УДК 546.65+546.799.3

РАСТВОРЕНИЕ СМЕШАННОГО НИТРИДНОГО УРАН-ПЛУТОНИЕВОГО ОТРАБОТАВШЕГО ЯДЕРНОГО ТОПЛИВА

© 2023 г. В. Н. Момотов^{*a*, *,} Е. А. Ерин^{*a*}, А. Ю. Волков^{*a*}, М. И. Хамдеев^{*a*}, Д. Е. Тихонова^{*a*}, П. В. Лакеев^{*a*}, К. Н. Двоеглазов^{*б*}, **

 ^а Научно-исследовательский институт атомных реакторов, 433510, Димитровград Ульяновской обл., Западное шоссе, д. 9
^б АО «Прорыв», 107140, Москва, ул. Малая Красносельская, д. 2/8 e-mail: *momotov@niiar.ru, **dkn@proryv2020.ru

Поступила в редакцию 31.08.2022, после доработки 27.01.2023, принята к публикации 01.02.2023

Получены данные о растворении волоксидированного смешанного нитридного уран-плутониевого отработавшего ядерного топлива (СНУП ОЯТ), количестве и элементном составе нерастворенного остатка, образующегося при проведении процесса в режиме, соответствующем технологической схеме гидрометаллургической переработки отработавшего СНУП топлива. Оценена эффективность процедур перевода в раствор нерастворенного остатка ОЯТ с применением азотной кислоты, путем электрохимического растворения в присутствии электрогенерируемых ионов Ag²⁺, сплавления со смесью гидроксида и нитрата калия.

Ключевые слова: смешанное нитридное уран-плутониевое (СНУП) топливо, растворение СНУП ОЯТ, нерастворенный остаток СНУП ОЯТ, состав нерастворенного остатка ОЯТ.

DOI: 10.31857/S0033831123030061, EDN: ENUQRN

ВВЕДЕНИЕ

Одной из ключевых стадий переработки ОЯТ является растворение. Для повышения эффективности данной операции необходим подбор режима и условий растворения, способствующих количественному переводу в раствор ядерных материалов и уменьшению массы нерастворенного остатка.

При переводе в раствор ОЯТ в режимах, соответствующих его промышленному растворению для последующей водно-экстракционной переработки, возможно образование нерастворенного остатка, содержащего продукты деления и ядерные материалы. Масса нерастворенного остатка может изменяться в зависимости от исходного состава топливной композиции, величины выгорания ОЯТ и применяемых режимов растворения. Для образцов отработавшего уранового оксидного топлива масса нерастворенного остатка, как правило, не превышает 1% от массы растворенного топлива [1, 2], аналогичный показатель для отработавшего уран-плутониевого оксидного топлива может достигать нескольких процентов [3, 4].

Ядерные материалы, содержащиеся в нерастворенном остатке ОЯТ, должны быть извлечены и возвращены в топливный цикл. Для этого необходима оптимизация схемы растворения таких остатков.

Целью работы является определение массы и элементного состава нерастворенного остатка, образующегося при растворении волоксидированного СНУП ОЯТ в режиме, предполагаемом для его гидрометаллургической переработки, и оценка эффективности возможных схем перевода в раствор нерастворенного остатка.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

В качестве объектов исследования выбраны фрагменты твэлов комбинированной экспериментальной тепловыделяющей сборки 7 (КЭТВС-7) и экспериментальной тепловыделяющей сборки 10

Рис. 1. Алгоритм проведения исследований.

(ЭТВС-10) со смешанным нитридным уран-плутониевым отработавшим ядерным топливом.

Фрагментацию твэлов со СНУП ОЯТ проводили с использованием электрического трубореза на образцы длиной от 1 до 2 см. Резку осуществляли на воздухе при температуре 21°С. Основные характеристики сформированных партий фрагментов твэлов представлены в табл. 1.

На рис. 1 представлен алгоритм проведения экспериментальных исследований.

Волоксидацию СНУП ОЯТ проводили в течение 8 ч при температуре 450°С и продувке реакционного объема аппарата волоксидации воздухом со скоростью 150 мл/мин. После завершения волоксидации порошок окисленного ОЯТ отделяли от оболочек твэлов, взвешивали и отбирали навески для проведения входного радиохимического анализа и растворения. Для исследования процедуры растворения отобрано три навески волоксидированного порошка СНУП ОЯТ: две из окисленного топлива, отработавшего в составе КЭТВС-7, и одна из топлива, отработавшего в составе ЭТВС-10. Для проведения входного радиохимического анализа отобраны две навески: одна из топлива, отработавшего в составе КЭТВС-7, и одна из топлива, отработавшего в составе КЭТВС-7, и одна из топлива, отработавшего в составе ЭТВС-10.

Образец ОЯТ	Исходная массовая доля плутония в смеси урана и плутония, %	Величина выгорания, % тяжелых атомов	Наружный диаметр и толщина стенок оболочки, мм	Масса фрагментов твэлов, г	Масса волоксидированного ОЯТ, взятая для растворения, г
ЭТВС-10	10.8	6.0 [5]	9.3 × 0.5 [5]	135.9	112.5
КЭТВС-7	14.0 [7]	6.84 [6]	6.9 × 0.4 [7]	180.3	96.1
					45.0

Таблица 1. Основные характеристики сформированных партий фрагментов твэлов и ОЯТ

Растворение окисленного ОЯТ проводили в конической колбе объемом 1 л, снабженной водоохлаждаемым холодильником высотой 200 мм, в азотной кислоте с концентрацией 8 моль $\cdot n^{-1}$ при нагревании до температуры 95–100°С в течение 6 ч без перемешивания. Соотношение твердой и жидкой фаз в процессе растворения составляло 1 : 4 г/мл.

