно вследствие буферных свойств карбонатных и/или бикарбонатных солей. Кроме того, механическое воздействие ультразвуковой кавитации на твердую фазу позволяет устранять образование сплошных пленок малорастворимых продуктов окисления на поверхности оксида, приводящих к повышению диффузионного сопротивления в гетерогенной системе и замедляющих скорость растворения порошков оксидов урана вплоть до его полного прекращения.

Таблица 2. Окислительное растворение порошков оксидов UO_2 и U_3O_8 в карбонатных и бикарбонатных средах при дробной подаче окислителя. *t* – температура среды, τ – время растворения, α – степень перевода порошка оксида в раствор

Образец, $t_{прок}$, °С	$S_{ m yg}$, м $^2/\Gamma$	Среда	Окислитель	t, °C	τ, мин	α, %
UO _{2.25}	3.3	1.0 моль/л Na ₂ CO ₃	0.1 моль/л H ₂ O ₂	75	60	33.2
			0.9 моль/л H_2O_2		60	45.0
		1.0 моль/л NaHCO ₃	0.1 моль/л H_2O_2	25	90	62.6
				75	60	80.0
		1.0 моль/л Na ₂ CO ₃ ^a	0.1 моль/л 2Na ₂ CO ₃ –3H ₂ O ₂	25	210	77.9
				75	180	96.4
U ₃ O ₈ , 480°C	3.8	1.0 моль/л Na ₂ CO ₃	0.1 моль/л H_2O_2	75	90	>99.9
U ₃ O ₈ , 800°C	1.8				120	89.0
U ₃ O ₈ , 1000°C	0.8				300	67.2
U ₃ O ₈ , 600°C	3.7	1.0 моль/л Na ₂ CO ₃	0.1 моль/л H_2O_2	25	300	34.5
				75	90	>99.9
U ₃ O ₈ , 1200°C	0.1			25	300	21.7
				75	240	42.7
			0.2 моль/л H_2O_2			62.3
			0.5 моль/л H_2O_2			86.0
U ₃ O ₈ , 480°C	3.8	1.0 моль/л Na ₂ CO ₃ ^a	0.1 моль/л 2Na ₂ CO ₃ –3H ₂ O ₂	25	210	96.4
				75	60	>99.9
U ₃ O ₈ , 1200°C	0.1			25	270	38.0
				75	150	99.7
U ₃ O ₈ , 480°C	3.8	1.0 моль/л NaHCO ₃	0.1 моль/л H_2O_2	25	210	47.2
				75	30	>99.9
U ₃ O ₈ , 600°C	3.7			25	180	34.2
				75	90	>99.9
U ₃ O ₈ , 800°C	1.8			25	240	31.9
				75	180	>99.9
U ₃ O ₈ , 1200°C	0.1			25	210	8.0
				75		66.9
		1.0 моль/л Na ₂ CO ₃	0.1 моль/л H ₂ O ₂	50	240	54.3
		0.1 моль/л 8-оксихинолин		75		89.9
		1.0 моль/л Na ₂ CO ₃		50		95.8
		0.1 моль/л Трилон Б		75		>99.9

^а Повышение концентрации Na₂CO₃ в карбонатном растворе до 1.0 моль/л происходит в процессе дробной подачи всех порции кристаллического 2Na₂CO₃–3H₂O₂ в течение времени проведения процесса.

