УДК 541.13+11

ТЕРМОДИНАМИЧЕСКОЕ МОДЕЛИРОВАНИЕ ТЕРМИЧЕСКИХ ПРОЦЕССОВ С УЧАСТИЕМ РАДИОНУКЛИДОВ УРАНА, ПЛУТОНИЯ, ЕВРОПИЯ ПРИ НАГРЕВЕ РАДИОАКТИВНОГО ГРАФИТА В АТМОСФЕРЕ ВОЗДУХА

© 2023 г. Н. М. Барбин^{*a*, *ó*, *, С. А. Титов^{*a*}, Д. И. Терентьев^{*a*}, А. М. Кобелев^{*a*}}

^а Уральский институт Государственной противопожарной службы МЧС России, 620062, Екатеринбург, ул. Мира, д. 22

б Уральский федеральный университет имени первого президента России Б.Н. Ельцина,

620002, Екатеринбург, ул. Мира, д. 19

* e-mail:NMBarbin@mail.ru

Поступила в редакцию 24.12.2022, после доработки 22.02.2023, принята к публикации 28.02.2023

Методом термодинамического моделирования исследовано поведение радионуклидов U, Pu, Eu при нагревании радиоактивного графита в атмосфере воздуха. При помощи программного комплекса TERRA проведен полный термодинамический анализ в интервалах температур от 300 до 3600 К с целью установления возможного состава газовой фазы. Установлено, что уран в диапазоне температур от 300 до 2000 К находится в виде конденсированных $UO_{2(\kappa)}$, $UOCl_{2(\kappa)}$, $UOCl_{(\kappa)}$, $CaUO_{4(\kappa)}$, при повышении температуры от 2000 до 3600 К в виде газообразных UCl_4 , UO_3 , UO_2 и виде ионизированных UO_3^- , UO_2^+ . Плутоний при температуре от 300 до 1900 К находится в виде конденсированных $UO_{3(\kappa)}$, $PuOCl_{(\kappa)}$, $Pu_2O_{3(\kappa)}$, $PuO_{2(\kappa)}$, при увеличении температуры от 1900 до 3600 К в виде газообразных PuO_2 , PuO u виде ионизированного PuO^+ . Европий на участке температур от 300 до 2000 К находится в виде конденсированных PuO_2 , PuO u виде ионизированного PuO^+ . Европий на участке температур от 300 до 2000 К находится в виде конденсированных $PuO_2(\kappa)$, $EuCl_{3(\kappa)}$, $EuCl_{3(\kappa)}$, $EuO_3(\kappa)$, $EuO_4(\kappa)$, при повышении температуры от 300 до 2000 К находится в виде конденсированных $PuO_3(\kappa)$, $PuO_4(\kappa)$, $PuO_2(\kappa)$, $PuO_{2(\kappa)}$, $PuO_{2(\kappa)}$, $PuO_{2(\kappa)}$, $PuO_{2(\kappa)}$, $EuCl_{3(\kappa)}$, $EuO_{3(\kappa)}$, $EuO_{4(\kappa)}$, $EuO_{4(\kappa)}$, $EuCl_{4(\kappa)}$, $EuO_{4(\kappa)}$, $EuO_{4(\kappa)}$, $EuO_{4(\kappa)}$, $EuO_{4(\kappa)}$, $EuO_{4(\kappa)}$, $PuO_{4(\kappa)}$, $PuO_$

Ключевые слова: термодинамическое моделирование, термические процессы, радионуклиды, атмосфера воздуха, радиоактивный графит, константы равновесия.

DOI: 10.31857/S0033831123030085, EDN: EOAUSU

ВВЕДЕНИЕ

Атомная энергетика является одним из основных источников выработки электроэнергии в мире. Всего в мире эксплуатируется 182 атомные электростанции общей электрической мощностью 411 ГВт. В России эксплуатируется 11 АЭС общей электрической мощностью 30 ГВт.