В корпус конической колбы вварена стеклянная трубка с пришлифованной пробкой, предназначенная для отбора аликвот раствора в процессе растворения. Отобранные аликвоты перед проведением анализа фильтровали через целлюлозный фильтр «синяя лента» для отделения нерастворенных частиц топлива. В осветленном растворе аликвот определяли содержание ядерных материалов и продуктов деления.

После завершения растворения и охлаждения раствора до температуры окружающей среды раствор фильтровали с использованием двойного целлюлозного фильтра «синяя лента» для отделения нерастворенного остатка.

Целлюлозный фильтр с нерастворенным остатком ОЯТ помещали в предварительно взвешенный кварцевый стакан и нагревали на воздухе в печи сопротивления до 500°С, изотермический режим выдерживали 3 ч. После охлаждения до температуры окружающей среды кварцевый стакан с нерастворенным остатком ОЯТ взвешивали. По разности масс пустого стакана и стакана с остатком ОЯТ рассчитывали массу нерастворенного остатка.

Растворение нерастворенного остатка в смеси концентрированных азотной и соляной кислот, взятых в объемном соотношении 1:3 («царская вод-ка»), проводили при температуре 95 ± 5 °C в течение 15 ч. Этот способ применен нами для установления элементного состава нерастворенного остатка в лабораторных условиях. Реализовать такую схему растворения при промышленной переработке ОЯТ

технологически затруднительно. В рамках настоящего исследования данный способ перевода в раствор нерастворенного остатка не рассматривается в качестве перспективного для промышленной переработки ОЯТ.

После завершения растворения нерастворенного остатка раствор фильтровали через двойной целлюлозный фильтр «синяя лента», фильтр троекратно промывали раствором азотной кислоты. Промывные растворы объединяли с фильтратом, объединенный раствор анализировали на содержание ядерных материалов и продуктов деления. Двойной целлюлозный фильтр разделяли, каждую часть озоляли и подвергали дополнительному растворению в смеси концентрированных азотной и соляной кислот для определения остаточного количества ядерных материалов и продуктов деления, оставшихся на верхнем и нижнем фильтрах.

Анализ верхнего и нижнего целлюлозных фильтров по отдельности необходим для подтверждения полноты растворения ОЯТ. Близкие значения содержания компонентов ОЯТ на верхнем и нижнем фильтрах будут свидетельствовать о сорбции ядерных материалов и продуктов деления материалом фильтра. В случае превышения содержания ядерных материалов и продуктов деления на верхнем фильтре по сравнению с нижним можно утверждать, что часть компонентов ОЯТ не растворилась.

Для перевода в раствор ядерных материалов, содержащихся в нерастворенном остатке ОЯТ, проверены три возможных способа:

- дорастворение в азотной кислоте,

 сплавление со смесью нитрата и гидроксида калия с последующим растворением плава в азотной кислоте,

– растворение в азотной кислоте в присутствии
электрогенерируемых ионов Ag²⁺.

Рис. 2. Электрохимическая ячейка, примененная для проверки эффективности растворения нерастворенного остатка ОЯТ

Дорастворение нерастворенного остатка проводили в азотной кислоте с концентрацией 8 моль \cdot л⁻¹ объемом 50 мл при температуре 95–100°С в течение 6 ч.

Сплавление нерастворенного остатка проводили с использованием смеси кристаллических КОН и KNO₃, взятых в соотношении 1 : 3 по массе, при температуре 800°С в течение 2 ч. Отношение масс нерастворенного остатка ОЯТ и смеси нитрата и гидроксида калия составляло 1 : 20. После охлаждения до температуры окружающей среды плав растворяли в азотной кислоте с концентрацией 4 моль·л⁻¹ объемом 200 мл.

Электрохимическое растворение нерастворенного остатка ОЯТ в азотной кислоте в присутствии электрогенерируемых ионов Ag²⁺ проводили с использованием ячейки, схема которой представлена на рис. 2.

Электрохимическая ячейка состоит из анодного пространства (1), в объеме которого находится катодное пространство (2), закрепленное при помощи штока (6). Катод (4) и анод (3) выполнены из платины. Ячейка закрывается фторопластовой крышкой (7), имеющей отверстия для размещения электродов, отбора проб и кольцо (8) для разборки и сборки ячейки в условиях радиационно-защитной камеры. На дне анодного пространства размещен якорь магнитной мешалки (5) для перемешивания раствора.

Дно катодного пространства изготовлено из фторопластовой пластины, имеющей 9 отверстий диаметром 5 мм (9). К фторопластовой основе приклеена микрофильтрационная композиционная гидрофобная мембрана типа МФФК, представляющая собой пористый полимерный пленочный материал на основе фторопласта Ф42Л на подложке из нетканых материалов с диаметром пор 0.65 мкм (10).

В анодное пространство электрохимической ячейки вносили 100 мл азотной кислоты с концентрацией 4 моль·л⁻¹, в которой предварительно растворен нитрат серебра массой 0.85 г. В катодное пространство вносили 50 мл раствора азотной кислоты с концентрацией 4 моль·л⁻¹. Растворение проводили при силе тока 480 мА при перемешивании на магнитной мешалке в течение 24 ч.

Аналитическое обеспечение исследований проводили в соответствии с алгоритмом, подробно описанным в работе [6].

Содержание урана и плутония на стадии растворения ОЯТ определяли методом изотопного разбавления с масс-спектрометрическим окончанием. Выделение фракций урана и плутония из раствора ОЯТ осуществляли методом ионообменной хроматографии с использованием анионита Dowex 1.8 по схеме, предложенной нами ранее в работе [8].