Окислительное растворение диоксида плутония в карбонатных средах

Порошки оксида PuO_2 плохо растворяются не только в карбонатных, но и в азотнокислых растворах. Растворимость PuO_2 в этих средах зависит как от физических свойств порошков (размер частиц,

морфология, особенно температура и время прокаливания при получении порошка), так и условий растворения. В области рН 7.5–9.6 при низких концентрациях карбоната растворимость кристаллического PuO_2 и аморфных гидратированных порошков оксида $PuO_2 \cdot xH_2O$ не превышает 10⁻⁸ моль/л. По-

РАДИОХИМИЯ том 65 № 3 2023

вышение концентрации карбоната в растворе сопровождается увеличением растворимости оксида Pu(IV) благодаря образованию устойчивых растворимых комплексных карбонатных анионов [41, 42]. Ключевым условием растворения порошков PuO₂ в карбонатных средах является окисление Pu(IV) до Pu(VI), представляющее собой сложную задачу. В присутствии Н₂O₂ скорость растворения порошков PuO₂ в растворах Na₂CO₃ очень низкая. Растворимость порошка PuO₂ в карбонатном растворе изменяется в интервале 0.01-0.07 г/л Ри в зависимости от способа его получения (температура и время прокаливания) и условий растворения. Прокаленный при высокой температуре порошок PuO₂ практически не растворяется в карбонатных растворах, в то время как свежеосажденный Pu(OH)₄ достаточно хорошо растворяется в карбонатных и щелочных растворах [43].

В качестве эффективных окислителей Pu(IV) в карбонатных средах хорошо зарекомендовали себя персульфаты щелочных металлов и аммония. Применение персульфата калия в процессе окислительного растворения ограничено его относительно низкой растворимостью в водных карбонатных растворах. Добавка Na₂S₂O₈ в раствор Na₂CO₃ способствует окислению Pu(IV) до Pu(VI) с образованием устойчивого растворимого соединения Na₄[PuO₂(CO₃)₃], при этом растворимость окисленного плутония повышается до 0.5–1.0 г/л. Растворимость «состаренного» в течение двух недель Pu(OH)₄ в растворе Na₂CO₃ в присутствии 0.1 моль/л K₂S₂O₈ составляет 0.25 г/л Pu [43].

Режим дробной подачи окислителя в карбонатный раствор является важным условием для повышения степени растворения порошков PuO_2 в растворах $Na_2CO_3 - (NH_4)_2S_2O_8/Na_2S_2O_8$. Повышение температуры карбонатного раствора и концентрации окислителя, приводит к повышению растворимости порошка PuO_2 в карбонатной системе (рис. 1).

В смеси $(NH_4)_2S_2O_8$ и H_2O_2 скорость растворения порошка PuO_2 в растворе 1.0 моль/л Na_2CO_3 повышается, а значение $\alpha(PuO_2)$ за 180 мин перемешивания при дробной подаче H_2O_2 достигает ~25% (табл. 3).

Повышение температуры с 20 до 85° С позволяет повысить α (PuO₂) на ~15%. В рассматривае-

Рис. 1. Кинетические кривые растворения порошка PuO_2 в 1.0 моль/л Na_2CO_3 растворе в присутствии 0.2 моль/л $(NH_4)_2S_2O_8$ при 20°С (*1*) и 2.0 моль/л $(NH_4)_2S_2O_8$ при 20 (*2*), 50 (*3*) и 85°С (*4*).

мых карбонатных окислительных системах пероксид-ион не проявляет окислительных свойств по отношению к PuO₂, но может принимать участие в процессах образования комплексных смешанных пероксо-карбонатных соединений Pu(IV) [2, 13], растворимость и устойчивость которых в карбонатных средах на данный момент мало изучены. В отсутствие H_2O_2 в системе Na_2CO_3 -(NH_4)₂S₂O₈, повышение температуры с 20 до 90°С приводит к повышению α (PuO₂) с 6 до 24% (табл. 3).