В России и странах мирового сообщества существует проблема обращения с облученным реакторным графитом активных зон уран-графитовых реакторов. При проектировании ядерных реакторов не предусматривались технические решения по выводу из эксплуатации, а также отсутствовали безопасные технологии обращения с облученным реакторным графитом [1, 2]. На сегодняшний день объем облученного графита в мире составляют 260000 т (из них 60000 т находится в Российской Федерации) [3].

Одним из способов решения данной проблемы является высокотемпературная термическая обработка графита в различных средах. Под воздействием температуры часть радионуклидов переходит в газообразное состояние и выходит из системы [3].

Гаолица I. Состав исходной систем	ΛЫ
--	----

Фаза	Фазовый состав	Содержание, мас%
Газовая (89.44%)	O ₂	21.42
	N ₂	78.57
Конденсированная	С	99.98
(10.56%)	U	1.15×10^{-2}
	Cl	1.89×10^{-3}
	Са	2.70×10^{-4}
	Pu	7.27×10^{-5}
	Eu	1.15×10^{-6}

При переработке радиоактивного графита методом сжигания в атмосфере воздуха важно знать поведение радионуклидов, присутствующих в нем.

Данное исследование проводилось методом термодинамического моделирования, которое позволяет определять равновесный состав исследуемой системы и спрогнозировать результаты фазовых и химических превращений. Ранее было изучено поведение U, Pu, Eu при нагреве радиоактивного графита в атмосфере водяного пара методом термодинамического моделирования [4], что показало его эффективность.

МЕТОДИКА РАСЧЕТА

Проведение натурных экспериментов при высоких температурах не всегда позволяет получить достоверные сведения в связи с их сложностью и ошибками измерений. Метод термодинамического моделирования успешно используется для исследования высокотемпературных систем [5–8]. Проводили полный термодинамический анализ всей системы в целом, который позволяет учесть абсолютно все процессы. В работе применяли программу TERRA, основанную на принципе максимума энтропии в соответствии со вторым началом термодинамики для равновесных систем [5].

Термодинамическое моделирование проводили в атмосфере воздуха при давлении 0.1 МПа в температурном интервале от 300 до 3600 К с шагом 100 К. В расчетах учитывались только компоненты с концентрацией не менее 10⁻¹⁰ моль/кг.

Информация об исходном составе реакторного графита взята из работ [9, 10], исходный состав газовой фазы (воздух) взят из справочника [11]. Эти данные приведены в табл. 1. Предполагаемые формы существования радионуклидов в данной системе приведены в табл. 2. Возможные соединения радионуклидов U, Pu, Eu, присутствующих в равновесной системе взяты из баз данных по свойствам индивидуальных веществ ИВТАНТЕРМО и HSC. После завершения вычисления получали зависимости равновесного состава от температуры.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Распределение урана по равновесным фазам при нагревании радиоактивного графита в воздухе представлено на рис. 1. При повышении температур от 300 до 700 К (табл. 3) по реакции (1) конденсированный диоксид урана взаимодействует с конденсированным хлоридом кальция и переходит в конденсированный оксихлорид урана и конденсированный уранат кальция. В диапазоне температур от 300 до 800 К по реакции (2) конденсированный оксихлорид урана(IV) преобразуется в конденсированный оксихлорид урана(III) с образованием хлора. В интервале температур от 700 до 1000 К, конденсированный оксихлорид урана протекает в газообразный хлорид урана(IV) и конденсированный диоксид урана, реакция (3). На участке температур от 800 до 1400 К конденсированный ок-

