УДК 546.42

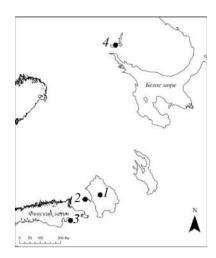
МИГРАЦИЯ И ПРОФИЛЬ ¹³⁷Cs В ДОННЫХ ОТЛОЖЕНИЯХ ГЛУБОКИХ И ПРОТОЧНЫХ ОЗЕР СЕВЕРО-ЗАПАДА РОССИИ

© 2023 г. Н. А. Бакунов, Д. Ю. Большиянов, А. О. Аксенов*

Арктический и Антарктический научно-исследовательский институт, 199397, Санкт-Петербург, ул. Беринга, д. 38
*e-mail: aksenov2801@gmail.com

Поступила в редакцию 20.03.2023, после доработки 05.07.2023, принята к публикации 12.07.2023

Представлена оценка современного загрязнения донных отложений (ДО) озерно-речных систем цезием-137, происходящим из глобальных выпадений и аварийного выброса с ЧАЭС. Были исследованы ДО проточных озер из Северо-Запада России. Озеро Копанское, расположенное к югу от Финского залива, находится на следе выпадения «чернобыльского» ¹³⁷Cs (~37 кБк/м²), тогда как другие озера – Ладожское, Суходольское, Вуокса, Имандра на его периферии в Карелии и на Кольском полуострове – загрязнены преимущественно глобальным ¹³⁷Cs. Определены плотность загрязнения ¹³⁷Cs дна озер (кБк/м²), распределение ¹³⁷Cs в профиле донных отложений, коэффициенты диффузии (D) $^{137}\mathrm{Cs}$ в ДО и содержание обменной химической формы радионуклида. Загрязнение ДО озер ¹³⁷Cs формировалось под влиянием седиментации взвеси с ¹³⁷Cs, сорбции ¹³⁷Cs ДО и диффузии. При седиментации ≥ 3 мм/год концентрация ¹³⁷Cs повышалась от верхних к нижним слоям керна (озера Вуокса, Экостровская Имандра), отражая постепенный процесс миграции ¹³⁷Cs в толщу отложений. Противоположный тренд концентрации 137Сs наблюдался в ДО озер Ладожское и Суходольское при седиментации ≤ 0.5 мм/год. Здесь диффузия ¹³⁷Cs с $D = (0.5-6.2) \times 10^{-8}$ см²/с обусловливала медленный перенос радионуклида в толщу грунтов дна; в верхнем слое керна 0–5 см содержался основной запас ¹³⁷Cs. В ДО оз. Суходольское только от 14.4 до 20% поглощенного ¹³⁷Cs находилось в обменной химической форме, извлекаемой в раствор 1 M NH₄ Ac.


Ключевые слова: ¹³⁷Cs, озера, донные отложения, запас ¹³⁷Cs, сорбция, диффузия.

DOI: 10.31857/S003383112305009X, EDN: XTJWYB

ВВЕДЕНИЕ

 137 Сs является искусственным радионуклидом из состава продуктов ядерного деления урана и плутония с полупериодом распада $T_{\phi u s} = 30$ лет. Загрязнению геосферы Земли 137 Сs глобальных выпадений (1961–1964 гг.) более 70 лет, тогда как локальному загрязнению северного полушария «чернобыльским» 137 Сs 37 лет. Основной массив эмпирических данных загрязнения вод, донных отложений и гидробионтов 137 Сs получен для среднеширотного пояса страны на следах промышленных аварий с выходом 137 Сs в окружающую среду 137 Сs [1–3]. Менее изученными в гидрологическом и радиологическом отношении оказались пресноводные водоемы высоких широт, где исследования

носили преимущественно фрагментарный характер. Выявлена высокая чувствительность наземных и водных экосистем Севера к загрязнению химическими и радиоактивными веществами [4]. Здесь даже низкие выпадения ¹³⁷Сѕ от «чернобыльской» аварии вызвали временные ограничения на употребление местным населением продуктов питания от традиционных объектов промысла. Размещение на плавучих платформах АЭС в Арктике и строительство модульных АЭС наземного базирования для арктических районов повышают актуальность изучения закономерностей миграции ИРН в водоемах и прогнозов переноса радионуклидов в экосистемах Севера.