Одним из подходов к растворению PuO₂ в карбонатных средах является предварительный перевод диоксида в другую форму, которая легче переходит в раствор, чем исходное соединение. В качестве возможного варианта такого подхода является конверсия диоксида в пероксидное соединение при вымачивании в концентрированном водном растворе Н2О2, при которой прочная кристаллическая решетка диоксида разрушается и перестраивается в решетку другого, более растворимого соединения. Например, при обработке гидроксида Pu(IV) концентрированным раствором H₂O₂ происходит его трансформация в пероксидное соединение Pu(IV), которое после окисления в присутствии персульфат-иона легко растворяется в 0.5 моль/л Na₂CO₃ [43]. Без окисления персульфатом продукты пероксидной конверсии малорастворимы в растворе 0.5-1.0 моль/л Na₂CO₃ [44], тогда как в присутствии 0.5 моль/л (NH₄)₂S₂O₈ протекает окисление Pu(IV) и растворимость продуктов пероксидной конверсии значительно повышается. Помимо малорастворимых в карбонатных средах

Среда	Окислитель	t, °C	τ, мин	α, %	Режим подачи окислителя
1.0 моль/л Na ₂ CO ₃ 0.2 моль/л (NH ₄) ₂ S ₂ O ₈		25	90	1.7	Разовая подача кристаллического
	2.0 моль/л (NH ₄) ₂ S ₂ O ₈	25	120	3.6	$(NH_4)_2S_2O_8$
		50	40	2.0	
		85	85	5.6	
	4.0 моль/л (NH ₄) ₂ S ₂ O ₈	95	120	18.4	
2.0 моль/л Na ₂ CO ₃	4.0 моль/л $(NH_4)_2S_2O_8$	25	60	6.0	Дробная подача кристаллического (NH ₄) ₂ S ₂ O ₈
2.0 моль/л Na ₂ CO ₃	4.0 моль/л (NH ₄) ₂ S ₂ O ₈	25	60	6.1	Разовая подача кристаллического
1.0 моль/л Na ₂ CO ₃	1.0 моль/л Na_2O_2	95	60	4.4	$(NH_4)_2S_2O_8$
	1.0 моль/л H ₂ O ₂ + 1.0 моль/л (NH ₄) ₂ S ₂ O ₈	25	60	7.7	Разовая подача (NH ₄) ₂ S ₂ O ₈ , дробная подача H ₂ O ₂
	1.0 моль/л H ₂ O ₂ + 1.0 моль/л (NH ₄) ₂ S ₂ O ₈	85	180	24.8	
1.0 моль/л NH ₄ HCO ₃	1.0 моль/л (NH ₄) ₂ S ₂ O ₈	85	120	2.1	Разовая подача кристаллического (NH ₄) ₂ S ₂ O ₈

Таблица 3. Растворение порошка PuO₂ в карбонатных окислительных средах при T : Ж = 1 : 2000, различных температурах и режимах подачи окислителя

пероксидов Pu(IV) в содовых растворах образуется малорастворимое пероксо-карбонатное соединение $Pu(IV) - Na_3Pu_2(O_2)_2(CO_3)_6$ ·12H₂O [13].

Окислительное растворение диоксида нептуния в карбонатных средах

В окислительных условиях растворимость NpO₂ в нейтральных и основных растворах возрастает за счет образования более растворимых окисленных форм. Для окисления Np(IV) до Np(V) и Np(VI) и перевода его в более растворимые в щелочных и карбонатных средах формы могут быть использованы кислород воздуха, озон, перманганат-, персульфат-, перхлорат-, пербромат-, ферроцианид-, феррат- и хромат-ионы [45]. В карбонатно-пероксидных растворах нептуний в различных степенях окисления участвует в окислительно-восстановительных реакциях с образованием соединений Np(V). Нептуний(VI) в составе карбонатного комплекса [Np^{VI}O₂(CO₃)₃]⁴⁻ в присутствии стехиометрического количества H₂O₂ восстанавливается до Np(V), а Np(IV) окисляется до Np(V). В обоих случаях происходит образование карбонатного комплекса [Np^VO₂(CO₃)₃]⁵⁻. При добавлении избытка H₂O₂ происходит образование аморфного осадка коричневого цвета [46], что приводит к снижению содержания нептуния в карбонатном растворе.