Таблица 2. Предполагаемые формы существования радионуклидов

Радионуклид в графите	Тип соединения в равновесной системе
²³⁸ U, ²³⁶ U, ²³⁵ U	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
²³⁹ Pu, ²⁴⁰ Pu, ²⁴¹ Pu, ²⁴² Pu	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
¹⁵⁰ Eu, ¹⁵¹ Eu, ¹⁵² Eu, ¹⁵³ Eu, ¹⁵⁴ Eu, ¹⁵⁵ Eu	$\mathrm{Eu}_{(\Gamma)}, \mathrm{EuO}_{(\kappa)}, \mathrm{EuO}_{(\Gamma)}, \mathrm{Eu}_{2}\mathrm{O}_{3(\kappa)}, \mathrm{EuCl}_{2(\kappa)}, \mathrm{EuOCl}_{(\kappa)}, \mathrm{EuCl}_{3(\kappa)}, \mathrm{EuCl}_{(\kappa)}, \mathrm{EuCl}_{(\kappa)}$

Номер	Реакция	$\Delta T, K$	a	b	Δa	Δb
1	$3UO_{2} + CaCl_{2} = 2UOCl_{2} + CaUO_{4}$	300-700	9 13533	-17623	1 09308	477 698
2	$UOC _{2(k)} = UOC _{(k)} + C $	300-800	14.6828	-28428	0.29739	163.062
3	$\frac{2UOCl_{2(k)}}{2UOCl_{2(k)}} = UCl_4 + UO_{2(k)}$	700–1000	25.054	-20819	3.65814	2880.67
4	$\frac{2(K)}{UOCl_{(V)} + CO_2} = \frac{UO_{2(V)} + CO_2 + CI_2}{UOCl_{(V)} + CO_2} = \frac{UO_{2(V)} + CO_2}{UOCl_{(V)} + CO_2} = \frac{UO_{2(V)} + CO_2}$	800-1400	15.1182	-32089	0.01239	12.9388
5	$UCl_4 + 2CO_2 = UO_{2(y)} + 4Cl + 2CO$	1100-1300	40.4246	-96956	0.06449	76.8496
6	$\frac{4}{UO_{2(k)}} + CO_2 = UO_3 + CO$	1500-2000	21.4434	-64114	0.10343	178.394
7	$UO_{2(k)} + CaCl_2 + 2CO_2 = CaUO_{4(k)} + 2Cl + 2CO$	1600-1800	13.2948	-48503	0.02837	48.0607
8	$UO_{2(K)} + CO_2 = UO_3^- + CO - e^-$	1800-2000	20.7042	-68238	0.25165	476.813
9	$UO_{2(\kappa)} = UO_2^+ + e^-$	1800-2000	19.5468	-7225	0.36354	688.817
10	$UO_{2(\kappa)} = UO_2$	1800-2000	19.004	-69274	0.04789	90.7453
11	$UO_3 = UO_3^ e^-$	2000-3100	1.05712	-7488.8	0.10099	250.343
12	$UO_3 = UO_2 + O$	2000-3600	16.5822	-71102	0.02492	66.5033
13	$UO_2^+ = UO_2 - e^-$	2000-2200	2.38074	-7877.9	0.04626	96.92
14	$UO_2 + CO_2 = UO_3^- + CO - e^-$	2000–2200	4.51476	-4575.9	0.03088	64.7057
15	$UO_3 = UO_2^+ + O + e^-$	2200-3600	16.8397	-69236	0.2701	756.775