При анализе растворов, полученных при растворении нерастворенных остатков, уран и плутоний определяли спектрофотометрическим методом после их хроматографического выделения. Уран определяли по светопоглощению комплекса урана с арсеназо III при длине волны 652 нм в присутствии ДТПА в качестве маскирующего плутоний агента. Плутоний определяли по характеристической полосе при 830 нм после его количественного окисления до PuO_2^{2+} оксидом двухвалентного серебра. При расчете содержания урана и плутония в растворе ОЯТ спектрофотометрическим методом в рамках данной работы применены коэффициенты, учитывающие потери элементов на стадии их хроматографического выделения, установленные в работе [8] и равные 0.99 и 0.95 соответственно.

Дополнительно содержание плутония определяли по результатам α -спектрометрических измерений по пикам излучения ²³⁹Pu (5156 кэВ) и ²⁴⁰Pu (5168 кэВ). При расчете содержания плутония методом α -спектрометрии учитывали данные по изотопному составу плутония, полученные при анализе раствора ОЯТ методом масс-спектрометрии.

Элемент/изотоп	Содержан волоксидирова для растворени входного	ие в навеске нного ОЯТ, взятой ия, по результатам о анализа, г	Найдено в растворе после завершения основного растворения, г		Доля, перешедшая в раствор на стадии основного растворения, %	
	КЭТВС-7	ЭТВС-10	КЭТВС-7	ЭТВС-10	КЭТВС-7	ЭТВС-10
Масса ОЯТ, взятая для растворения, г	45.0	112.5	45.0	112.5	45.0	112.5
U	33.5	82.9	33	81.4	98.5	98.2
Pu	5.5	9.6	5.4	9.4	98.5	97.9
²⁴¹ Am	1.4×10^{-2}	$5.0 imes 10^{-2}$	1.4×10^{-2}	$5.0 imes 10^{-2}$	100	100
Cs	$2.3 imes 10^{-2}$	$5.4 imes 10^{-1}$	2.3×10^{-1}	5.4×10^{-2}	100	100
Mo	4.3×10^{-2}	$1.1 imes 10^{-1}$	2.0×10^{-2}	$8.0 imes 10^{-2}$	46.5	72.7
Pd	1.6×10^{-1}	$1.7 imes10^{-1}$	1.0×10^{-2}	$2.0 imes 10^{-2}$	6.3	11.7
Rh	8.9×10^{-2}	9.8×10^{-2}	2.0×10^{-2}	$3.0 imes 10^{-2}$	22.4	30.6
Ru	5.6×10^{-2}	$1.1 imes 10^{-1}$	5.0×10^{-2}	$1.0 imes10^{-1}$	89.3	90.9
Tc	4.7×10^{-2}	$5.0 imes 10^{-2}$	2.0×10^{-2}	$3.0 imes 10^{-2}$	42.6	60.0
Zr	2.6×10^{-2}	5.6×10^{-2}	2.0×10^{-2}	5.0×10^{-2}	76.9	89.3
Итого	39.6	93.7	38.8	91.7		

Таблица 2. Полнота растворения компонентов СНУП ОЯТ в режимах, соответствующих технологической схеме растворения СНУП ОЯТ

Содержание Zr, Mo, Tc, Pd, Ru, Rh определяли методом атомно-эмиссионной спектрометрии в соответствии с процедурой, подробно описанной в работе [9].

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Результаты по полноте перехода в раствор урана и плутония на стадии основного растворения представлены в табл. 2.

Доля урана и плутония, перешедших в раствор за время растворения в исследуемых режимах, составляет 98% от их содержания в порошке волоксидированного СНУП ОЯТ, взятом для проведения исследований. Количественно переходят в раствор нуклиды америция и цезия. Доли перешедших в раствор циркония и рутения на стадии основного растворения находятся на уровне 80–90%, молибден и технеций растворяются на 40–70%. В наименьшей степени на стадии основного растворения переходит в раствор палладий, доля этого элемента, обнаруженная растворе, не превышает 11.7% от его содержания в навеске ОЯТ, взятой для растворения.

РАДИОХИМИЯ том 65 № 2 2023

Большая доля перешедших в раствор Mo, Pd, Rh, Ru, Tc, Zr при растворении ОЯТ, отработавшего в составе ЭТВС-10, по сравнению с аналогичными показателями, полученными при растворении ОЯТ, отработавшего в составе КЭТВС-7, вероятно, обусловлена меньшей величиной выгорания топлива (табл. 1).

Экспериментальные данные по кинетике растворения урана и плутония представлены на рис. 3 и 4.

Представленные результаты свидетельствуют о том, что растворение урана и плутония происходит синхронно. Это является косвенным доказательством того, что уран и плутоний в результате волоксидации не образуют значимых количеств соединений, скорость растворения которых может существенно отличаться от скорости растворения U_3O_8 и PuO₂. О возможности образования интерметаллидов урана и плутония в ОЯТ, в частности, сообщают авторы работ [10–13]. В них показано, что основной формой интерметаллидов урана и плутония в нерастворенном остатке ОЯТ являются соединения состава MX₃, где M = U, Pu; X = Rh, Pd, Ru.

Для определения области протекания реакции растворения волоксидированного СНУП ОЯТ дан-

Рис. 3. Кинетика растворения урана и плутония, содержащихся в волоксидированном СНУП топливе, отработавшем в составе КЭТВС-7.

ные по кинетике растворения урана и плутония обрабатывали в соответствии с уравнением Ерофеева [14, с. 276] (1):

$$\alpha = 1 - e^{(-kt^n)},\tag{1}$$

где α – степень превращения; t – время; k – константа скорости; n – число последовательных стадий при образовании устойчивого начального центра новой фазы, указывает на область протекания гетерогенных реакций: при n < 0.5 растворение протекает в диффузионном режиме, при 1 > n > 0.5 – в диффузионно-кинетическом, при n > 1 – в кинетическом.