В отсутствие добавок окислителя при длительной (в течение 24 ч) выдержке порошка NpO₂ в растворе 0.25 моль/л Na₂CO₃ с периодическим перемешиванием при температуре $20 \pm 2^{\circ}$ C, T : Ж = 1 : 430 в раствор переходит не более 1.4% от исходного количества NpO₂. После добавления в карбонатный раствор 0.5 моль/л H₂O₂ концентрация нептуния в карбонатном растворе в течение 60 мин перемешивания уменьшалась с 29 до 6.9 мг/л, что соответствовало извлечению 0.3% от исходной массы NpO₂. При увеличении времени перешивания до 120 мин и добавлении дополнительных порции 30%-ного H₂O₂ в карбонатный раствор не наблюдали повышения растворения порошка NpO₂. Через 4 сут карбонатный раствор был окрашен в бледно-желтый цвет, концентрация нептуния в растворе составила 9.1 мг/л, что соответствовало $\alpha(NpO_2) = 0.4\%$.

После выдержки порошка NpO₂ без перемешивания в течение 1 ч в 30%-ном растворе H_2O_2 при T : $\mathcal{K} = 1$: 400 и комнатной температуре в раствор переходит не более 1.0% NpO₂. После выдержки в течение 4 сут в раствор перешло около 1.6% NpO₂. Незначительный переход нептуния в раствор может быть обусловлен радиолитическим растворением NpO₂ под действием продуктов радиолиза в отсутствие CO₃²⁻. При добавлении к выдержанному в течение 4 сут порошку NpO₂ водного раство-

Таблица 4. Растворение порошка NpO_2 в смеси Na_2CO_3 - H_2O_2 . $[Na_2CO_3]_{HCX} = 0.5$ моль/л, $t = 20 \pm 2^{\circ}C$, $T : \mathcal{K} = 1 : 500$

τ, мин	[Na ₂ CO ₃] _{равн} , моль/л	[H ₂ O ₂] _{исх} , моль/л	[Np], мг/л	α, %			
Без УЗО							
60	0.38	2.3	2.6	0.14			
150	0.34	1.0	15.0	0.87			
СУЗО							
210	0.34	1.0	438.0	26.3			
270	0.31		378.1	25.1			
330	0.28		338.0	24.6			
390	0.28		334.7	24.4			
450	0.28		330.1	24.1			
510	0.26		160.2	12.7			

ра 2.0 моль/л Na₂CO₃ и последующей выдержке в ультразвуковой ванне в течение 30 мин извлечение NpO₂ в карбонатный раствор составило 7.2%. С повышением времени выдержки в ультразвуковой ванне извлечение NpO₂ в карбонатный раствор снижалось до 4.0% за 60 мин и до 3.7% за 120 мин, но далее не изменялось. Повышение извлечения NpO₂ в данных условиях может быть обусловлено воздействием ультразвуковых волн. Как отмечалось выше, УЗО позволяет существенно ускорять окислительное растворение U_3O_8 в водных растворах Na_2CO_3 и Na₂CO₃-H₂O₂, а также способствует получению более концентрированных карбонатных растворов U(VI) [4, 11]. Возникающие при прохождении ультразвука через жидкие и жидко-дисперсные среды акустические течения улучшают перемешивание и гомогенизацию системы, приводят к снижению толщины диффузионного слоя на границе твердоежидкое, таким образом ускоряя массообменные процессы. Ультразвуковая кавитация, воздействуя на твердую фазу, измельчает ее, вызывая разрушение, обновление и увеличение площади реакционной поверхности [47]. При сонолизе воды, как и в случае радиолиза, происходит образование H₂O₂, $O_2, O_3,$ а также радикалов O[•] и OH[•], которые, несмотря на низкий выход, обладают чрезвычайно сильными окислительными свойствами в щелочных средах и позволяют существенно ускорять окислительно-восстановительные реакции с участием ТУЭ [48]. Таким образом, создаются предпосылки к варианту сонохимического растворения оксидов

урана и ТУЭ, а частности NpO_2 и PuO_2 , в водных щелочных и карбонатных средах [48, 49]. В условиях УЗО растворов Na_2CO_3 - H_2O_2 может происходить образование карбонатных радикалов, позволяющих ускорять химические процессы с участием нептуния.