16	$UO_{3}^{-} = UO_{2}^{+} + O + e^{-}$	3100-3600	24.0539	-88708	1.66822	5566.71
17	$UO_3^- = UO_2 + O + e^-$	3100-3600	20.1977	-78550	0.83863	2798.44
18	$PuCl_{3(\kappa)} + CO_2 = PuOCl_{(\kappa)} + CO + 2Cl$	700–1300	33.1622	-67437	0.00877	8.23171
19	$2PuOCl_{(\kappa)} + CO_2 = Pu_2O_{3(\kappa)} + 2Cl + CO$	1500-1800	26.6688	-82349	0.05005	82.0127
20	$PuOCl_{(\kappa)} + CO_2 = PuO_2 + CO + Cl$	1600-1900	32.6683	-105770	0.0978	170.093
21	$Pu_2O_{3(\kappa)} + CO_2 = 2PuO_2 + CO$	1800-2000	38.2121	-128325	0.09837	186.377
22	$PuO_{2(\kappa)} = PuO_2$	1900–2100	28.9804	17349.9	2.02939	4048.63
23	$PuO_2 = PuO^+ + O + e^-$	2000-3600	16.9583	-74148	0.2217	591.577
24	$PuO_2 = PuO + O$	2000-3600	16.1369	-72247	0.009	24.0191
25	$EuCl_{3(\kappa)} = EuCl_{2(\kappa)} + Cl$	300-800	17.57229	-27842.2	0.252047	138.1992
26	$EuCl_{2(\kappa)} + CO_2 = EuOCl_{(\kappa)} + Cl + CO$	1300–1600	-17.4212	-35999.4	0.276605	397.4906
27	$4EuCl_{2(\kappa)} + 6CO_2 = 2Eu_2O_{3(\kappa)} + 8Cl + 6CO$	1600-1800	103.5502	-301347	0.154251	261.3181
28	$EuCl_{2(\kappa)} + CO_2 = EuO_{(\kappa)} + 2Cl + CO$	1600-1800	25.9643	-84986	0.05389	91.2959
29	$2EuOCl_{(\kappa)} + CO_2 = Eu_2O_{3(\kappa)} + 2Cl + CO$	1600-1800	30.415	-83309	0.00191	3.243
30	$Eu_2O_{3(\kappa)} = 2EuO + O$	1800-2100	52.4327	-206052	0.08046	156.126
31	$EuO_{(\kappa)} = EuO$	1800-2100	17.2322	-61591	0.01389	26.9535
32	$\mathrm{EuO}_{(\kappa)} = \mathrm{Eu}^+ + \mathrm{O} + \mathrm{e}^-$	1800-2000	32.3081	-121448	0.33742	639.317
33	$EuO_{(\kappa)} = Eu + O$	1800-2000	29.7068	-119526	0.03313	62.7665
34	$\mathrm{Eu}^{+} + \mathrm{CO}_2 = \mathrm{EuO} + \mathrm{CO} - \mathrm{e}^{-}$	2200-2700	3.62844	-4931.3	0.04676	113.718
35	$Eu + CO_2 = EuO + CO$	2000-2700	5.78855	-6482.9	00.01278	29.5949
36	$EuO = Eu^+ + O + e^-$	2700-3600	15.2943	-61823	0.55494	1726.13
37	EuO = Eu + O	2700-3400	11.9718	-56719	0.01194	36.1101
38	$Eu = Eu^+ + e^-$	3400-3600	9.84401	-27541	0.73014	2553.41