Рис. 1. Местоположение исследуемых озер. I – Ладожское оз., 2 – озера Суходольское и Вуокса, 3 – Копанское оз., 4 – оз. Имандра.

Задача исследования заключалась в изучении современного состояния загрязнения ¹³⁷Cs ДО, сопряженных по стоку озерно-речных систем Северо-Запада России. Здесь реки берут начало из озер или протекают через них в своем среднем (нижнем) течении. Речная сеть этого региона формировалась в условиях освобождения кристаллического щита от ледяного покрова, образования большого количества озер и стока из них паводковых вод в пониженные участки рельефа. Объектом исследования стали донные отложения сопряженных по стоку систем река-озеро и озеро-река, загрязненных преимущественно ¹³⁷Cs глобальных выпадений. Содержание ¹³⁷Сs в ДО и распределение радионуклида в толще донных грунтов является откликом водных систем на ~70-летнее пребывание в водоемах низких концентраций ¹³⁷Cs. В работе [5] было показано, что в 1986–1988 гг. основное количество ¹³⁷Cs поступало в Ладогу с водами Вуоксы, а не с водами Волхова и Свири из-за загрязнения ¹³⁷Cs истока Вуоксы озера Сайма.

МЕТОДИКА ИССЛЕДОВАНИЯ

Объектом исследования являются донные отложения озер (ДО), находящихся на следе выпадения «чернобыльского» ¹³⁷Сs (оз. Копанское, сток в Финский залив) и на периферии следа – в Карелии и на Кольском полуострове (озера Суходольское, Вуокса, Ладожское, Имандра) (рис. 1). Все озера являются проточными. Замедленной сменой вод обладают

лишь озера Ладожское и Имандра с показателем условного обмена вод (W) 12.3 и 2.0 лет. Пробы донных отложений отбирали на станциях с глубиной от 6 до 70 м. Пробы ДО, за исключением грунта из оз. Имандра, отбирали пробоотборником фирмы UWITEC, позволяющим отобрать керн с ненарушенным сложением диаметром 60 мм. Послойное разделение керна проводилось по схеме: первый слой 0–2 см, последующие слои с шагом 0–3 см. В оз. Имандра ДО отбирали пробоотборником Limnos диаметром 85 мм; шаг разделения керна составил 0-1 см. Методы определения ¹³⁷Cs в пробах ДО и воды, принятые нами ранее [6], не изменялись. Относительная ошибка определения ¹³⁷Cs в образцах с низкой концентрацией радионуклида не превышала 40%. ¹³⁷Cs из проб воды объемом 60–120 л выделяли с помощью сорбента АНФЕЖ [7]. В ДО озер Копанское и Суходольское определяли содержание обменной химической формы ¹³⁷Cs путем экстракции радионуклида в 1 M раствор NH₄Ac при соотношении фаз 1:10 и времени их взаимодействия 1 сут. К анализу привлекали отдельные слои профиля ДО, в которых концентрация ¹³⁷Cs позволяла корректно оценить долю обменного ¹³⁷Cs. В водоемах определяли скорость накопления осадков с привлечением ¹³⁷Сs в качестве метки современного седиментогенеза [8]. По данным распределения ¹³⁷Cs в слоях керна определяли коэффициента диффузии радионуклида с использованием выражения [9]

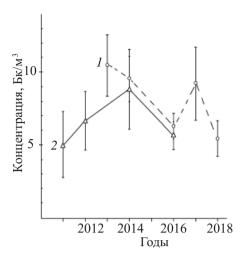
$$D = b \left[(\ln \varepsilon) \, 4t \right], \tag{1}$$

где $b=(x_2)^2-(x_1)^2$; $\varepsilon=C_1/C_2$; D- коэффициент диффузии, см $^2/$ с; x_1 и x_2 – произвольно взятые слои профиля концентраций 137 Cs с отметками слоя, см; C_1 и C_2 – концентрации 137 Cs, соответствующие слоям x_1 и x_2 ; t – время миграции, с. За дату t_0 формирования кумулятивного запаса глобального 137 Cs в грунтах морского дна принимался 1964 г.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

В табл. 1 приведено содержание ¹³⁷Cs в кернах ДО озер по данным наблюдений 2017–2022 гг.