Обработка в ультразвуковой ванне суспензии порошка NpO₂ в растворе 0.5 моль/л Na₂CO₃ в присутствии H₂O₂ при прочих равных условиях позволяет повысить растворимость NpO_2 с 0.9 до ~ 26.3% за 210 мин (табл. 4). Однако увеличение времени УЗО с 210 до 450 мин приводило к постепенному снижению α(NpO₂) с 26.3 до 24.1%. Карбонатный раствор после 450 мин УЗО был окрашен в желтый цвет и содержал 330.1 мг/л Np. Через 24 ч концентрация Np(VI) в карбонатном растворе снизилась с 330.1 до 18.4 мг/л, что соответствовало $\alpha(NpO_2) = 1.5\%$, при этом наблюдали образование осадка желтого цвета. Снижение концентрации нептуния может быть связано с гидролизом его карбонатных соединений в относительно разбавленных карбонатных растворах после сонохимического растворения и образованием малорастворимых продуктов гидролиза, выделяющихся из растворов в виде вторичного осадка.

Рассмотренные варианты окислительного растворения порошка NpO_2 в растворах Na_2CO_3 позволяют говорить о возможности перевода NpO_2 в карбонатные растворы в присутствии H_2O_2 . Растворимость NpO_2 в изученной карбонатной системе существенно возрастает при УЗО, которая, по-видимому, приводит к ускорению окисления NpO_2 и последующего растворения окисленных форм нептуния в карбонатном растворе. В то же время необходимо проведение более детального исследования для уточнения протекающих в данной системе процессов и установления механизма сонохимического растворения NpO_2 и оксидов других ТУЭ в карбонатных средах.

ЗАКЛЮЧЕНИЕ

Проведены модельные эксперименты по прямому окислительному растворению порошков оксидов UO₂, U₃O₈, PuO₂ и NpO₂ в водных растворах NaHCO₃/Na₂CO₃-H₂O₂/2Na₂CO₃·3H₂O₂/M₂S₂O₈, где M = Na⁺, K⁺ или NH₄⁺. Экспериментально подтверждена принципиальная возможность растворения порошков PuO_2 и NpO_2 в растворах Na_2CO_3 в окислительных условиях. Установлено, что при подборе оптимальных условий и режимов процесса окислительного растворения возможно достижение полноты растворения оксидов ТУЭ в карбонатных средах. К факторам, способствующим повышению растворимости оксидов ТУЭ в карбонатных средах, относятся повышение температуры среды, концентрации карбонатного реагента и окислителя, организация режима дробной подачи окислителя для поддержания постоянного значения ОВП, а также использования способов дополнительной химической (корректировка pH карбонатного раствора или добавка сильного комплексообразователя) и механической (ультразвуковой) интенсификации.

Низкая скорость окислительного растворения порошков NpO₂ и PuO₂ обусловлена низким значением OBII карбонатно-пероксидных систем, а также неустойчивостью карбонатных растворов вследствие гидролиза карбонатных комплексов ТУЭ. Образование вторичных (гидролитические продукты и продукты окисления) малорастворимых форм Np(IV), Np(V), и Pu(IV) приводит к увеличению диффузионного сопротивления в гетерогенной системе и замедляет скорость процесса окисления/растворения порошков NpO₂, PuO₂, а также UO₂ и U₃O₈.