Таблица 3. Основные реакции и соответствующие им константы равновесия

РАДИОХИМИЯ том 65 № 3 2023

БАРБИН и др.

Puc. 1. Распределение урана по равновесным фазам при нагревании радиоактивного графита в воздухе: $1 - UO_{2(\kappa)}$, $2 - UOCl_{2(\kappa)}$, $3 - UOCl_{(\kappa)}$, $4 - UCl_4$, $5 - UO_3$, $6 - CaUO_{4(\kappa)}$, $7 - UO_3^-$, $8 - UO_2^+$, $9 - UO_2$.

сихлорид урана реагирует с диоксидом углерода с образованием конденсированного диоксида урана, монооксида углерода и хлора, реакция (4). В области температур от 1100 до 1300 К по реакции (5) газообразный хлорид урана (IV) вступает в взаимодействие с диоксидом углерода и образует конденсированный диоксид урана, хлор и монооксид углерода. В отрезке температур от 1500 до 2000 К конденсированный диоксид урана начинает действовать с диоксидом углерода и происходит образование газообразного оксида урана(VI) и монооксида углерода по реакции (6). При температуре от 1600 до 1800 К в соответствии с реакцией (7) наблюдается взаимодействие конденсированного диоксида урана с хлоридом кальция и диоксидом углерода, в результате чего возникают конденсированный уранат кальция, хлор и монооксид углерода. В диапазоне температур от 1800 до 2000 К по реакции (8) конденсированный диоксид урана начинает действовать с диоксидом углерода и переходит в ионизированный оксид урана(VI) с образованием монооксида углерода. В том же интервале температур конденсированный диоксид урана превращается в первом случае в ионизированный диоксид урана по реакции (9), во втором - в газообразный диоксид урана по реакции (10). В интервале температур от 2000 до 3100 К в соответствии с реакцией (11) газообразный оксид урана(VI) превращается в ионизированный оксид урана(VI). На участке температур от 2000 до 3600 К в соответствии с реакцией (12) происходит термическая диссоциация газообразного оксида урана(VI). В области температур от 2000 до 2200 К по реакции (13) ионизированный диоксид урана превращается в газообразный диоксид урана. В том же отрезке температур газообразный диоксид урана реагирует с диоксидом углерода с образованием ионизированного оксида урана(VI) и монооксида углерода, реакция (14). При повышении температуры от 2200 до 3600 К в соответствии с реакцией (15) газообразный оксид урана(VI) обратимо разлагается на ионизированный диоксид урана и кислород. В диапазоне температур от 3100 до 3600 К протекает термическая диссоциация ионизированного оксида урана(VI), реакции (16) и (17).

Распределение плутония по равновесным фазам при нагревании радиоактивного графита в воздухе представлено на рис. 2. При повышении температуры от 700 до 1300 К в соответствии с реакцией (18) наблюдается взаимодействие конденсированного хлорида плутония с диоксидом углерода, в результате чего на выходе образуются конденсированный оксихлорид плутония(III), монооксид углерода и газообразный хлор. В диапазонах температур от 1500 до 1800 и от 1600 до 1900 К конденсированный оксихлорид плутония(III) реагирует с диоксидом углерода и переходит в первом случае в конденсированный оксид плутония(III), монооксид углерода и газообразный хлор согласно реакции (19), во втором – в газообразный оксид плутония(IV), монооксид углерода и газообразный хлор, реакция (20). В

Рис. 2. Распределение плутония по равновесным фазам при нагревании радиоактивного графита в воздухе: $1 - PuCl_{3(\kappa)}$, $2 - PuOCl_{(\kappa)}$, $3 - PuO_2$, $4 - PuO_{3(\kappa)}$, $5 - PuO_{2(\kappa)}$, $6 - PuO^+$, 7 - PuO.

Рис. 3. Распределение европия по равновесным фазам при нагревании радиоактивного графита в воздухе: $I - \text{EuCl}_{2(\kappa)}$, $2 - \text{EuCl}_{3(\kappa)}$, $3 - \text{EuOCl}_{(\kappa)}$, $4 - \text{Eu2O}_{3(\kappa)}$, $5 - \text{EuO}_{(\kappa)}$, 6 - EuO, $7 - \text{Eu}^+$; 8 - Eu.

интервале температур от 1800 до 2000 К на основании реакции (21) конденсированный оксид плутония(III) начинает реагировать с диоксидом углерода с образованием конденсированного оксида плутония(IV) и монооксида углерода. В области температур от 1900 до 2100 К по реакции (22) конденсированный оксид плутония(IV) превращается в газообразный оксид плутония(IV). На участке температур от 2000 до 3600 К наблюдается термическая диссоциация газообразного оксида плутония(IV), реакции (23) и (24).