Содержание 137 Сs в алевритовом иле оз. Копанское (табл. 1) после введения поправки на распад радионуклида (1986–2017 гг.) составит 33.5 кБк/м² – значение, близкое к выпадению «чернобыльского» 137 Сs на побережье водоема (~37 кБк/м²) [10]. Сток


Таблица 1. Загрязнение ДО озер ¹³⁷Cs: плотность, кБк/м² и содержание в поверхностном слое керна, Бк/кг

Озеро, координаты станций	Глубина, м, $H_{\rm cp}/H_{\rm make}$	Площадь, км ²	¹³⁷ Сѕ в керне, кБк/м ²	137Cs в слое керна 0–2 см, Бк/кг
Копанское	-/25	9.85	16.5	1000
59°43′ с.ш., 28°43′ в.д.				
Вуокса	5.1/25	92.6	4.2	39
60°58′ с.ш., 29°57′ в.д.				
Суходольское	4/23	44.4		
60°41′ с.ш., 30°03′ в.д.				
Станция 1			8.75	210
Станция 2			3.83	250
Ладожское	52/230	17800		
Станция «Якимоварский залив,	50	23.8	3.2	79
северный район»				
67°36′ с.ш., 33°00′ в.д.				
Станция «Западный архипелаг»	33		0.78	32.5
61°14′ с.ш., 30°27′ в.д.				
Станция «Средняя часть озера»	78		0.87	160
60°43′ с.ш., 31°48′ в.д.				
Имандра	16/67	876		
Имандра (Экостровская)	9/42	362	1.55	28
67°36′ с.ш., 33°00′ в. д.				

 137 Сѕ из озера с водами небольшой реки Пейпия за 31 год не привел к значительной потере радионуклида, большая часть его аккумулировалась в грунтах дна. Следовые количества 137 Сѕ в профиле ДО прослеживались до 62 см. Выпадения 137 Сѕ в 1986 г. примерно в 20 раз превысили содержание глобального 137 Сѕ в почвах (\sim 1.7 кБк/м 2). Поэтому запас 137 Сѕ в ДО озера преимущественно представлен 137 Сѕ аварийного выброса с ЧАЭС.

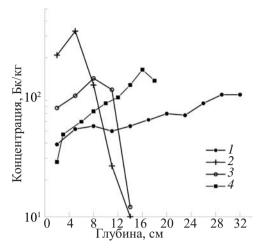
Ожидалось, что плотность ¹³⁷Cs ДО озер, находящихся выше 60° с.ш., будет меньшей, чем в оз. Копанское, из-за более низкого выпадения глобального и «чернобыльского ¹³⁷Cs. Содержание ¹³⁷Cs в ДО оз. Имандра (Экостровская) Кольского полуострова не превышало $\sim 1.55 \text{ кБк/м}^2$, тогда как в озерах Карельского перешейка Вуокса и Суходольское плотность загрязнения ДО была в 2-4 раза выше (табл. 1). В северо-западной части Ладожского озера донные отложения характеризовались плотностью 0.78 кБк/м^2 , близкой к наблюдаемой в средней части водоема с глубинами 50-70 м. При таких же глубинах в ДО Якимоварского залива озера содержалось 3.2 кБк/м² 137Сs. В целом для Ладожского озера диапазон плотности загрязнения ДО составил 0.78-3.2 кБк/м². Ранее [11] 4-кратное различие в плотности загрязнения грунтов дна 137 Cs (0.15–0.69 Бк/см²) отмечалось в глубоководном озере Телецкое. Здесь с поступлением взвеси из впадающих рек и ручьев повышалась вариабельность концентрации Cs в ДО.

Загрязнение ¹³⁷Cs ДО озер Вуокса и Суходольское, относящихся к речной системе р. Вуокса, оценивалось с учетом выпадения «чернобыльского» 137 Cs 6.5 кБк/м² на побережье устья р. Вуокса и питания ее из оз. Сайма, загрязненного ¹³⁷Cs [12, 13]. Более ~90% водосбора Вуоксы находится на территории Финляндии. Поэтому концентрации ¹³⁷Cs в воде Вуоксы определялись загрязнением ¹³⁷Cs оз. Сайма и его водосбора площадью 61054 км². Сайма при зеркале 4380 км² имеет 36 км³ озерных вод. На западную часть бассейна озера ¹³⁷Cs выпало в ~2−3 раза больше, чем на восточную на границе с Россией (\sim 6.5 кБк/м²) [13]. В Ладожское озеро воды Вуоксы поступают по северному мелководному рукаву через оз. Вуокса и полноводному южному рукаву через оз. Суходольское и р. Бурная. Привнос вод в Ладогу по северному рукаву резко снижается после весеннего половодья из-за мелководности русла. Поэтому по северному рукаву в период максимального загрязнения вод (1986–1989 гг.) в Ла-

Рис. 2. 137 Cs в воде реки Вуокса, Бк/м 3 : 1- в районе пос. Лесогорский, 2- в районе пос. Лосево.