Воздействие ультразвуковой кавитации на суспензию оксидов NpO2 или PuO2 в карбонатном растворе позволяет снизить диффузионное сопротивление в гетерогенной системе за счет механического обновления поверхности растворяемой твердой фазы оксида актиноида и интенсификации массообмена. Ультразвуковое воздействие, по-видимому, не ограничивается только механическим действием на твердую фазу оксида актиноида. Химическое воздействие ультразвука на жидкую фазу связано с образованием активных частиц, интенсифицирующих химические процессы окисления и растворения и влияющих на химические равновесия в карбонатных окислительных системах, содержащих актиноиды. Полученные результаты подтверждают возможность организации варианта сонохимического растворения оксидов актиноидов в карбонатных средах, однако в этой области требуется проведение дальнейших детальных исследований. В то же время УЗО ускоряет вторичные процессы гидролиза карбонатных комплексов актиноидов, в результате

РАДИОХИМИЯ том 65 № 3 2023

которых накапливаются вторичные Np/Pu/U-содержащие осадки. Стабилизация карбонатных растворов актиноидов и предотвращение накопления вторичных осадков могут быть организованы за счет введения дополнительных комплексообразующих агентов и корректировки рН карбонатных растворов газацией углекислым газом. Таким образом, факторами повышения скорости окислительного растворения оксидов актиноидов в карбонатных средах и повышения устойчивости образующихся растворов могут быть: 1) повышение окислительно-восстановительного потенциала среды растворения; 2) регулировка рН среды или добавка комплексообразователей, эффективно удерживающих ТУЭ в карбонатных растворах и позволяющих переводить вторичные малорастворимые соединения нептуния, плутония и урана в растворимые формы; 3) проведение окислительного растворения оксидов актиноидов в карбонатных растворах в условиях механического обновления поверхности растворяемой твердой фазы, например, ультразвуковая обработка, и снижения диффузионного сопротивления при доставке реагирующих компонентов к реакционным центрам на поверхности оксидной фазы.

Полученные результаты являются научной базой для обоснования и разработки вариантов как совместного, так и раздельного растворения урана и ТУЭ за счет комбинации окислителей, изменением условий и режимов проведения окислительного растворения уранового и смешанного уран-плутониевого ОЯТ в карбонатных средах в КАРБЭКС-процессе. На основании полученных результатов могут быть разработаны физико-химические основы альтернативного метода выщелачивания урана, плутония и нептуния из ОЯТ в карбонатные растворы.

БЛАГОДАРНОСТИ

Авторы выражают благодарность Перевалову С.А. за помощь в проведении исследований окислительного растворения диоксида нептуния в карбонатных средах.

ФОНДОВАЯ ПОДДЕРЖКА

Данная работа выполнена при финансовой поддержке Российского научного фонда, соглашение № 20-63-46006.