Логарифмическая форма уравнения (1) имеет вид:

$$\lg[-\ln(1-\alpha)] = n\lg(kt).$$
(2)

В соответствии с уравнением (2) экспериментальные данные по доле растворенных урана и плутония в зависимости от времени растворения должны линеаризоваться в координатах $lg[-ln(1 - \alpha)]-lgt$ с тангенсом угла наклона, соответствующим значению *n*.

Рис. 5. Зависимость $lg[-ln(1 - \alpha)]$ от lgt для растворения урана из волоксидированного СНУП ОЯТ.

Рис. 4. Кинетика растворения урана и плутония, содержащихся в волоксидированном СНУП топливе, отработавшем в составе ЭТВС-10.

На рис. 5 и 6 в качестве примера представлены анаморфозы, полученные при обработке экспериментальных результатов по кинетике растворения урана и плутония из СНУП топлива, отработавшего в составе КЭТВС-10.

Характер представленных зависимостей свидетельствует о том, что растворение урана и плутония протекает в кинетической области и лимитируется скоростью химической реакции. Следовательно, гранулометрический состав порошка, полученный при волоксидации ОЯТ, оптимален с точки зрения кинетики растворения, площадь соприкосновения фаз и скорость подвода реагентов в зону реакции не лимитируют скорость его растворения.

Количественного растворения ОЯТ в выбранных экспериментальных условиях не происходит. Нерастворенный остаток представляет собой порошок черного цвета. Массы нерастворенных остатков ОЯТ приведены в табл. 3.

Масса нерастворенного остатка, полученного при растворении в режимах, соответствующих тех-

Рис. 6. Зависимость $lg[-ln(1 - \alpha)]$ от lgt для растворения плутония из волоксидированного СНУП ОЯТ.

нологической схеме гидрометаллургической переработки ОЯТ, составляет 2–3% от массы ОЯТ, взятой для растворения.

Для установления состава нерастворенного остатка ОЯТ массой 3.2 г, отработавшего в составе КЭТВС-7, проводили его растворение в смеси концентрированных азотной и соляной кислот, взятых в объемном соотношении 1 : 3. По содержанию компонентов ОЯТ в растворе рассчитывали состав нерастворенного остатка. Результаты представлены в табл. 4.

Из данных, представленных в табл. 4, видно, что уран и плутоний являются одними из основных компонентов нерастворенного остатка, их массовая доля составляет 9.4 и 18.8% соответственно от общей массы нерастворенного остатка. Помимо урана и плутония нерастворенный остаток содержит значимые количества Zr, Mo, Ru, Rh, Tc, Pd, их суммарная массовая доля составляет 59.3%. Суммарная массовая доля всех элементов, найденных в нерастворённом остатке, составляет 87.5% от его общей массы, вероятно оставшаяся часть представлена кислородом.

Двойной целлюлозный фильтр разделяли, каждую часть озоляли, сухие остатки растворяли в смеси концентрированных азотной и соляной кислот. По результатам анализа растворов определяли массы урана и плутония на целлюлозных фильтрах. По результатам элементного анализа содержание Zr, Mo, Ru, Rh, Tc, Pd на фильтрах ниже пределов обнаружения применяемых методик измерения (оценены на уровне ≤ 0.3 мг). По результатам альфа- и гамма-спектрометрических измерений на фильтрах обнаружены радионуклиды ¹⁰⁶Ru, ¹³⁷Cs, ¹⁵⁴Eu, ¹⁵⁵Eu, ²⁴³Cm, ²⁴⁴Cm с суммарной массой, не превышающей 3 мкг. Результаты определения урана и плутония на целлюлозных фильтрах представлены в табл. 5.

По данным табл. 5 содержание ядерных материалов на целлюлозных фильтрах не превышает

Таблица 3. Массы нерастворенных остатков волоксидированного СНУП ОЯТ

Параметр	КЭТВС-7		ЭТВС-10
Масса ОЯТ, взятая для растворения, г	45.0	96.1	112.5
Масса нерастворенного остатка, г	1.3	3.2	2.6
Масса нерастворенного остатка в % от массы ОЯТ, взятого для растворения	2.9	3.3	2.3

Таблица 4. Состав нерастворенного остатка СНУП топлива, отработавшего в составе КЭТВС-7, массой 3.2 г

Juanaut/Whoton	Массовая доля элементов в	
JIEMEH1/11301011	нерастворенном остатке, %	
U	9.4	
Pu	18.8	
²⁴¹ Am	3×10^{-3}	
Zr	13.1	
Мо	12.8	
Cs	2×10^{-3}	
Tc	5.0	
Pd	7.5	
Ru	12.8	
Rh	8.1	
Итого	87.5	

0.1% от их количества в растворе, полученном при растворении нерастворенного остатка волоксидированного СНУП ОЯТ в смеси концентрированных азотной и соляной кислот. Равенство количественного содержания урана и плутония на верхнем и нижнем фильтрах свидетельствует о том, что обнаруженные компоненты ОЯТ были сорбированы целлюлозой, а нерастворенный остаток был количественно растворен.

Эффективность дорастворения нерастворенного остатка в азотной кислоте для перевода в раствор урана и плутония проверяли с использованием нерастворенного остатка массой 1.3 г, полученного при растворении волоксидированного СНУП ОЯТ, облученного в составе КЭТВС-7.