дожское озеро поступало меньше ¹³⁷Cs, чем по южному рукаву. В 1986 г. [12] концентрация ¹³⁷Cs в воде Вуоксы составила $150 \, \text{Бк/м}^3$, что в $\sim 40 \, \text{раз выше до-}$ аварийного уровня ¹³⁷Cs в воде реки. К маю, июлю 1988 г. концентрация слабо понизилась до 113 Бк/м³ из-за устойчивого загрязнения ¹³⁷Cs вод оз. Сайма. Кумулятивный запас 137 Cs в оз. Сайма и на его водосборе способствовали пролонгации загрязнения озерно-речной системы Вуоксы. По нашим данным, с 2016 по 2018 гг. концентрация ¹³⁷Cs в воде Вуоксы колебалась от 5 до 10 Бк/м³ (рис. 2) с тенденцией к более высоким значениям зимой, когда прекращалось поступление вод с местного водосбора. При низком содержании взвеси в р. Вуокса 0.2-6 мг/л и высокой скорости течения потери Cs в русле реки от истока у оз. Сайма до места впадения в Ладожское оз. были невысокими. В пункте Лесогорский, находящемся ближе к оз. Сайма (~24 км), чем п. Лосево, наблюдалось небольшое превышение концентрации ¹³⁷Cs по сравнению с пунктом Лосево. Если допустить, что воды оз. Сайма очищаются от ¹³⁷Cs с полупериодом времени T=6.5 лет (данные по очистке озера от глобального ¹³⁷Cs [5]), то концентрация ¹³⁷Cs в воде Вуоксы (1988 г.) к 2016 г. должна снизиться до \sim 5.9 Бк/м 3 . На сопоставимое время 2017–2018 гг. в р. Вуокса ¹³⁷Сѕ было в 5 раз больше, чем в воде оз. Экостровская Имандра [14].

Ожидалось большее загрязнение ¹³⁷Cs грунтов оз. Суходольское, чем Вуокса, из-за различия в питании озер водами реки. В тоже время быстрая смена вод в оз. Суходольское способствовала выносу ¹³⁷Cs из водоема. Оз. Суходольское при длине 30 км


фактически является водохранилищем руслового типа с сильным течением и подпором вод со стороны Ладоги. В озере из-за чередования плесов с большими (до 20 м) и малыми глубинами имеются неодинаковые условия седиментации взвесей и накопления ¹³⁷Сѕ в грунтах дна. Плотность загрязнения ¹³⁷Сѕ (таблица) ДО станции 1 в оз. Суходольское в два раза больше, чем грунта станции 2 с фарватера русла (табл. 1). Донные отложения станций формировались в неодинаковых динамических условиях, что отразилось на механическом составе грунта. На станции 2 с фарватера русла слои керна 2–5, 5–8, 8–11 см характеризовались массой в 1.4–1.6 раза больше, чем на станции 1. Слои ДО 0–2 и 2–5 см со станции 2 имели большую массу, чем со станции 1.

Для глубоких озер с переменными глубинами в водоеме значительные различия в загрязнении дна ИРН закономерны [11, 15]. Плотность загрязнения ДО ¹³⁷Сѕ по данным 14 колонок из глубокого озера Великобритании Блелхам Тарн [15] изменялась от 13.5 до 2.6 при среднем 5.97 кБк/м 2 . Влияние неодинаковых условий седиментации на загрязнения дна этого озера прослеживалось и по радионуклидам ²³⁸Pu, ^{239,240}Pu, ²⁴¹Am. При пике концентрации глобального ¹³⁷Cs в профиле ДО на глубине 15 см седиментация составила 6.5 мм/год. При такой седиментации в профиле ДО наблюдалось два пика Cs, относящихся к поступлению радионуклида в ~1964 и 1986 гг. Значительные различия в загрязнении ¹³⁷Cs ДО больших проточных озер прослеживаются при анализе распределения радионуклида в профиле ДО. Нижние части кернов ДО оз. Вуокса и Имандра (рис. 3) характеризуются более высокой концентрацией ¹³⁷Сs в, чем в верхних частях. Такой тренд концентрации противоречит закономерности распределения ¹³⁷Cs в профиле ДО оз. Суходольского и станций с Ладоги. Здесь концентрации ¹³⁷Cs снижались от верхнего слоя керна к нижележащим слоям.