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют об отсутствии конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- Asanuma N., Asano Yu., Tomiyasu H. // Proc. 5th Int. Conf. Recycling, Conditioning and Disposal (RECOD 98). Bern: ENS, 1998. P. 709–716.
- Goff G.S., Brodnax L.F., Cisneros M.R., Williamson K.S., Taw F.L., May I., Runde W. // AIChE Annual Meet. Conf. Proc. Salt Lake City: AIChE, 2007. 393c.
- Kim K.W., Chung D.Y., Yang H.B., Yang J.K., Lim E.H., Lee K.C., Song K.S. // Nucl. Technol. 2009. Vol. 166, N 2. P. 170–179.
- Stepanov S.I., Chekmarev A.M. // Dokl. Chem. 2008. Vol. 423, N 1. P. 276–278.
- Stepanov S.I., Boyarintsev A.V., Vazhenkov M.V., Myasoedov B.F., Nazarov E.O., Safiulina A.M., Tananaev I.G., Hen Vin So, Chekmarev A.M., Civadze A Yu. // Russ. J. Gen. Chem. 2011. Vol. 81, N 9. P. 1949–1959.
- Stepanov S.I., Boyarintsev A.V. // Nucl. Eng. Technol. 2022. Vol. 54, N. 7. P. 2339–2358.
- Peper S.M., Brodnax L.F., Field S.E., Zehnder R.A., Valdez S.N., Runde W.H. // J. Ind. Eng. Chem. Res. 2004. Vol. 43. P. 8188–8193.
- Smith S.C., Peper S.M., Douglas M., Ziegelgruber K.L., Finn E.C. // J. Radioanal. Nucl. Chem. 2009. Vol. 282. P. 617–621.
- Chung D.Y., Seo H.S., Lee J.W., Yang H.B., Lee E.H., Kim K.W. // J. Radioanal. Nucl. Chem. 2010. Vol. 284. P. 123–129.
- Goff G.S., Long K.M., Reilly S.D., Jarvinen G.D., Runde W.H. // 36th Actinide Separations Conf. Chattanooga: PNNL, 2012. LA-UR-12-21528.
- 11. Stepanov S.I., Boyarintsev A.V., Chekmarev A.M. // Dokl. Chem. 2009. Vol. 427, N 2. P. 202–206.
- Clark D., Hobart D., Neu M. // Chem. Rev. 1995. Vol. 95. P. 25–48.
- 13. Goff G.S., Brodnax L.F., Cisneros M.R., Runde W.H. // AIChE Annual Meet. Conf. Proc. Salt Lake City: AIChE, 2007. 271e.
- Shilov V.P., Yusov A.B., Gogolev A.V., Fedoseev A.M. // Radiochemistry. 2005. Vol. 47, N 6. P. 558–562.
- Soderquist C.Z., Johsen A.M., McNamara B.K., Hanson B.D., Chenault J.W., Carson K.J., Peper S.M. // J. Ind. Eng. Chem. Res. 2011. Vol. 50. P. 1813–1818.

- Kim K.W., Lee J.W., Chung D.Y., Lee E.H., Kang K.H., Lee K.W., Song K.C., Yoo M.J., Park G.I., Moon J.K. // J. Radioanal. Nucl. Chem. 2012. Vol. 292. P. 909–916.
- Kim K.W., Hyun J.T., Lee E.H., Park G.I., Lee K.W., Yoo M.J., Song K.C., Moon J.K. // J. Radioanal. Nucl. Chem. 2011. Vol. 418. P. 93–97.
- Kweto B., Groot D.R., Stassen E., Suthiram J., Zeevaart J.R. // J. Radioanal. Nucl. Chem. 2014. Vol. 302. P. 131–137.
- Stassen L., Suthiram J. // J. Radioanal. Nucl. Chem. 2015. Vol. 305. P. 41–50.
- Stassen L., Suthiram J., Topkin J. // Annual Waste Management Symp. (WM2014). Arizona: Curran Associates, 2014. Paper № 14399.
- Lee E.H., Yang H.B., Lee K.Y., Kim K.W., Chung D.Y., Moon J.K. // J. Korean Radioact. Waste Soc. 2013. Vol. 11, N 2. P. 85–93.
- Lee E.H., Lee K.Y., Chung D.Y., Kim K.W., Lee K.W., Moon J.K. // J. Korean Radioact. Waste Soc. 2012. Vol. 10, N 2. P. 77–85.
- 23. Soderquist C.Z., McNamara B.K., Oliver B.M. // J. Nucl. Mater. 2008. Vol. 378, N 3. P. 299–304.
- Steward S.A., Gray W.J. // Proc. 5th Annual Int. Conf. High Level Radioactive Waste Management. New York: ASCE, 1994.
- 25. *Steward S.A., Mones E.T.* // MRS Online Proc. Library. 1996. Vol. 465. P. 557–564.
- 26. Allen G.C., Tucker P.M., Tyler J.W. // J. Phys. Chem. 1982. Vol. 86. P. 224–230.
- Chervyakov N.M., Boyarintsev A.V., Andreev A.V., Stepanov S.I. // RAD Conf. Proc. 2021. Vol. 5. P. 68–74.
- 28. *Gotcu-Freis P*. High Temperature Thermodynamic Studies on the Transuranium Oxides and Their Solid Solutions. Amsterdam: IOS, 2011. P. 180.
- 29. Asanuma N., Harada M., Ikeda Y., Tomiyasu H. // J. Nucl. Sci. Technol. 2001. Vol. 38, N 10. P. 866–871.
- Pehrman R., Ammea M., Roth O., Ekeroth E., Jonsson M. // J. Nucl. Mater. 2010. Vol. 397, N 1–3. P. 128–131.
- Roth O. Redox chemistry in radiation induced dissolution of spent nuclear fuel: from elementary reactions to predictive modeling: Doctoral Thesis in Chemistry. Stockholm: KTH, 2008. P. 73.
- Buck E.C., Hanson B.D. McNamara B.K. // Geological Society, London, Special Publications. 2007. Vol. 236, N 1. P. 65–88.
- Kleykamp H. // J. Nucl. Mater. 1985. Vol. 131, N 2–3. P. 221–246.