Таблица 5. Результаты определения массового содержания урана и плутония на целлюлозных фильтрах

	Верхний фильтр		Нижний фильтр		
Элемент	содержание, мг	доля на фильтре в % от найденного в растворе	содержание, мг	доля на фильтре в % от найденного в растворе	
U	0.3	0.1	0.3	0.1	
Pu	0.4	0.07	0.4	0.07	

	Дорастворение в НNO ₃	Сплавление с КОН, КNO ₃
	нерастворенного остатка массой 1.3 г	нерастворенного остатка массой 0.3 г
Элемент/изотоп	Содержание в растворе в % от массы	Содержание в растворе в % от массы
	нерастворенного остатка, полученного после	нерастворенного остатка, полученного
	основного растворения ОЯТ	на стадии дорастворения в HNO ₃
U	53.1	$\leq 1.7 \times 10^{-2}$
Pu	6.4	$3.3 imes 10^{-3}$
²⁴¹ Am	6.9×10^{-3}	$\leq 3.3 \times 10^{-3}$
Cs	$7.7 imes 10^{-3}$	$1.7 imes10^{-3}$
Мо	$1.5 imes 10^{-2}$	7.7
Pd	3.8×10^{-2}	48.4
Rh	$1.5 imes 10^{-2}$	22.8
Ru	0.47	$\leq 9.3 \times 10^{-2}$
Tc	6.9×10^{-3}	9.1
Zr	$2.3 imes 10^{-3}$	2.0
Итого	60.2	90.1

Таблица 6. Содержание компонентов ОЯТ в растворе после дорастворения в азотной кислоте и сплавления нерастворенного остатка СНУП топлива, отработавшего в составе КЭТВС-7

Дорастворение в азотной кислоте объемом 50 мл с концентрацией 8 моль \cdot л⁻¹ в течение 6 ч при нагревании не приводит к количественному растворению нерастворенного остатка. Раствор фильтровали, отделяли нерастворенную часть. Масса нерастворенного остатка после стадии дорастворения в азотной кислоте уменьшилась до 0.3 г, что составляет 0.7% от массы ОЯТ, взятой для проведения основного растворения.

Нерастворенный остаток, полученный после дорастворения в азотной кислоте, сплавляли со смесью гидроксида и нитрата калия, плав растворяли в азотной кислоте, раствор фильтровали. Визуально осадка обнаружено не было, изменения массы фильтров не зафиксировано. По результатам радиохимического анализа на фильтрах обнаружены радионуклиды ¹⁰⁶Ru, ¹³⁷Cs, ¹⁵⁴Eu, ¹⁵⁵Eu, ²⁴³Cm, ²⁴⁴Cm с суммарной массой, не превышающей 1 мкг. Наличие радионуклидов, вероятно, обусловлено их сорбцией материалом целлюлозного фильтра.

Таким образом, процедура сплавления позволяет количественно перевести все компоненты ОЯТ в раствор.

По результатам анализа фильтрата, полученного на стадии дорастворения в азотной кислоте, и раствора плава рассчитывали состав нерастворенных остатков. Результаты представлены в табл. 6.

Содержание урана и америция в растворе, полученном после растворения плава, ниже пределов обнаружения применяемых методик исследования. Это свидетельствует о том, что указанные элементы количественно перешли в раствор на стадии дополнительного растворения в азотной кислоте. Массовая доля плутония в нерастворенном остатке ОЯТ массой 0.3 г составляет 3.3 × 10⁻³%. На стадии дорастворения нерастворенного остатка ОЯТ в азотной кислоте содержание плутония в растворе составило 6.4% от массы нерастворенного остатка, полученного на стадии основного растворения ОЯТ. Таким образом, содержание плутония в растворе плава составляет 0.01% от его содержания в растворе, полученном на стадии дополнительного растворения. Дополнительное растворение в азотной кислоте нерастворенного остатка СНУП ОЯТ позволяет перевести в раствор 99.99% плутония.

Основными компонентами ОЯТ, не перешедшими в раствор при дополнительном растворении в азотной кислоте, являются палладий и родий; их содержание в растворе плава 48.4 и 22.8% от массы нерастворенного остатка, полученного на стадии дорастворения в азотной кислоте, соответственно. Суммарная массовая доля компонентов нерастворенного остатка, обнаруженных в растворе плава, составляет 90.1% от массы нерастворенного остатка, полученного на стадии дорастворения в азотной

Элемент/ изотоп	Содержание в навеске ОЯТ по результатам входного анализа, г.	Доля, обнаруженная в растворе на стадии основного растворения, %	Доля, обнаруженная в растворе на стадии дорастворения в азотной кислоте, %	Доля, обнаруженная в растворе после сплавления, %	Итого
U	33.5	98.5	2.0	$\le 1.5 \times 10^{-4}$	100.5
Pu	5.5	98.5	1.5	1.8×10^{-4}	100.0
²⁴¹ Am	1.4×10^{-2}	100	6.4×10^{-1}	$\le 7.1 \times 10^{-4}$	100.6
Cs	2.3×10^{-2}	100	4.3×10^{-1}	2.2×10^{-4}	100.4
Mo	4.3×10^{-2}	46.1	$4.5 imes 10^{-1}$	53.5	100.1
Pd	$1.6 imes 10^{-1}$	6.4	3.1×10^{-1}	93.2	99.9
Rh	$8.9 imes 10^{-2}$	22.5	$2.2 imes 10^{-1}$	76.8	99.5
Ru	5.6×10^{-2}	88.7	10.9	\leq 5.9 × 10 ⁻²	99.6
Tc	$4.7 imes 10^{-2}$	42.3	$1.9 imes 10^{-1}$	58.1	100.6
Zr	2.6×10^{-2}	76.5	1.2×10^{-1}	23.1	99.7

Таблица 7. Доли компонентов ОЯТ, перешедших в раствор на отдельных стадиях растворения топлива массой 45.0 г, отработавшего в составе КЭТВС-7

кислоте. Указанная величина превышает массовую долю основных растворенных компонентов в их оксидах и является косвенным доказательством нахождения части элементов в металлической форме.