Распределение европия по равновесным фазам при нагревании радиоактивного графита в воздухе

РАДИОХИМИЯ том 65 № 3 2023

представлено на рис. 3. В интервале температур от 300 до 800 К в соответствии с реакцией (25) происходит термическое разложение конденсированного хлорида европия(III) с образованием конденсированного хлорида европия(II) и газообразного хлора. На участке температур от 1300 до 1600 К происходит взаимодействие конденсированного хлорида европия(II) с диоксидом углерода с образованием конденсированного оксихлорида европия(III), газообразного хлора и монооксида углерода по реакции (26). При температуре от 1600 до 1800 К по реакции (27) конденсированный хлорид европия(II) взаимодействует с диоксидом углерода, в результа-

Рис. 4. Зависимость константы равновесия реакций от 1/*T* в интервале температур 300–1000 К. Цифрами обозначены номера реакций; то же на рис. 5, 6.

те чего образуются конденсированный оксид европия(III), газообразный хлор и монооксид углерода. В том же интервале температур конденсированный хлорид европия(II) реагирует с диоксидом углерода с образованием конденсированного оксида европия(II), газообразного хлора и монооксида углерода, реакция (28). В том же диапазоне температур в соответствии с реакцией (29) конденсированный оксихлорид европия(III) взаимодействует с диоксидом углерода и переходит в конденсированный оксид европия(III), газообразный хлор и монооксид углерода. На участке температур от 1800 до 2100 К по реакции (30) конденсированный оксид европия(III) превращается в газообразный оксид европия(II) с образованием кислорода. При температуре от 1800 до 2100 К в соответствии с реакцией (31) конденсированный оксид европия(II) превращается в газообразный оксид европия(II). В диапазоне температур от 1800 до 2000 К происходит термическая диссоциация конденсированного оксида европия(II), реакции (32) и (33). В интервале температур от 2200 до 2700 К ионизированный европий взаимодействует с диоксидом углерода, в результате чего образуются газообразный оксид европия(II) и монооксид углерода. В области температур от 2000 до 2700 К в соответствии с реакциями (34) и (35) наблюдается взаимодействие газообразного европия с диоксидом углерода с образованием оксида европия(II) и монооксида углерода. На участке температур от 2700 до 3600 К согласно реакциям

(36) и (37) протекает термическая диссоциация газообразного оксида европия(II). В диапазоне температур от 3400 до 3600 К газообразный европий частично переходит в ионизированный европий в соответствии с реакцией (38).

По результатам термодинамического моделирования, были определены основные реакции и их константы равновесия (табл. 3). Константы равновесия представлены аналитическими уравнениями вида:

$$\mathrm{In}K_i = A_i + \frac{B_i}{T}$$

Зависимость константы равновесия реакций от 1/T приведены на рис. 4–6. В интервале температур 300–1000 К с увеличением температуры константы равновесия реакций увеличиваются, данное изменение показано на рис. 4 для реакций (1)–(4), (18), (26).

В диапазоне температур 1000–2200 К с увеличением температуры константы равновесия реакций увеличиваются, данное изменение показано на рис. 5 для реакций (4)–(10), (12), (18), (19), (22), (24), (25), (27)–(34). Также на данном участке с увеличением температуры константы равновесия реакций уменьшается, наблюдается это в реакции (23); константы равновесия не меняются в реакциях (11), (13), (14), (36).

Рис. 5. Зависимость константы равновесия реакций от 1/*T* при нагревании радиоактивного графита в атмосфере воздуха при *T* = 1000–2200 К.

Рис. 6. Зависимость константы равновесия реакций от 1/*T* при нагревании радиоактивного графита в атмосфере воздуха при *T* = 2200–3600 К.

В области температур 2200–3600 К с увеличением температуры константы равновесия реакций увеличиваются, данное изменение показано на рис. 6 для реакций (11), (12), (15)–(17), (24), (25), (35)–(39).