- Thomas L.E., Beyer C.E., Chariot L.A. // J. Nucl. Mater. 1992. Vol. 188. P. 80–89.
- 35. *Марков В.К., Виноградов А.В., Елинсон С.В.* Уран, методы его определения. М.: Атомиздат, 1960. 265 с.
- Marczenko Z., Balcerzak M. Analytical Spectroscopy Library. Vol. 10: Separation, Preconcentration, and Spectrophotometry in Inorganic Analysis. New York: Elsevier, 2000. P. 521.
- Бояринцев А.В. Окислительное растворение U₃O₈ в карбонатных растворах при переработке ОЯТ в КАРБЭКС-процессе: Дис. ... к.х.н. М.: РХТУ им. Д.И. Менделеева, 2009. С. 169.
- Boyarintsev A.V., Stepanov S.I., Kostikova G.V., Zhilov V.I., Chekmarev A.M., Tsivadze A.Y. // Nucl. Eng. Technol. 2019. Vol. 51, N 7. P. 1799–1804.
- Hou C., He M., Fang H., Zhang M., Gao Y., Jiao C., He H. // 2023. Vol. 55, N 1. P. 63–70. https://doi.org/10.1016/j.net.2022.09.025.
- Clifford W.E., Bullwinkel E.P., McClaine L.A., Noble Jr.P. // J. Am. Chem. Soc. 1958. Vol. 80, N 12. P. 2959–2961.
- 41. *Nitsche H.* // Inorg. Chim. Acta. 1987. Vol. 127. P. 121– 128.
- 42. *Clark D.L., Hobart D.E., Neu M.P.* // Chem. Rev. 1995. Vol. 95. P. 25–48.

- Nikonov M.V., Tananayev I.G., Myasoyedov B.F. // Radiochemistry. 2010. Vol. 52, N 1. P. 27–30.
- 44. Поляков С.А., Вольф А.С., Костикова Г.В., Бояринцев А.В., Степанов С.И., Чекмарев А.М. // Успехи в химии и химической технологии. 2017. Т. 31, № 10. С. 73–75.
- Тананаев И.Г. Химическое поведение нептуния, плутония, америция в щелочных средах: Дис. ... д.х.н. М.: ИФХЭ им. А.Н. Фрумкина РАН, 1998. С. 356.
- Jarvinen G.D., Runde W.H., Goff G.S. // Proc. Symp. Emerging Trends in Separation Science and Technology (SESTEC-2010). Mumbai: Bhabha Atomic Research Centre, 2010.
- Агранат Б.А., Дубровин М.Н., Хавский Н.Н., Эскин Г.И. Основы физики и техники ультразвука. М.: ВШ, 1987. 352 с.
- Nikonov M.V., Shilov V.P., Krot N.N. // Abstracts of Int. Conf. Actinides-89. Moscow: Nauka, 1989. P. 359.
- Никонов М.В., Шилов В.П. // Тез. докл. III Всесоюзн. конф. «Химия нептуния и плутония». Л.: Наука, 1987. С. 67.