Данные по переходу в раствор компонентов ОЯТ, отработавшего в составе КЭТВС-7, на отдельных стадиях растворения представлены в табл. 7.

Результаты, представленные в табл. 7, свидетельствуют об отсутствии значимых расхождений между результатами входного анализа волоксидированного ОЯТ и его компонентов, обнаруженных на отдельных стадиях растворения. Суммарное содержание ядерных материалов и продуктов деления для всех исследованных компонентов ОЯТ близко к их количеству, обнаруженному при входном анализе.

Более 98% урана и плутония переходят в раствор на стадии основного растворения, оставшаяся часть указанных элементов переходит в раствор на стадии дорастворения в азотной кислоте. Содержание плутония в растворе, полученном после растворения плава, составляет 1.8×10^{-4} % от его количества в исходной навеске ОЯТ и, вероятно, обусловлено захватом плутония нерастворенным остатком, полученным на стадии дорастворения в азотной кислоте.

Большая часть молибдена, палладия, родия и технеция на стадиях основного растворения и дора-

РАДИОХИМИЯ том 65 № 2 2023

створения в азотной кислоте остаются в нерастворенном остатке. Для перевода в раствор перечисленных элементов возможно применение процедуры сплавления со смесью нитрата и гидроксида калия. Так, доля палладия, обнаруженного в растворе плава, составляет 93.2%, родия – 76.8% от их исходного содержания.

Проверку эффективности растворения нерастворенного остатка ОЯТ в азотной кислоте в присутствии электрогенерируемых ионов Ag²⁺ проводили с нерастворенным остатком массой 2.6 г, полученным после растворения ОЯТ, отработавшего в составе ЭТВС-10. Полного растворения достичь не удалось, масса нерастворенного остатка после завершения процесса уменьшилась до 0.3% от массы ОЯТ, взятой для проведения основного растворения. Нерастворенный остаток, полученный на стадии электрохимического растворения, растворяли в смеси концентрированных соляной и азотной кислот. Из полученного раствора отбирали аликвоты, в которых определяли содержание ядерных материалов и продуктов деления. По результатам анализа растворов, полученных при электрохимическом растворении и растворении в смеси азотной и соляной кислот, рассчитывали состав нерастворенных остатков. Результаты исследований представлены в табл. 8.

Основными компонентами ОЯТ, обнаруженными в растворе после завершения электрохимиче-

2	Электрохимическое растворение в присутствии ионов Ag ²⁺ нерастворенного остатка массой 2.6 г	Дорастворение в смеси концентрированных азотной и соляной кислот нерастворенного остатка массой 0.3 г	
Элемент/изотоп	содержание в растворе в % от массы	содержание в растворе в % от массы	
	основного растворения ОЯТ	электрохимического растворения	
U	57.1	$\leq 1.7 \times 10^{-2}$	
Pu	6.9	$\leq 1.7 \times 10^{-3}$	
²⁴¹ Am	$8.0 imes 10^{-3}$	$\leq 3.3 \times 10^{-3}$	
Cs	$8.8 imes 10^{-3}$	1.7×10^{-3}	
Мо	1.7×10^{-2}	8.5	
Pd	$4.2 imes 10^{-2}$	49.4	
Rh	1.5×10^{-2}	22.5	
Ru	3.9×10^{-2}	0.10	
Tc	$8.0 imes 10^{-3}$	6.7	
Zr	3.0×10^{-3}	2.0	
Итого	64.1	89.2	

Таблица 8. Содержание компонентов ОЯТ в растворах после электрохимического растворения и дорастворения в смеси азотной и соляной кислот нерастворенного остатка СНУП топлива, отработавшего в составе ЭТВС-10

ского растворения, являются уран и плутоний. Это означает, что количественного растворения ядерных материалов при растворении ОЯТ в режиме, соответствующем его гидрометаллургической переработке, не происходит. Содержание урана, плутония и америция в растворе, полученном после дорастворения нерастворенного остатка массой 0.3 г в смеси концентрированных азотной и соляной кислот, ниже пределов обнаружения применяемых методик исследования. Следовательно, эти элементы количественно перешли в раствор на стадии электрохимического растворения.

Основными компонентами ОЯТ, обнаруженными в растворе после дорастворения нерастворенного остатка массой 0.3 г в смеси азотной и соляной кислот являются Mo, Pd, Rh, Ru, Tc, Zr. Таким образом при электрохимическом растворении нерастворенного остатка ОЯТ основная часть перечисленных металлов не будет переходить в раствор. Полученные экспериментальные данные представляют интерес для предсказания выпадения вторичных осадков после выдержки раствора ОЯТ, которые главным образом состоят из молибдата циркония [2, 15].

Элементный состав нерастворенного остатка металлов аналогичен составу нерастворенных остатков, образующихся при растворении оксидного уранового и МОКС ОЯТ [1]. Данные по растворению компонентов ОЯТ, отработавшего в составе ЭТВС-10, представлены в табл. 9.

Представленные данные в целом согласуются с результатами растворения волоксидированного ОЯТ, отработавшего в составе КЭТВС-7. Более 98% урана и плутония переходят в раствор на стадии основного растворения, а оставшуюся часть можно перевести в раствор с использованием электрохимического растворения. Доли Zr, Mo, Ru, Rh, Tc, Pd, перешедших в раствор на стадии электрохимического растворения, не превышают 1% от их содержания в исходной навеске ОЯТ. Наличие ²⁴¹Am и нуклидов цезия в растворе после завершения электрохимического растворения, вероятно, обусловлено их захватом компонентами нерастворенного остатка ОЯТ, полученного после завершения основного растворения.