К объяснению наблюдаемых различий в загрязнении ДО озер 137 Cs приходится привлекать данные по механизмам, определяющим поступление и миграцию 137 Cs в ДО водоемов. Согласно теоретическим оценкам, [16] при скорости диффузии поллютанта 0.75×10^{-7} см²/с и скорости седиментации ≥ 1.0 см/год осаждение взвесей в водоеме становится ведущим механизмом очищения вод и загрязнения дна. По опытным дан-

ным [6], коэффициенты диффузии D в алевритовых илах олиготрофных озер Скандинавии составили $n \cdot (10^{-8} - 10^{-9})$ см²/с. При таких коэффициентах диффузии и невысокой седиментации «чернобыльский» 137Cs до 1991 г. оставался в верхнем (0–2 см) слое грунта озер Скандинавского полуострова [6, 17]. В условиях низкой седиментации над загрязненным слоем грунта с «чернобыльским» ¹³⁷Cs медленно нарастал слой новых отложений. В выборке из 9 финских озер [18] скорость седиментации взвеси составила 0.6- 17 мм/год. Используем глобальный ¹³⁷Сѕ в качестве метки селиментогенеза [8] и находим (рис. 2, профиль¹³⁷Cs) для озер Вуокса и Имандра скорость осадконакопления 5.5 и 2.6 мм в год соответственно. Замедленный обмен вод в этих озерах (1.6-2.0 лет) способствовал накоплению на дне взвесей. При высокой седиментации в оз. Вуокса глобальный ¹³⁷Cs был захоронен на большую глубину грунта, чем в оз. Имандра. В озерах Вуокса, Блелхам Тарн [15] и Куяш [19] пик глобального ¹³⁷Сѕ находился в слое керна 14–16 см. В работах [15, 19, 20] неодинаковое содержание ¹³⁷Сs в кернах озер объяснялось влиянием гидрологических условий на седиментацию взвесей и на особенности рельефа дна на станциях наблюдений.

Содержание ¹³⁷Cs в кернах станций 1 и 2 с оз. Суходольское отражает комбинированное загрязнение радионуклидом глобальных выпадений и выброса с ЧАЭС. Скорость седиментации в районе станций была низкой. Поэтому 22-летняя разница в поступлении радионуклидов в водоем (1964–1986 гг.) четко не обозначилась в профиле ДО в виде отдельных пиков концентрации ¹³⁷Cs. Грубая оценка седиментации для станции 1 выполнена по допушению, что в слое 0–1 см содержится в основном ¹³⁷Cs «чернобыльской» аварии. По этой оценке, скорость седиментации равна ~0.3 мм/год. Из-за низкой скорости седиментации и невысокой скорости диффузии ¹³⁷Cs основное количество радионуклида сохранилось в слое 0-5 см керна станций 1 и 2. Если в оз. Вуокса глубина миграции ¹³⁷Cs не ограничивалась слоем 29–32 см (рис. 3), то в ДО станций 1 и 2 профиль концентраций ¹³⁷Cs заканчивался следовыми количествами радионуклида на отметках керна менее 17 и 8 см соответственно. Для ДО станций 1 и 2 оз. Суходольское 34-летней экспозиции «чернобыльского» ¹³⁷Сs оказалось недостаточно для значительной миграции радионуклида в

Рис. 3. 137 Cs в профиле ДО озер: I — Вуокса, 2 — Суходольское, 3 — Ладожское, 4 — Имандра.

толщу ДО. Высокая проточность озера ограничивала седиментацию взвеси, вследствие чего повысилась роль диффузионного механизма в миграции радионуклида в толщу ДО.