Изменение реакционной среды (пар или воздух) ведет к изменению химических реакций, возникающих в процессе переработки реакторного графита. В системе радиоактивный графит–водяной пар протекало 15 реакций с участием урана, три реакции с участием плутония, восемь реакций с участием европия [4, 12]. В системе радиоактивный графит– воздух протекало 17 реакций с участием урана, семь реакций с участием плутония, 14 реакций с участием европия. В различных атмосферах для урана протекает реакция (6), при этом температура начала протекания реакции на 173 К ниже и реакция (10) протекает на 127 К выше для системы радиоактивный графит–воздух. В различных атмосферах для плутония протекает реакция (22), при этом температура начала протекания реакции на 227 К выше и реакция (24) протекает на 27 К выше для системы радиоактивный графит–воздух. В различных атмосферах для европия протекает реакция (31), при этом температура начала протекает реакция (31), при этом температура начала протекает на 27 К выше для системы радиоактивный графит–воздух. Данные сведения необходимы для разработки установок по переработке радиоактивного графита.

Термодинамическое моделирование показало, что уран, плутоний и европий, находящиеся в радиоактивном графите в виде примесей, при нагреве в атмосфере воздуха при достижении определенных температур переходят в газовую фазу. Это связано с взаимодействием графита и оксидной конденсированной фазы с кислородом воздуха в исследованном диапазоне температур.

БЛАГОДАРНОСТИ

Работа выполнена по плану НИР МЧС России (приказ МЧС России от 21.12.2021 № 893).

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют об отсутствии конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

1. *Блинова И.В., Соколова И.Д.* // Атом. техника за рубежом. 2012. № 6. С. 3–14.

- Цыганов А.А., Хвостов В.И., Комаров Е.А., Котлярский С.Г., Павлюк А.О., Шаманин И.В., Нестеров В.Н. // Изв. Томского политехн. ун-та. 2007. Т. 310, № 2. С. 94–98.
- Скачек М.А. Радиоактивные компоненты АЭС: обращение, переработка, локализация: учеб. пособие для вузов. М.: МЭИ, 2014.
- 4. Барбин Н.М., Кобелев А.М., Терентьев Д.И., Алексеев С.Г. // Радиохимия. 2017. Т. 59, № 5. С. 445–448.
- Белов Г.В., Трусов Б.Г. Термодинамическое моделирование химически реагирующих систем. М.: МГТУ им. Н.Э. Баумана, 2013. 96 с.
- 6. Ватолин Н.А., Моисеев Г.К, Трусов Б.Г. Термодинамическое моделирование в высокотемпературных системах. М.: Металлургия, 1994. 352 с.
- Моисеев Г.К., Вяткин Г.П., Барбин Н.М. Применение термодинамического моделирования для изучения взаимодействия с участием ионных расплавов. Челябинск: Изд-во ЮУрГУ, 2002. 166 с.
- Барбин Н.М., Тикина И.В., Терентьев Д.И., Алексеев С.Г. Термические свойства расплавов. Москва: Инфра-Инженерия, 2022. 276 с.
- Роменков А.А., Туктаров М.А., Карлина О.К., Павлова Г.Ю., Юрченко А.Ю., Апаркин Ф.М., Горелов К.А., Барбин Н.М. // Годовой отчет НИКИЭТ-2010: Сб. статей. М.: НИКИЭТ, 2010. С. 150.
- Шидловский В.В., Роменков А.А., Хаттарова Е.А., Гуськов А.В., Мартьянов А.В. // Годовой отчет НИ-КИЭТ-2010: Сб. статей. М.: НИКИЭТ, 2010. С. 178.
- Перельман В.П. Краткий справочник химика / Под ред. В.В. Некрасова. М.: ГНТИ химической литературы, 1957. 530 с.
- 12. Кобелев А.М. Комбинированный способ переработки реакторного графита в водяном паре и оксидно-солевых расплавах: дис. ... к.т.н. Екатеринбург: Уральский федеральный ун-т им. первого Президента России Б.Н. Ельцина, 2021. 264 с.