Суммарное количество рутения, обнаруженное на каждом из этапов растворения, составило 92.1%. Данный экспериментальный факт, вероятно, связан с потерями рутения на стадии электрохимического растворения. Электрогенерируемые ионы Ag²⁺ способствуют окислению рутения до максимально возможной степени окисления, в результате образуется легколетучий RuO₄, который покидает раствор

258

Таблица 9. Доли компонентов ОЯТ, перешедших в раствор на отдельных стадиях растворения топлива массой 112.5 г, отработавшего в составе ЭТВС-10

Элемент/ изотоп	Содержание в навеске ОЯТ по результатам входного анализа, г	Доля, обнаруженная в растворе на стадии основного растворения, %	Доля, обнаруженная в растворе на стадии электрохимического растворения, %	Доля, обнаруженная в растворе на стадии растворения в «царской водке», %	Итого
U	82.9	98.2	1.8	$\leq 6.1 \times 10^{-5}$	100.0
Pu	9.6	98.1	1.9	$\leq 5.3 \times 10^{-5}$	100.0
²⁴¹ Am	$5.0 imes 10^{-1}$	100.0	$3.9 imes 10^{-2}$	$\leq 2.0 \times 10^{-3}$	100.1
Cs	$5.4 imes 10^{-1}$	100.0	4.2×10^{-2}	$9.4 imes 10^{-4}$	100.0
Mo	1.1×10^{-1}	75.5	$4.2 imes10^{-1}$	23.2	99.1
Pd	$1.7 imes10^{-1}$	11.7	$6.4 imes 10^{-1}$	87.2	99.5
Rh	9.8×10^{-2}	30.7	$4.0 imes 10^{-1}$	68.9	100.0
Ru	$1.1 imes 10^{-1}$	90.9	9.2×10^{-1}	$2.7 imes10^{-1}$	92.1
Tc	5.0×10^{-2}	59.6	$4.2 imes 10^{-1}$	40.2	100.2
Zr	5.6×10^{-2}	89.2	$1.4 imes 10^{-1}$	10.7	100.0

и оседает на стенках и крышке электрохимической ячейки.

Обобщенные результаты по растворению волоксидированного СНУП ОЯТ представлены в табл. 10.

Из данных, представленных в табл. 10, видно, что двухстадийное растворение с применением рассмотренных в работе методов позволяет количественно перевести в раствор ЯМ.

Исключением является только дорастворение в азотной кислоте, после завершения данного процесса массовая доля плутония в нерастворенном остатке составила 3.3×10^{-30} , что эквивалентно 1.8×10^{-40} % от массы плутония в исходной навеске волоксидированного СНУП ОЯТ, взятой для проведения растворения.

Дорастворение нерастворенного остатка СНУП ОЯТ в азотной кислоте и растворение в азотной кислоте в присутствии электрогенерируемых ионов Ag^{2+} приводят к образованию остатка, содержащего суммарно до 90% Mo, Pd, Rh, Ru, Tc, Zr. Суммарная масса Mo, Pd, Rh, Ru, Tc, Zr, обнаруженных в нерастворенном остатке после завершения дорастворения в азотной кислоте, составляет 0.6% от массы ОЯТ, взятой для растворения. Аналогичный показатель при растворении нерастворенного остатка в присутствии электрогенерируемых ионов Ag^{2+} составляет 0.2%.

РАДИОХИМИЯ том 65 № 2 2023

Доли Mo, Pd, Rh, Ru, Tc, Zr, переходящих в раствор на стадиях дорастворения в азотной кислоте и электрохимическом растворении, не превышают 1% за исключением рутения. Существенные отличия между значениями доли рутения, перешедшей в раствор на стадии дорастворения в азотной кислоте и при электрохимическом растворении, вероятно, обусловлены неконтролируемыми потерями элемента в процессе его электрохимического растворения.

ЗАКЛЮЧЕНИЕ

Растворение волоксидированного СНУП ОЯТ в режиме, соответствующем технологической схеме гидрометаллургической переработки, протекает в кинетическом режиме и не приводит к количественному растворению ОЯТ. Масса нерастворенного остатка составляет 2–3% от массы ОЯТ, взятой для растворения.

Нерастворенный остаток СНУП ОЯТ содержит значимое количество ядерных материалов; кроме того, основными компонентами нерастворенного остатка являются Mo, Pd, Rh, Ru, Tc, Zr. Для вовлечения ядерных материалов в топливный цикл необходима процедура, гарантирующая их перевод из нерастворенного остатка в раствор.

Дополнительное растворение в азотной кислоте позволяет практически количественно перевести в