В [6, 15] приведены коэффициенты диффузии (D) 137 Cs $n \cdot (10^{-8} - 10^{-9})$ см 2 /с в ДО озер. В ДО наблюдалась тенденция увеличения коэффициента диффузии ¹³⁷Cs с глубиной керна. Многолетняя экспозиция глобального ¹³⁷Cs в ДО озер позволяет оценить диффузию радионуклида в толще иловых отложений. Такая процедура была выполнена для ДО оз. Ладожское. Из-за присутствия в верхних слоях ДО «чернобыльского» ¹³⁷Сs к оценке диффузии глобального ¹³⁷Сs привлекали нижние слои керна, не содержащие этого радионуклида. Содержание ¹³⁷Cs в слоях ДО 12-14, 14-16, 16-18, 18-20 и 20-22 см составило 240, 190, 140, 78 и 15 Бк/кг сухой массы. Время экспозиции ¹³⁷Cs 1964–2020 гг. Коэффициент диффузии для слоёв 14–16 см и далее составил 3.0×10^{-8} , 1.75×10^{-8} и 0.68×10^{-8} см²/с соответственно. Эти значение D выше наблюдаемых $n \cdot 10^{-9}$ см²/с в верхних слоях ДО (0-2 см) озер Скандинавии при короткой экспозиции «чернобыльского» ¹³⁷Cs [6]. Полувековая диффузия глобального ¹³⁷Cs в илах Ладожского озера с $D n \cdot 10^{-8}$ см²/с способствовала его миграции в толщу ДО. Коэффициенты диффузии Cs в ДО Ладожского озера согласуются со значением D [21], найденным для грунта оз. Байкал – $0.056 \text{ cm}^2/\text{год}.$

Элемент Cs относится к рассеянным химическим элементам Земли. Время пребывания его ис-

кусственного радионуклида ¹³⁷Cs в геосфере не превышает 70 лет. Накопление ¹³⁷Cs в верхних слоях почв и в грунтах дна водоемов отражает лишь этап его долговременной миграции. В почвах [22] ¹³⁷Cs присутствует в трех химических формах: обменной, труднодоступной ионному обмену и фиксированной в кристаллитах минералов почв. В иловых отложениях белорусских озер [23] лишь часть ¹³⁷Cs, сорбированного илом, находилась на позициях селективной сорбции (FES), труднодоступных ионному обмену. Органические комплексы илов с минералами типа иллита наиболее прочно удерживали ¹³⁷Cs в поглощенном состоянии.

Доступность миграции ¹³⁷Cs в донных отложениях оз. Суходольское оценивали по содержанию обменной химической формы радионуклида, выделяемой в раствор 1 M NH₄Ac при соотношении фаз 1:10 и времени взаимодействия фаз 1 сут. Для этой процедуры выбирали слои керна, в которых содержание радионуклида позволяло корректно определить наличие обменной формы ¹³⁷Cs. Обменная форма ¹³⁷Cs в ДО оз. Суходольское определялась только в слоях грунта 11-14 и 17-20 см с повышенным содержанием ¹³⁷Cs 490 и 700 Бк/кг [6]. Доля обменного ¹³⁷Cs в упомянутых слоях керна составила 14.4 и 20.0% от вала соответственно. Большая часть ¹³⁷Cs находилась в фиксированной и труднодоступной ионному обмену химической форме. Низкое содержание в грунте обменного ¹³⁷Cs способствовало сохранению глобального ¹³⁷Cs в слое 29-32 см в виде пика концентрации [6]. За период 53-летнего пребывания глобального ¹³⁷Cs в донных отложениях станции пик его концентрации на глубине 29–32 см не был «размыт». В глубь донных отложений мигрировали подвижные химические формы ¹³⁷Cs. Для арктического и субарктического регионов страны отсутствуют данные, характеризующие физико-химическое состояние ¹³⁷Cs в ДО водоемов. Поэтому вопросы прогноза миграции ¹³⁷Cs при аварийных загрязнениях водоемов Севера и научного обоснования для них контрмер нуждаются в дополнительных экспериментальных исследованиях.