Параметр	Дорастворение в HNO ₃	Сплавление с КОН, КNO ₃	Растворение в HNO ₃ в присутствии электрогенерируемых ионов Ag ²⁺
Масса нерастворенного остатка волоксидированного СНУП ОЯТ, взятая для исследований, г	1.3	0.3	2.6
Отношение массы нерастворенного остатка к массе ОЯТ, взятой для исследований, %	2.9	0.7	2.3
Масса нерастворенного остатка после завершения эксперимента, г	0.3	Не обнаружен	0.3
Отношение массы нерастворенного остатка к массе ОЯТ, взятой для растворения, после завершения эксперимента, %	0.7	Не обнаружен	0.3
Массовая доля урана в нерастворенном остатке после завершения эксперимента, %	$\leq 1.7 \times 10^{-2}$	Не обнаружен	$\leq 1.7 \times 10^{-2}$
Массовая доля плутония в нерастворенном остатке после завершения эксперимента, %	3.3×10^{-3}	Не обнаружен	$\leq 1.7 \times 10^{-3}$
Суммарная массовая доля Mo, Pd, Rh, Ru, Tc, Zr в нерастворенном остатке после завершения эксперимента, %	90.1	Не обнаружены	89.2
Суммарная массовая доля Mo, Pd, Rh, Ru, Tc, Zr по отношению к массе ОЯТ, взятого для растворения, %	0.6	Не обнаружены	0.2
Массовая доля Мо, перешедшая в раствор, %	$4.5 imes 10^{-1}$	53.5	$4.2 imes 10^{-1}$
Массовая доля Pd, перешедшая в раствор, %	3.1×10^{-1}	93.2	$6.4 imes 10^{-1}$
Массовая доля Rh, перешедшая в раствор, %	$2.2 imes 10^{-1}$	76.8	$4.0 imes 10^{-1}$
Массовая доля Ru, перешедшая в раствор, %	10.9	$\leq 5.9 \times 10^{-2}$	9.2×10^{-1} *
Массовая доля Тс, перешедшая в раствор, %	1.9×10^{-1}	58.1	$4.2 imes 10^{-1}$
Массовая доля Zr, перешедшая в раствор, %	1.2×10^{-1}	23.1	1.4×10^{-1}

Таблица 10. Сравнительная характеристика возможных методов растворения нерастворенного остатка волоксидированного СНУП ОЯТ

* Величина отражает содержание рутения в растворе без учета его потерь на стадии электрохимического растворения.

раствор уран и плутоний из остатка, масса нерастворенного остатка уменьшается до 0.7% от массы ОЯТ, взятой для проведения основного растворения.

Сплавление нерастворенного остатка, полученного на стадии дополнительного растворения в азотной кислоте, со смесью нитрата и гидроксида калия позволяет количественно перевести все компоненты ОЯТ в раствор.

Электрохимическое растворение обеспечивает количественный перевод в раствор урана и плутония, при этом благородные и переходные металлы растворяются частично. Масса нерастворенного остатка ОЯТ, полученного после электрохимического растворения, составляет 0.3% от массы ОЯТ, взятого для растворения.

Основными компонентами нерастворённого остатка, полученного после дорастворения в азотной кислоте и электрохимического растворения, являются Mo, Pd, Rh, Ru, Tc, Zr, их суммарная массовая доля составляет около 90%.

Для количественного извлечения ядерных материалов в технологическую цепочку переработки СНУП ОЯТ необходимо включить этап дополнительного растворения образующегося нерастворенного остатка отработавшего ядерного топлива.

260

РАСТВОРЕНИЕ СМЕШАННОГО НИТРИДНОГО УРАН-ПЛУТОНИЕВОГО ТОПЛИВА

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют об отсутствии конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- Бураков Б.Е., Похитонов Ю.А., Рязанцев В.И., Савин Р.А., Сапрыкин В.Ф., Рэнс П.Д. // Радиохимия. 2010. Т. 52, № 4. С. 342–345.
- Adachi T., Ohnuki M., Yoshida N. // J. Nucl. Mater. 1990. Vol. 174. P. 60–71.
- 3. *Ikeuchi H., Shibata A., Sano Y., Koizumi T. //* Procedia Chem. 2012. Vol. 7. P. 77–83.
- 4. Двоеглазов К.Н., Шадрин А.Ю., Шудегова О.В., Павлюкевич Е.Ю., Богданов А.И., Зверев Д.В. // Вопр. атом. науки и техники. Сер.: Материаловедение и новые материалы. 2016. № 4. С. 81–90.
- 5. Гринь П.И., Никитин О.Н., Беляева А.В. // Научный годовой отчет АО «ГНЦ НИИАР». Димитровград, 2019. С. 110–112.
- Момотов В.Н., Ерин Е.А., Волков А.Ю., Куприянов В.Н., Хамдеев М.И., Тихонова Д.Е, Шадрин А.Ю., Хомяков Ю.С. // Радиохимия. 2022. Т. 63, № 1. С. 53–59.

- Звир Е.А., Крюков Ф.Н., Гринь П.И., Никитин О.Н. Кузьмин С.В., Мальцева Е.Б., Гильмутдинов И. Ф., Федосеев А.Е., Бутылин А.С. // Научный годовой отчет АО «ГНЦ НИИАР». Димитровград, 2018. С. 91– 93.
- 8. Момотов В.Н, Ерин Е.А., Волков А.Ю. Баранов А.Ю. // Радиохимия. 2020. Т. 62, № 1. С. 66–72.
- 9. Хамдеев М.И., Ерин Е.А. Патент RU 2766226 C2. 10.02.2022
- Arai Y., Maeda A., Shiozawa K., Ohmichi T. // J. Nucl. Mater. 1994. Vol. 210. P. 161–163.
- 11. *Kleykamp H., Paschoal J.O., Pejsa R., Thümmler F. //* J. Nucl. Mater. 1985. Vol. 130. P. 426–433.
- Kleykamp H. // J. Nucl. Mater. 1985. Vol. 131. P. 221– 443.
- Nevolin I., Andreadi N., Petrov V., Shiryaev A., Yapaskurt V., Shatalova T., Kulyukhin S. // J. Nucl. Mater. 2022. Vol. 568. https://doi.org/10.1016/j.jnucmat.2022.153885
- 14. Панченков Г.М., Лебедев В.П. Химическая кинетика и катализ. М.: Химия, 1985. 592 с.
- Usami T., Tsukada T., Inoeu T., Moriya N., Hamada T., Serrano Purroy D., Malbeck R., Glatz J.P. // J. Nucl. Mater. 2010. Vol. 302. P. 130–135.