ЗАКЛЮЧЕНИЕ

Изучено состояние загрязнения ¹³⁷Cs донных отложений глубоких проточных озер Северо-Запад-

ного региона. Объектами исследования являлись донные отложения речной системы р. Вуокса-Ладожское озеро и оз. Имандра, загрязненные преимущественно ¹³⁷Cs глобальных выпадений. ДО оз. Копанское с «чернобыльским» ¹³⁷Сs рассматривались как объекты сравнения. Плотность загрязнения ¹³⁷Сѕ ДО озер Вуокса и Суходольское составила $4.2-8.6 \text{ кБк/м}^2$, что в ~4 и ~2 раза меньше содержания ¹³⁷Cs в донном грунте оз. Копанское из зоны «чернобыльского» следа на Финском побережье. Содержание ¹³⁷Cs в водах р. Вуокса (2016–2018 гг.) составило 5.3-9.3 Бк/м³. По северному мелководному руслу Вуоксы в Ладогу поступало меньше ¹³⁷Cs, чем по южному рукаву через оз. Суходольское. Воды оз. Сайма – истока Вуоксы – остаются источником загрязнения ¹³⁷Cs реки и сопряженных с ней по стоку озер. Загрязнения ¹³⁷Сs дна плесов проточных озер зависят от гидрологических условий осадконакопления. В озёрах Вуокса и Имандра при седиментации более 2.5 мм/год концентрации ¹³⁷Сѕ повышались от верхнего слоя керна к более глубоким слоям; произошло захоронение ¹³⁷Cs в толще ДО. При седиментации менее 1.0 мм/год ¹³⁷Сs накапливался в верхнем слое кернов (станции оз. Суходольское, Ладожское); концентрации ¹³⁷Cs снижались от верхнего к нижним к слоям ДО. В илах Ладоги на глубине 14-23 см коэффициенты диффузии D глобального ¹³⁷Cs $n \cdot (10^{-8})$ см²/с были в ~10 раз больше наблюдаемых в верхних слоях кернов озер Скандинавии при короткой экспозиции «чернобыльского» ¹³⁷Cs (1986–1992 гг.). Наблюдаемое распределение ¹³⁷Cs в ДО озер обусловлено сочетанием седиментогенеза и диффузии ¹³⁷Cs. На миграцию ¹³⁷Cs в толщу донных отложений влияет содержания в грунтах обменной химической формы радионуклида; её доля в илах оз. Суходольское составила 14–20% от общего.

ФОНДОВАЯ ПОДДЕРЖКА

Исследование выполнено за счет гранта Российского научного фонда № 23-24-00319, https://rscf.ru/project/23-24-00319/.

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют об отсутствии конфликта интересов.

РАДИОХИМИЯ том 65 № 5 2023

СПИСОК ЛИТЕРАТУРЫ

- 1. Смагин А.И. Экология водоемов в зоне техногенной радионуклидной геохимической аномалии на Южном Урале. Челябинск: ЮУрГУ, 2013. 204 с.
- 2. *Крышев И.И., Рязанцев Е.П.* Экологическая безопасность ядерно-энергетического комплекса России. М.: ИздАт, 2010. 384 с.
- 3. Вакуловский С.М., Газиев Я.И., Колесникова Л.В., Петренко Г.И., Тертышник Э.Г., Уваров А.Д. // Атом. энергия. 2006. Т. 100, Вып. 1. С. 68–74.
- Стоун Д. Доклад о состоянии окружающей среды Арктики. АМАП: Программа арктического мониторинга и оценки. СПб.: Гидрометеоиздат, 1998. 118 с.
- 5. *Большиянов Д.Ю., Бакунов Н.А., Макаров А.С.* // Вод. ресурсы. 2016. Т. 43, № 3. С. 328–335.
- 6. *Бакунов Н.А., Большиянов Д.Ю., Правкин С.А.* // Радиохимия. 2019. Т. 61, № 1. С. 122–128.
- 7. Ремез В.П., Канивец В.В., Поляков В.В., Ремез Е.П. // Тр. Междунар. конф. «Радиоактивность при ядерных взрывах и авариях». СПб: Гидрометеоиздат, 2000. Т. 2. С. 673–678.
- 8. *Бакунов Н.А., Большиянов Д.Ю.* // Радиохимия. 2007. T. 49, № 2. C. 170–172.
- 9. *Поляков Ю.А.* Радиоэкология и дезактивация почв. М.: Атомиздат. 1970. 303 с.
- Дубасов Ю.В., Евдокимов А.В., Каменцев А.А., Саульский А.В., Чеплагина О.В. // Радиохимия. 2011. Т. 53, № 6. С. 559–564.
- 11. Бобров В.А., Калугин И.А., Клеркс Ж., Дучков А.Д., *Щербов Б.Л., Степин А.С.* // Геология и геофизика. 1999. Т. 40. С. 530–536.

- 12. *Алексеенко В.А.* // Радиохимия. 1997. Т. 39, № 2. С. 187–190.
- 13. *Рахола Т., Саксен К., Костиайнен Э., Пухакайнен М.* // Радиохимия. 2006. Т. 48, № 6. С. 562–566.
- 14. Радиационная обстановка на территории России и сопредельных государств в 2018 гг. Ежегодник / Под ред. В.М. Шершакова, В.Г. Булгакова, И.И. Крышева, С.М. Вакуловского, М.Н. Катковой, А.И. Крышева. Обнинск: НПО «Тайфун», 2019. С. 199.
- 15. Michel H., Barei-Funel G., Barci V., Andersson G. // Radiochim. Acta. 2002. Vol. 90. P. 747–752.
- Сухоручкин А.К. // Метеорология и гидрология. 1985.
 № 7, С. 76–81.
- 17. Wathne B.M. AL:PE Acidification of Mountain Lakes: Palaeolimnology and Ecology: AL:PE 1 Report for Period April 1991–April 1993. EUR-OP, 1995. 292 p.
- Ilus E., Saxen R. // J. Environ. Radioact. 2005. Vol. 82. P. 199–221.
- 19. *Каблова К.В., Дерягин В.В., Левина С.Г., Сутя-гин А.А.* // Радиац. биология. Радиоэкология. 2018. Т. 58, №. 5. С. 517–523.
- Страховенко А.Д., Щербов Б.Л., Маликова И.Н., Восель Ю.С. // Геология и геофизика. 2010. Т. 51, № 11. С. 1501–1514.
- 21. Edgington D.N., Klump J.V., Robbins J.A., Kusner Yu.S., Pampura V.D., Sandirimov I.V. // Nature. 1991. Vol. 350. P. 601–604.
- 22. Cremers A., Elsen A., De Preter P., Maes A. // Nature. 1988. Vol. 335, N 6187. P. 247–249.
- 23. *Москальчук Л.Н., Баклай А.А., Леонтьева Т.Г.* // Радиохимия. 2018. Т. 60, № 1. С. 93–96.

¹³⁷Cs Migration and Profile in Bottom Sediments of Deep Drainage Lakes, North-Western Russia

N. A. Bakunov, D. Yu. Bolshiyanov, A. O. Aksenov*

Arctic and Antarctic Research Institute, St Petersburg, 199397 Russia *e-mail: aksenov2801@gmail.com

Received March 20, 2023; revised July 05, 2023; accepted July 12, 2023

Modern contamination of global and «Chernobyl» 137 Cs in lake-river systems bottom sediments is estimated. Drainage lakes of North-Western Russia were investigated. Kopanskoe Lake, located south of the Gulf of Finland, is on the trail of the «Chernobyl» 137 Cs fallout, whereas Ladoga, Sukhodolskoe, Vuoksa, Imandra lakes are located at its periphery, in Karelia and Kola Peninsula. Following parameters are distinguished: lakes bottom 137 Cs pollution density (kBq/m²), distribution of 137 Cs in the profile of bottom sediments, 137 Cs diffusion coefficients (D) in bottom sediments and content of the exchange chemical form of the radionuclide. 137 Cs contamination of the lakes was formed due to suspended matter sedimentation with 137 Cs, 137 Cs sorption and diffusion in bottom sediments. With sedimentation ≥ 3 mm/year, the concentration of 137 Cs increased from the top to the bottom of the core (lakes Vuoksa, Ekostrovskaya Imandra), reflecting the gradual process of 137 Cs migration into the sediments. The opposite trend of 137 Cs concentration was observed in the bottom sediments of lakes Ladoga and Sukhodolskoe with sedimentation ≤ 0.5 mm/year. Here 137 Cs diffusion with $D = (0.5-6.2) \times 10^{-8}$ cm²/s caused slow radionuclide transfer in the bottom sediments. The main supply of 137 Cs was contained in the top layer 0-5 cm. 14.4-20 % of absorbed 137 Cs in lake Sukhodolskoye bottom sediments were was in an exchange chemical form, extracted into solution 1 M NH 4 Ac.

Keywords: ¹³⁷Cs, lakes, bottom sediments, ¹³⁷Cs supply, sorption, diffusion